Including Prior Use Of Additive (e.g., Changing Ph, Etc.) Patents (Class 210/639)
  • Patent number: 9227159
    Abstract: A water treatment system combines a microfiltration or ultrafiltration membrane system with a downstream reverse osmosis membrane system. The MF or UF system has multiple trains of immersed membrane modules. The trains are connected to a common permeate pump. The permeate pump discharges directly into the inlet of an RO feed pump. The membrane trains are each subjected to the same suction. The permeate pumps are operated to provide the required flow to the RO feed pump at or above the minimum inlet pressure of the RO feed pump.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: January 5, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Kevin Simon Joseph Dufresne, Denis Joel Marie Guibert
  • Patent number: 9206061
    Abstract: CO2 absorption and desorption affords differing osmotic pressure metal salt osmolyte draw solutions from a common solution. These draw solutions serve a staged forward osmosis membrane process. First stage draw solution is the lowest osmotic pressure osmolyte. First stage concentrate is fed to the second stage and fresh water is externally extracted from the first stage diluted osmolyte. Concentrated first stage osmolyte returns from fresh water extraction, blends and is heated with solid precipitates of the lower osmotic pressure solute. CO2 desorbs from the lower osmotic pressure osmolyte converting to a higher osmotic pressure osmolyte. The higher osmotic pressure osmolyte serves as second stage draw solution to further dewatering the first stage concentrate. Second stage concentrate conveys to external processing or discharge. CO2 absorption converts the dilute high osmotic pressure osmolyte from the second stage to the lower osmotic pressure osmolyte serving as draw solution in the first stage.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: December 8, 2015
    Inventors: James Jeffrey Harris, Upen Jayant Bharwada
  • Patent number: 9186622
    Abstract: A method of separating oxygen from nitrogen involves delivering air to a first side of a membrane comprising a polymer support and a layer of zeolite nanosheet particles with thickness of 2 nm to 10 nm and mean diameter of 5 nm to 5000 nm. The delivered air provides a pressure differential between opposite sides of the membrane, thus causing oxygen in the hollow core to diffuse through the polymer support and the zeolite nanosheet layer to the second side of the membrane. The preferential diffusion of oxygen (compared to diffusion of nitrogen) through the membrane produces nitrogen-enriched air on the first side of the membrane and oxygen-enriched air on the second side of the membrane.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: November 17, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Rajiv Ranjan, Zissis A. Dardas
  • Patent number: 9181170
    Abstract: A method for preparing an unsaturated carboxylic acid comprising (a) preparing an aqueous solution comprising an ammonium salt of hydroxycarboxylic acid and a salt of inorganic acid; (b) contacting the aqueous solution with a cation exchange resin to prepare a conversion aqueous solution comprising a hydroxycarboxylic acid and an inorganic acid; and (c) dehydrating the hydroxycarboxylic acid using the inorganic acid as a catalyst is provided.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: November 10, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jun Chwae, Nam Soo Park, Moo Ho Lee, Jong Won Kim
  • Patent number: 9108124
    Abstract: The particle components may be collected by using a phenomenon that the particle components in the aqueous phase aggregate at the liquid-to-liquid interface. Both of the particle components and the dissolved components in the aqueous phase may be simultaneously collected if combined with liquid-liquid extraction phenomenon that the dissolved components in the aqueous phase are collected into the solvent phase through the liquid-to-liquid interface. The aggregation phenomenon of the particle components at the liquid-to-liquid interface may be promoted by using an emulsion flow method, a method of applying mechanical external forces (such as stirring and vibrating) or another method combining both the above-mentioned methods.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: August 18, 2015
    Assignee: Japan Atomic Energy Agency
    Inventors: Hirochika Naganawa, Nobuyuki Yanase, Tetsushi Nagano
  • Patent number: 9090491
    Abstract: The removal of boron from saline water based (10) using alkalized NF membrane pretreatment (14) can be adopted at 90% recovery and pH 8-9.5 to produce softened and alkalized NF permeate having SDI<1 with significant reduction in feed boron, TDS and scale-forming ions depending on the properties of the NF membrane polymer structure. NF process (14) acts as a partial desalination process, a softening process, as well as a boron removal process. An additional RO membrane alkalization (16) can be adopted at a wide range of RO feed at pH 8.5-10, resulting in production of desalinated water (18) with almost nil boron content.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: July 28, 2015
    Assignee: SALINE WATER DESALINATION RESEARCH INSTITUTE
    Inventor: Abou Elfetouh Zaki Abd Ellatif
  • Publication number: 20150136696
    Abstract: A process for treating water used in a coal tar process is described. The process involves treating the water with extraction with an extraction agent or adsorption with an adsorbent. The extraction agent includes at least one of amphiphilic block copolymers, cyclodextrins, functionalized cyclodextrins, and soluble cyclodextrin-functionalized polymers, and the adsorbent includes insoluble cyclodextrin-functionalized polymers, exfoliated graphite oxide, thermally exfoliated graphite oxide or intercalated graphite compounds.
