Including Prior Use Of Additive (e.g., Changing Ph, Etc.) Patents (Class 210/639)
  • Patent number: 8512577
    Abstract: Process and apparatus for completely recovering the reusable components of an abrasive slurry used in slicing crystalline materials of silicon, quartz or ceramics when it becomes exhausted and enriched with undesired waste matter. The process consists of an initial centrifuge separation of the exhausted slurry as such and of a wet size-sorting treatment of the fraction containing the abrasive grains obtained from the centrifuge, carried out in a battery of hydrocyclones or centrifuges connected in series. The section for the recovery and purification of the abrasive grains comprises a multifunctional apparatus that performs all the required operations within a single pressure vessel.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: August 20, 2013
    Assignee: SIC Processing AG
    Inventor: Guido Fragiacomo
  • Patent number: 8506722
    Abstract: A method for cleaning a filtering membrane, contaminated by contaminants including inorganic and organic materials during a fluid-filtering process, is disclosed, the method comprises cleaning the filtering membrane by using a first cleaning solution of pH 6˜9 so as to remove the organic material from the filtering membrane; and cleaning the filtering membrane by using a second acid cleaning solution so as to remove the inorganic material from the filtering membrane, wherein the cleaning method of the present invention uses the first cleaning solution having pH 6˜9 instead of a strong-alkaline cleaning solution so as to prevent the filtering membrane from being damaged, and also uses the cleaning solution maintained at a relatively low temperature instead of hot water so as to improve economical efficiency by reduction of energy consumption.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: August 13, 2013
    Assignee: Kolon Industries Inc.
    Inventor: Kwang-Jin Lee
  • Patent number: 8507292
    Abstract: A method for pretreating and extracting a liquid sample by sorbing an aqueous liquid sample, including an organic analyte and an acid or a base, in a solid sorbent material, and at least partially neutralizing the acid or base by reaction with neutralizing ions retained on a support surface, and contacting the liquid sample-sorbed sorbent material at elevated temperature and pressure with an organic solvent to extract the analyte into said solvent, preferably in a vessel having an extraction chamber with a zirconium metal interior surface.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 13, 2013
    Assignee: Dionex Corporation
    Inventors: Kannan Srinivasan, Bruce Richter, Christopher A. Pohl, Brett Murphy, Brian Dorich, S. M. Rahmat Ullah
  • Publication number: 20130192836
    Abstract: A water treatment method includes: filtering water in a membrane filtration unit including at least one membrane filtration module; collecting a permeate and collecting a retentate at the outlet of the membrane filtration module; withdrawing solid materials and/or hydrocarbons contained in the retentate, in order to provide a treated retentate; recycling the treated retentate at the inlet of the membrane filtration module; providing a treated water flow from the permeate from membrane filtration module(s). An installation adapted for applying this method is also provided.
    Type: Application
    Filed: October 11, 2011
    Publication date: August 1, 2013
    Applicant: TOTAL S.A.
    Inventors: Samuel Heng, Pierre Pedenaud
  • Patent number: 8496829
    Abstract: A process has been found which increases the efficiency and effectiveness of the overall filtration system, by reducing the fouling of the microfiltration system, thereby increasing its permeability and reducing the frequency of cleanings necessary. According to one embodiment of the invention, cationic coagulant is used to treat water in the early stages of a water treatment system, and to coagulate and flocculate the contaminants, and thereby resulting in reduced fouling of the microfiltration system, resulting in increase flux, less deposit of colloidal and particulate solids and dissolved organics on the surface of the microfiltration membrane, thereby reducing the frequency and duration of the membrane cleaning and ultimate replacement.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: July 30, 2013
    Assignee: General Electric Company
    Inventors: Jason M. Melnyk, Ronald D. Frenette, Shelley M. MacCallum
  • Publication number: 20130186825
    Abstract: A process for treatment of water. Hardness and non-hydroxide alkalinity are removed from feedwaters to an extent sufficient to avoid scaling when concentrated. Sparingly ionizable components in the feedwater are urged toward increased ionization by increasing the pH of the feedwater. In this manner, species such as silica become highly ionized, and (a) their rejection by membranes used in the process is significantly increased, and (b) their solubility in the reject stream from the membrane process is significantly increased. Sparingly ionized species such as boron, silica, and TOC are highly rejected. Recovery ratios of ninety percent (90%) or higher are achievable with many feedwaters, while simultaneously achieving a substantial reduction in cleaning frequency of membranes used in the process.