    Type: Application
    Filed: August 28, 2014
    Publication date: May 21, 2015
  • Patent number: 9028696
    Abstract: Disclosed herein are methods and processes for the recovery of oleaginous compounds from biomass and in particular biomass comprises photosynthetic microorganisms. Also disclosure are oleaginous compounds obtained using the disclosed methods.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: May 12, 2015
    Assignee: Sapphire Energy, Inc.
    Inventors: Richard J. Cranford, Alex M. Aravanis, Stilianos G. Roussis
  • Publication number: 20150122732
    Abstract: A process for treating water containing dissolved organic compounds, including naphthenic acids, for example, oil sands process water, using petroleum coke is provided, comprising: removing petroleum coke from a coking operation; forming a petroleum coke/water slurry by adding the water containing dissolved organic compounds to the petroleum coke; adding a pH-lowering agent to the petroleum coke/water slurry either during slurry formation or after slurry formation to form a treated petroleum coke/water slurry; and allowing the treated petroleum coke/water slurry to mix for a sufficient time in a carbon adsorption reactor to allow the petroleum coke to adsorb a substantial portion of the dissolved organic compounds from the water.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
    Inventors: WARREN ZUBOT, GAIL BUCHANAN
  • Patent number: 9011691
    Abstract: Disclosed herein are methods for recovering diphosphite-containing compounds from mixtures comprising organic mononitriles and organic dinitriles, using liquid-liquid extraction. Also disclosed are treatments to enhance extractability of the diphosphite-containing compounds.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: April 21, 2015
    Assignee: INVISTA North America S.a.r.l.
    Inventors: William J. Tenn, III, Sudhir N. V. K. Aki, Tseng H. Chao, Thomas E. Vos
  • Patent number: 9005450
    Abstract: The invention relates to a method which uses magnetic ionic liquids for the liquid-liquid, liquid-solid, or liquid-gas extraction, wherein the partition of the phases occurs in a magnetic field.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: April 14, 2015
    Assignee: Proionic Production of Ionic Substances GmbH & Co KG
    Inventor: Roland Kalb
  • Publication number: 20150083663
    Abstract: An apparatus for treating wastewater, such as high-solids contend wastewater from a fracking operation, includes a solids-oil-water separation apparatus coupled to a low-pressure membrane filtration apparatus, with a wastewater recycling conduit coupled at one end to the low-pressure membrane filtration apparatus and coupled at a second end to the solids-oil-water separation apparatus, whereby progressive recycling of membrane concentrate from the low-pressure membrane filtration apparatus through the wastewater recycling conduit, into the solids-oil-water separation apparatus, provides recovery of as much as 97% of the water from a raw wastewater stream.
    Type: Application
    Filed: September 25, 2014
    Publication date: March 26, 2015
    Applicant: Pacific Advanced Civil Engineering, Inc.
    Inventors: Andrew T. Komor, Keisuke Ikehata
  • Publication number: 20150076065
    Abstract: The present invention relates to a method of treating aqueous fluid and apparatus therefor. The method comprises adding an organic compound to a mass of aqueous fluid comprising at least one Kinetic Hydrate Inhibitor (KHI). The organic compound comprises a hydrophobic tail and a hydrophilic head. The hydrophobic tail comprises at least one C—H bond and the hydrophilic head comprises at least one of: a hydroxyl (—OH) group; and a carboxyl (—COOH) group.
    Type: Application
    Filed: August 14, 2014
    Publication date: March 19, 2015
    Inventors: Ross ANDERSON, Saeid Mazloum VAJARI, Bahman TOHIDI
  • Patent number: 8980095
    Abstract: A process for producing ultrapure water, in which a stream of water is purified in a reverse osmosis device, wherein the water stream is subject to pretreatment including splitting the water stream into at least two partial streams, partial exchange of cations present in at least one of the partial streams for H+ ions by a cation exchanger operated in the H+ mode, and complete exchange of the anions present in at least one further of the partial streams for OH? ions by a softener operative in parallel to the cation exchanger, and treating the partial streams treated by the cation exchanger and the softener by at least one anion exchanger operating in the OH? mode, and wherein the water stream obtained from the pretreatment is fed into the reverse osmosis device.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: March 17, 2015
    Assignee: BWT Aktiengesellschaft
    Inventor: Jürgen Johann
  • Publication number: 20150060360
    Abstract: Water treatment systems and methods are provided to minimize membrane fouling and the required maintenance that results therefrom. A water treatment system includes a pressure vessel with a plurality of spaced-apart membranes circularly disposed therein, and an impeller or other means for circulating feed water through the interior of the vessel and past the membranes. Antifouling particles (such as diatomaceous earth or activated carbon) and/or pellets can be added to the feed water inhibit membrane fouling and extend the useful life of the membranes. A feed spacer element having a window-pane pattern can be disposed between adjacent membrane leaves to reduce membrane fouling.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 5, 2015
    Inventors: Michael Sean Motherway, Diem Xuan Vuong, Curtis Roth
  • Patent number: 8968569
    Abstract: A method of wastewater reutilization by which reusable water can be stably obtained from a wastewater. Ozone is added to a wastewater, such as water resulting from sewage treatment, in such a small amount as to result in a residual ozone concentration as measured before membrane filtration of 0.01-1.0 mg/L. Ozone is thus brought into contact with fine solids contained in the wastewater to alter the surface properties of the fine solids so that the solids are easily to coagulate. Thereafter, a coagulant, e.g., PACl, is added from a coagulant addition device (3). The fine solids are coagulated in a coagulation tank (5) or a line mixer and the resultant water is subjected to membrane filtration with an ozone-resistant separation membrane (6) such as ceramic membrane. Thus, reusable water is obtained which has a residual ozone concentration, as measured after filtration through the membrane, less than 0.5 mg/L.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: March 3, 2015
    Assignee: Metawater Co., Ltd.
    Inventors: Shigehiro Suzuki, Motoharu Noguchi, Hideki Kozono
  • Patent number: 8968572
    Abstract: In a device and a process for purifying water which is contaminated with sulphate ions and heavy metal ions, the water is collected in a water reservoir and a substance having basic activity in water is fed to the water reservoir in such a manner that a precipitant having heavy metal ions is precipitated from the water, wherein at least a subquantity of water is taken off from the water reservoir and is separated into pure water which is substantially freed from sulphate ions and heavy metal ions and dirty water which is enriched with sulphate ions and heavy metal ions. The dirty water is at least in part recirculated to the water reservoir, as a result of which a concentration of sulphate ions in the water reservoir is achieved such that a precipitant having sulphate ions is precipitated from the water.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: March 3, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Michael Riebensahm
  • Patent number: 8961795
    Abstract: The invention relates to an apparatus and method for removing molybdenum and other possible impurities from an organic copper-containing extraction solution in connection with the liquid-liquid extraction related to copper recovery. The removal of impurities occurs in one or several removal units built into the organic extraction solution storage tank.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: February 24, 2015
    Assignee: Outotec Oyj
    Inventors: Hannu Laitala, Erkki Paatero, Bror Nyman, Eero Ekman
  • Publication number: 20150048027
    Abstract: A process for treatment of water. Hardness and non-hydroxide alkalinity are removed from feedwaters to an extent sufficient to avoid scaling when concentrated. Sparingly ionizable components in the feedwater are urged toward increased ionization by increasing the pH of the feedwater. In this manner, species such as silica become highly ionized, and (a) their rejection by membranes used in the process is significantly increased, and (b) their solubility in the reject stream from the membrane process is significantly increased. Sparingly ionized species such as boron, silica, and TOC are highly rejected. Recovery ratios of ninety percent (90%) or higher are achievable with many feedwaters, while simultaneously achieving a substantial reduction in cleaning frequency of membranes used in the process.