    Type: Application
    Filed: March 12, 2013
    Publication date: July 25, 2013
    Inventor: DEBASISH MUKHOPADHYAY
  • Patent number: 8480904
    Abstract: A process for purifying a lipid composition having predominantly neutral lipid components having at least one long chain polyunsaturated fatty acid is disclosed. The process employs contacting the lipid composition with a polar solvent, such as acetone, wherein the solvent is selected such that contaminants are less soluble in the solvent than is the long chain polyunsaturated fatty acid. The process is typically conducted at cooler temperatures, including about 0° C. Upon precipitation of the contaminants from the lipid composition, a separation is conducted to remove the precipitated material from the lipid composition. The long chain polyunsaturated fatty acids can include ARA, DPA, EPA, and/or DHA. The process of the present invention effectively winterizes lipid compositions, thereby reducing the tendency of such compositions to become hazy.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: July 9, 2013
    Assignee: DSM IP Assets B.V.
    Inventors: Daniel G. Dueppen, Samuel G. Zeller, Sandra I. Diltz, Robert H. Driver
  • Patent number: 8475660
    Abstract: A method for separating polar lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting polar lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal polar lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. These polar lipids are high value products which can be used as surfactants, detergents, and food additives. Neutral lipids remaining in the algal biomass after extraction of polar lipids can be used to generate renewable fuels.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: July 2, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8470178
    Abstract: An organic oil boom is a method for containing pollution floating on water or the sea. The invention describes a method that makes it possible to isolate pollution as, for example, oil, from the surrounding environment. Spraying a viscous liquid such as an alginate or chitosan solution over and around the oil results in isolation of the oil from the seawater as the mixture has a density that is lighter than seawater and heavier than oil. To isolate the oil also from the air, a gas is added so that the density of the mixture is lower than the density of the oil. The addition of a multivalent cation solution such as calcium ions will, under the right pH conditions, polymerise the viscous liquid, thus forming a solid polymer film which surrounds the oil and isolates it from the surrounding environment.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: June 25, 2013
    Inventor: Ingmar Hogoy
  • Patent number: 8460550
    Abstract: Apparatus for the continuous processing and solids handling in first near-critical and supercritical fluids. The present invention also allows for treatment of the starting material with the first near-critical or supercritical fluid. The remaining raffinate is then continuously transferred and may be collected in a second fluid.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: June 11, 2013
    Assignee: Thar Process, Inc.
    Inventors: Lalit Chordia, Jose Martinez, Andrew Kegler, Desai Bhishmakumar
  • Publication number: 20130140234
    Abstract: The present invention provides a low energy alternative to conventional thermal/evaporation processes for “zero liquid discharge” treatment of strong saline brines. The products of the process include a salt-free liquid and solid salt. In particular, an antisolvent can be mixed with liquids containing high total dissolved solids. The mixture can be chilled, whereby solid salt is precipitated and separated from the mixture at near ambient temperature leaving a mixed liquor. The antisolvent can be selected from a class of organic compounds that form solutions with salt brines that exhibit a critical solution temperature lower than a critical solution temperature of the salt brines alone. The mixed liquor can be heated to a temperature above its lower critical solution temperature to produce an antisolvent liquid phase for recycle to the process. Finally, a reduced salinity aqueous phase can be polished by reverse osmosis or other conventional technology to produce clean water for discharge or beneficial use.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 6, 2013
    Inventor: Ronald N. Drake
  • Patent number: 8430971
    Abstract: A composition is provided for lowering a pH of a drilling fluid. The composition includes HCl, urea, complex substituted keto-amine-hydrochloride, an alcohol, an ethoxylate, and a ketone. A method of using the composition includes adding the composition to a drilling fluid for a well to assist in lowering a pH thereof. Methods are also provided for performing hydraulic fracturing of an oil or a gas well, for adjusting a pH of a drilling fluid, for adjusting and maintaining a pH of a process fluid, for solubilizing calcium carbonate in an aqueous suspension or dispersion of calcium carbonate, for removing a foulant in a fluid-handling element, and for adjusting a pH and lowering a salt level of turf.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 30, 2013
    Assignee: Green Products & Technologies, L.L.C.
    Inventor: John MacDonald
  • Patent number: 8430164
    Abstract: The invention relates to a method for producing steam comprising the successive steps of: providing feedwater containing carbonate and/or sulfate ions; adding a crystallizing reagent able to react with carbonate and/or sulfate ions to the feedwater, in order to produce carbonate and/or sulfate crystals; filtering the feedwater with a ceramic membrane to produce a permeate stream; supplying the permeate stream to a boiler; and generating steam in the boiler. The invention also relates to an installation adapted for implementing said method, as well as to a process for extracting hydrocarbons from a subterranean formation using the abovementioned method for producing steam.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: April 30, 2013
    Assignee: Total S.A.