    Type: Application
    Filed: November 1, 2012
    Publication date: February 19, 2015
    Inventor: DEBASISH MUKHOPADHYAY
  • Patent number: 8945374
    Abstract: A device and mechanism for recommending a water filter in a beverage dispenser is described. A sensor senses qualities of unfiltered water. Another sensor senses qualities of a flavorant container, such as the flavorant contained within the container. Based on the quality of the unfiltered water and the particular flavored beverage desired, the device will recommend a water filter to optimize the flavor of the beverage.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: February 3, 2015
    Assignee: Whirlpool Corporation
    Inventor: Kevin M. Chase
  • Publication number: 20150021267
    Abstract: The present invention relates to a preparation method of a granular oxide adsorbent for water treatment in which a metal oxide is bound to the surface of polymer particles, and more specially, to a preparation method of a granular oxide adsorbent, comprising the following steps: putting polymer particles in an acidic solution; adding polymer particles to a metal oxide aqueous solution and adjusting a pH; and washing and drying the obtained product. Accordingly, a granular oxide adsorbent prepared by the preparation method is provided and is utilized in water treatment and the like.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 22, 2015
    Inventor: Kwang-Ho Choo
  • Publication number: 20150014247
    Abstract: A field water purification system filter is described. The filter includes a water tight enclosure formed between two layers of a polymeric material, an inlet and an outlet are coupled to the water tight enclosure. A filter envelope including a quantity of filter media is inside the water tight enclosure. The water filter having a minimal thickness when not filled with water. The filter envelope is formed by a first set of bonded segments of the two layers of polymeric material. The filter can also include an outer channel having a first side formed by the water tight enclosure and a second side opposite from the first side. The second side can include a second set of bonded segments of the two layers of polymeric material interspersed with a set of nonbonded segments, the nonbonded segments defining openings in an intermittent barrier between the outer channel and the filter media.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 15, 2015
    Inventors: Trygve J. Lundquist, Patricia M. Compas-Markman
  • Publication number: 20150004675
    Abstract: The present invention relates to a method for recovering an aqueous phase comprising biomolecules dissolved therein from a multiphasic mixture, comprising at least said aqueous phase and a further liquid phase which is immiscible with said aqueous phase wherein said further liquid phase comprises at least one hydrocarbon compound. The invention further relates to the use of a hydrophilic filtering material, a device comprising such a filtering material or a kit comprising said device for recovering an aqueous phase comprising biomolecules dissolved therein from a mixture of said aqueous phase and at least one hydrocarbon compound comprising further liquid phase which is immiscible with said aqueous phase.
    Type: Application
    Filed: December 4, 2012
    Publication date: January 1, 2015
    Inventors: Jörg Hucklenbroich, Frank Narz
  • Patent number: 8920644
    Abstract: A method of producing drinking water from wastewater comprises ozonating the wastewater and treating the wastewater with powdered activated carbon (PAC). The ozonated wastewater and the PAC are mixed together in a contacting zone. The mixture of PAC and wastewater is directed through a membrane filtration unit that separates a PAC rich concentrate from treated water. The PAC rich concentrate is recirculated to the contacting zone to increase the concentration of PAC in the contacting zone.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: December 30, 2014
    Assignee: Veolia Water Solutions & Technologies Support
    Inventor: Abdelkader Gaid
  • Patent number: 8919573
    Abstract: A system for purifying non-potable water to make said water potable includes an intake pump for bringing the non-potable water into the system. At least one centrifugal separator separates the non-potable water into suspended solids, saline water and oil. At least one ozone contact chamber injects ozone into a water stream being injected into at least one of the at least one of the centrifugal separators. A series of progressive filtration components are used for progressively filtering the saline water from the at least one centrifugal separator. The salinization filters then desalinate the progressively filtered saline water.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: December 30, 2014
    Inventor: David Capehart
  • Publication number: 20140371113
    Abstract: A method of processing a return oil-based drilling fluid includes centrifuging a primarily fluids phase at a first speed and separating the primarily fluids phase into a first effluent and a first residual, centrifuging the first effluent at a second speed and separating the first effluent into a second effluent and a second residual, and centrifuging the second effluent at a third speed and separating the second effluent into a third effluent and a third residual. A surfactant, a polymer, combinations of surfactant(s) and polymer(s) and/or a wash water may be added to one or more of the return oil-based drilling fluid, the primarily fluids phase, the primarily solids phase, the first effluent, the second effluent, and the third effluent.
    Type: Application
    Filed: October 1, 2012
    Publication date: December 18, 2014
    Inventors: Gary Fout, Michael Savoy
  • Patent number: 8911630
    Abstract: A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: December 16, 2014
    Assignee: Savannah River Nuclear Solutions, LLC
    Inventors: Brian B. Looney, Margaret R. Millings, Ralph L. Nichols, William L. Payne
  • Publication number: 20140360940
    Abstract: The present invention refers to a process for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate and its uses. The process is carried out in a reactor system that comprises a tank (1) equipped with a stirrer (2) and at least one filtering device (4).
    Type: Application
    Filed: January 31, 2013
    Publication date: December 11, 2014
    Inventors: Matthias Buri, Samuel Rentsch, Patrick A.C. Gane, René Vinzenz Blum, Martine Poffet
  • Patent number: 8906972
    Abstract: An aqueous two-phase system (ATPS) containing a poly(oxyethylene) (POE) and a poly[sodium (diallylamino)alkylphosphonate-alt-sulfur dioxide] form a pH-responsive dianionic polyelectrolyte (DAPE). The two polymers form ATPS's at low concentrations, where the addition of HCl changes the charge types and their densities on the polymer chains.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: December 9, 2014
    Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City of Science and Technology
    Inventors: Othman Charles Sadeq Al-Hamouz, Shaikh Asrof Ali
  • Patent number: 8906236
    Abstract: Disclosed herein are methods and processes for the recovery of nutrients from non-organic phases produced during recovery of oleaginous compounds from biomass. The nutrients recovered can then be utilized to grow additional biomass.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: December 9, 2014
    Assignee: Sapphire Energy, Inc.
    Inventors: Richard J. Cranford, Alex M. Aravanis, Stilianos G. Roussis
  • Publication number: 20140346111
    Abstract: In a seawater treatment method in which after seawater is coagulated by a coagulant and is processed by a solid-liquid separation treatment, an RO treatment is performed, RO feed water having a good water quality is obtained by a small addition amount of the coagulant, and by the RO treatment of the RO feed water, a stable RO treatment can be performed over a long period of time. In a seawater treatment method which is a pretreatment method performed prior to a membrane separation treatment of seawater, after a cationic organic flocculant and/or an inorganic coagulant is added to seawater to conduct a reaction, a coagulation treatment is performed by addition of an alkaline solution of a high molecular weight compound which has a phenolic hydroxide and which is insolubilized under a high salt concentration, and a solid-liquid separation treatment is then performed. Subsequently, this treated water is desalinated by a membrane separation treatment.
    Type: Application
    Filed: December 25, 2012
    Publication date: November 27, 2014
    Applicant: KURITA WATER INDUSTRIES LTD.
    Inventors: Yasuhiro Oi, Tomoya Iuchi
  • Patent number: 8894865
    Abstract: This invention relates generally to processes for extracting iron and/or calcium from geothermal brines.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: November 25, 2014
    Assignee: Berkshire Hathaway Energy Company
    Inventors: John L. Featherstone, George Furmanski
  • Patent number: 8877064
    Abstract: A system for separating solids from fluid including a solid-laden fluid including a base fluid, a first separator configured to receive the solid-laden fluid and separate the fluid into a solids portion and an effluent, and a membrane separator configured to receive the effluent and separate the effluent into a permeate and a concentrate is disclosed. A method for separating solids from fluid including obtaining a solid-laden fluid, wherein the solid-laden fluid comprises a base fluid, feeding the solid-laden fluid through a centrifuge, removing at least a portion of high gravity solids from the solid-laden fluids, flowing the solid-laden fluid through a membrane separator, removing at least a portion of low gravity solids from the solid-laden fluid, and collecting a permeate from the membrane separator is also disclosed.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: November 4, 2014
    Assignee: M-I L.L.C.
    Inventors: Rahul Dixit, Mukesh Kapila
  • Patent number: 8877059
    Abstract: The invention relates to a method for separating organosilicon compounds from organosilicon wastewater. In the first step, the wastewater is heated to at least 10° C. In the second step, the wastewater is stored for at least 30 minutes at at least 10° C. In the third step, the wastewater is conducted through a phase separation element, in which droplets that are formed and contain organosilicon compounds are separated.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: November 4, 2014
    Assignee: Wacker Chemie AG
    Inventors: Ulrike Buettner, Susanne Kutz, Winfried Mueller
  • Patent number: 8877058
    Abstract: This invention provides a process for separating solute material from an algal cell feed stream. The algal cell feed stream, which contains the solute material, can be introduced into on portion of a mixer-settler vessel, and a solvent feed stream can be introduced into another portion of the vessel to mix with the algal cell feed stream, with a goal of separating at least a portion of the solute material from the algal feed stream.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: November 4, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Mark A. Greaney, James R. Bielenberg, Paul D. Oldenburg
  • Patent number: 8877060
    Abstract: The present application relates to a method for removing pathogens from a transfusion grade platelet composition. The method comprises the steps of passing a platelet preparation through a first tangential flow filtration (TFF) device having a TFF filter, and collecting a retentate from the TFF device, wherein the retentate comprises filtered platelets to be used for transfusion. The platelet preparation comprises a platelet activation inhibitor and an anti-coagulant. During the TFF process, a diafiltration solution is added to the retentate to maintain the volume of the platelets.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: November 4, 2014
    Assignee: Biovec Transfusion, LLC
    Inventor: Lakshman R. Sehgal
  • Patent number: 8871822
    Abstract: The cross-linked polyphosphonate-sulfone composition for removal of metal ions from wastewater relates to a cross-linked anionic polyelectrolyte polymer for the removal of metal ions, such as lead (Pb2+) and copper (Cu2+) ions, from wastewater and the like. The cross-linked anionic polyelectrolyte polymer has the formula: The cross-linked anionic polyelectrolyte polymer is made by cyclopolymerization of diallylaminomethylphosphonic acid, 1,1,4,4-tetraallylpiperazinium dichloride (a cross-linker), and sulfur dioxide in the presence of AIBN (an initiator) in DMSO at 65° C. to form a cross-linked polyzwitterionic acid (CPZA). The CPZA is then treated with base (such as sodium hydroxide) to form the cross-linked anionic polyelectrolyte polymer having the formula shown above.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: October 28, 2014
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Shaikh Asrof Ali, Othman Charles Sadeq Othman Al Hamouz
  • Patent number: 8852437
    Abstract: A method of producing sterile water from raw water during a production cycle in a production plant P, including adding a disinfectant to the produced sterile water during the production cycle to permanently monitor the condition of the sterile water and/or the production plant, and determining and evaluating a reduction of concentration of the disinfectant directly in the production stream. In a production plant suited for carrying out the method, a sterile sensor is provided directly in the production stream through which the reduction of concentration of the disinfectant added to the produced sterile water can be permanently measured and evaluated to provide a sterility evidence.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 7, 2014
    Assignee: Krones AG
    Inventor: Jörg Zacharias
  • Patent number: 8852436
    Abstract: A process for recovering solvents from inorganic and organic solutions is disclosed. The process utilizes a polymer capable of selectively extracting the solvent from the inorganic or organic solution. Introduction of the polymer into the solvent solution creates formation of a polymer-rich phase and a solute-rich phase. The recovered solvent may be separated from the polymer-rich phase by heating the polymer-rich phase to at least the cloud point of the polymer. The polymer and/or solute may be recycled for further use in the solvent recovery process.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: October 7, 2014
    Assignee: The Board of Trustees of The University of Illinois
    Inventors: Nandakishore Rajagopalan, Vinodkumar Ambalal Patel
  • Publication number: 20140291241
    Abstract: Components, systems, and methods for producing highly hydrophilitic, functionalized inorganic filtration membranes, pre-treating organic and biological-containing waste waters for minimal membrane fouling and scaling when processed using such functionalized membranes, and use of such functionalized membranes of the present invention in filtration systems for separating such pre-treated waste waters, all with respect to optimal permeate production rates, purity of permeate and resistance to fouling and scale formation on the membranes.
    Type: Application
    Filed: November 19, 2013
    Publication date: October 2, 2014
    Inventors: Waymon R. Votaw, JR., Jacob L. Davis, Edward E. Munson, Andrew R. Barron, Samuel J. Maguire-Boyle
  • Publication number: 20140263058
    Abstract: A method and system for treating waste water from hydraulic fracturing is disclosed. The treatment includes removing the sand, suspending the inorganic metals and impurities, using flocculation to engulf the impurities, and separating the impurities from the water, resulting in pure water that can be reused in the process.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Inventor: Richard H. Fagher
  • Publication number: 20140263059
    Abstract: The invention is directed to a method and a device for separating plasma from whole blood. The method combines size exclusion filtration through a separation membrane and erythrocyte (RBC) agglutination.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Inventors: Lawrence J. Burg, Russel Rines, Aravind Srinivasan
  • Patent number: 8828231
    Abstract: Improvement in separating lower, C2 saturated and/or C3, and/or C4, saturated and/or unsaturated mono carboxylic acids from aqueous streams via extraction by using as the extractant an organic acid or ester or mixtures thereof with a melting point below 10° C., a normal boiling point between 190 and 280° C. and a Hildebrand solubility parameter between 8 and 11 cal1/2 cm?3/2.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: September 9, 2014
    Assignee: Arkema Inc.
    Inventors: Steven G. Schon, Cecile V. Bertrand
  • Publication number: 20140224735
    Abstract: This invention provides processes for extracting organic compounds from aqueous samples by using relatively small amounts of extraction solvent and of the aqueous sample to be extracted. This is accomplished by increasing the surface area of the extraction solvent while preventing evaporation of the extraction solvent, which allows for greater extraction efficiency. There is little or no restriction on the aqueous sample types from which organic compounds can be extracted with the processes of this invention. An apparatus that can be employed in these processes is also provided.
    Type: Application
    Filed: October 4, 2012
    Publication date: August 14, 2014
    Inventor: Jeffrey A. CORKERN
  • Publication number: 20140224734
    Abstract: The removal of boron from saline water based (10) using alkalized NF membrane pretreatment (14) can be adopted at 90% recovery and pH 8-9.5 to produce softened and alkalized NF permeate having SDI<1 with significant reduction in feed boron, TDS and scale-forming ions depending on the properties of the NF membrane polymer structure. NF process (14) acts as a partial desalination process, a softening process, as well as a boron removal process. An additional RO membrane alkalization (16) can be adopted at a wide range of RO feed at pH 8.5-10, resulting in production of desalinated water (18) with almost nil boron content.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 14, 2014
    Applicants: SALINE WATER DESALINATION RESEARCH INSTITUTE GLOBAL PATENT TRUST, SALINE WATER DESALINATION RESEARCH INSTITUTE
    Inventor: Abou Elfetouh Zaki Abd Ellatif
  • Publication number: 20140216946
    Abstract: Methods and systems for treatment of wastewater. In some embodiments, the system may comprise one or more modules such as an electrochemical module, an electrocoagulation module, a flotation module, an evaporation module, and an ultrafiltration module. One or more detection modules may also be provided to analyze the concentration of one or more wastewater components in the wastewater. Data from such modules may be used to adjust one or more operational parameters or conditions in the treatment system. The system may also comprise one or more features designed to minimize adverse effects on the environment, such as avoiding adding chemicals to the stream, extracting salt or other chemicals for re-use, and/or use of carbon dioxide gas from on-site combustion processes.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 7, 2014
    Applicant: EnergySolutions, Inc.
    Inventors: Tim Milner, Lu Liu, Paul Sylvester
  • Patent number: 8795531
    Abstract: An embodiment of the present invention includes: a recycle line that brings a part of salt-enriched membrane separation concentrated water 26 back to the rear flow side of a pretreatment apparatus 12; a water discharge line that discharges the remained concentrated water into a sea area; and a control apparatus 31 that controls to adjust the ratio between the discharging amount of the discharging membrane separation concentrated water to be discharged into a sea area and the supplying amount of supplying seawater. A pH is set to be equal to or less than 7.3 by adding acid 21. The salt 18 is obtained from the dryer 19, and produced water (fresh water) 29 is obtained by combining evaporated water 28 supplied from the evaporator 16 with the permeated water 24 supplied from the reverse osmosis membrane apparatus 25.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: August 5, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kazuhisa Takeuchi, Yoshiaki Ito, Hidemasa Kakigami, Hideo Iwahashi, Katsunori Matsui, Kenji Tanaka
  • Patent number: 8795530
    Abstract: The present invention relates to methods and systems for optimization of dilution of a viscous starting material to isolate and/or concentrate the product of interest from the starting source material such that the process minimizes the volume of diluent and the total volume of the waste stream generated during the process as well as maximizing the yield of desired product. The system employs cross-flow filtration modules with sub-channels that are equidistant to the inlet and outlet of said modules and such modules are characterized by optimal channel height, optimal transmembrane pressure, etc., which are selected in order to achieve the best combination of product quality and production yield.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: August 5, 2014
    Assignee: Smartflow Technologies, Inc.
    Inventors: Henry B. Kopf, James A. Kacmar
  • Publication number: 20140197104
    Abstract: An apparatus for generating useful energy includes a first chamber containing a draw solution which includes an osmotic agent and a second chamber containing a feed solution. A semi-permeable membrane allows the feed solution to move thereacross by osmosis, from the second chamber to the first chamber, to form a diluted draw solution. Pressurizing means apply a pressure to the diluted draw solution in the first chamber. Energy conversion means convert mechanical energy in the diluted draw solution, which is generated by osmotic movement of the feed solution across the semi-permeable membrane, into useful, electrical energy. The osmotic agent includes particles in the range of 0.5 nm-5 mm and the semi-permeable membrane has pores with diameters that are no larger than the diameter of the particles, thereby improving the amount of power or useful energy generated by the apparatus. There is further provided a corresponding method of generating power or useful energy.
    Type: Application
    Filed: August 23, 2012
    Publication date: July 17, 2014
    Applicant: OSMOBLUE SARL
    Inventors: Elodie DAHAN, Anna LAROMAINE SAGUÉ
  • Publication number: 20140197103
    Abstract: Components, systems, and methods for producing highly hydrophilitic, functionalized inorganic filtration membranes, pre-treating organic and biological-containing waste waters for minimal membrane fouling and scaling when processed using such functionalized membranes, and use of such functionalized membranes of the present invention in filtration systems for separating such pre-treated waste waters, all with respect to optimal permeate production rates, purity of permeate and resistance to fouling and scale formation on the membranes.
    Type: Application
    Filed: November 19, 2013
    Publication date: July 17, 2014
    Applicant: Lance Energy Services, LLC
    Inventors: Waymon R. Votaw, Jacob L. Davis, Edward E. Munson, Andrew Barron, Samuel J. Maguire-Boyle