    Inventor: Annie Audibert-Hayet
  • Patent number: 8425668
    Abstract: A fluid evaporation system includes a housing bounding an airflow path. A misting system is positioned within the airflow path for spraying a wastewater into the airflow path. Water in the misted wastewater is evaporated, thereby concentrating minerals in the wastewater. A pretreatment system is positioned upstream from the fluid evaporator. The pretreatment system includes a gas induced separator. Separation of hydrocarbons and water are enhanced using a polymer and/or by lowering the pH of the wastewater.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: April 23, 2013
    Assignee: Total Water Management, LLC
    Inventors: Janos I. Lakatos, Edward Clay Slade, Clayton R. Carter, Christopher Allen Jahn, Neil William Richardson
  • Patent number: 8420757
    Abstract: A polymer comprising a polymer backbone. The polymer backbone has a plurality of carbon atoms. There are two lipophobic carboxylate groups or carboxylic acid groups per repeating unit being coupled to separate carbon atoms of the backbone. The polymer may be used to recover metals by chelation and then burning away the polymer.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 16, 2013
    Inventor: Joseph P. Laurino
  • Publication number: 20130090488
    Abstract: The present invention is directed to solubilizing compounds, a device and a method for solubilizing and removing carboxylic acids and especially fatty acids from oils, fats, aqueous emulsion, aqueous media and organic solutions. Devices utilizing the inventive method shall be used for separating carboxylic acids from oils, fats, aqueous emulsion, lipophilic media or organic solutions, respectively by preparing an aqueous micro- or nanoemulsion of the carboxylic acids especially the fatty acids and the solubilizing compound which contains at least one amidino and/or gianidino group. Solubilization effects of solubilizing compounds combined with the inventive use of separation methods for carboxylic acids can be used to treat persons in need of removal of fatty acids or analyze carboxylic acids from blood or process other solutions in food, pharmacy, chemistry, bio fuel industry or other industrial processings.
    Type: Application
    Filed: June 22, 2011
    Publication date: April 11, 2013
    Inventor: Ulrich Dietz
  • Publication number: 20130075332
    Abstract: The invention relates to the treatment of water, including for example treatment in connection with hydrocarbon production operations. Silica in water produces undesirable scaling in processing equipment, which causes excess energy usage and maintenance problems. Electrocoagulation (EC) at relatively high water temperature, followed by any of membrane distillation or forward osmosis (FO), may be combined with a subsequent process of ceramic ultra-filtration (UF filtration) employed to treat water. Water to be treated may be produced water that has been pumped from a subterranean reservoir. The treated water may be employed to generate steam. The treatment units (e.g., EC, forward osmosis, UF filtration, etc) can be configured into one system as an on-site installation or a mobile unit for on-site or off-site water treatment.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 28, 2013
    Inventors: Prakhar Prakash, James Craig Pauley, Randall B. Pruet
  • Patent number: 8399716
    Abstract: Method for purifying an alcohol, notably 1,3-propanediol, from a fermentation broth.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 19, 2013
    Assignee: Metabolic Explorer
    Inventors: Frederic Ollivier, Pascal Rousseaux
  • Publication number: 20130062282
    Abstract: A process for treatment of water. Hardness and non-hydroxide alkalinity are removed from feedwaters to an extent sufficient to avoid scaling when concentrated. Sparingly ionizable components in the feedwater are urged toward increased ionization by increasing the pH of the feedwater. In this manner, species such as silica become highly ionized, and (a) their rejection by membranes used in the process is significantly increased, and (b) their solubility in the reject stream from the membrane process is significantly increased. Sparingly ionized species such as boron, silica, and TOC are highly rejected. Recovery ratios of ninety percent (90%) or higher are achievable with many feedwaters, while simultaneously achieving a substantial reduction in cleaning frequency of membranes used in the process.
    Type: Application
    Filed: November 1, 2012
    Publication date: March 14, 2013
    Inventor: DEBASISH MUKHOPADHYAY
  • Publication number: 20130056417
    Abstract: The removal of boron from saline water based using alkalized NF membrane pretreatment can be adopted at 90% recovery and pH 8-9.5 to produce softened and alkalized NF permeate having SDI<1 with significant reduction in feed boron, TDS and scale-forming ions, depending on the properties of the NF membrane polymer structure. NF process acts as a softening process, as well as a boron removal process. An additional RO membrane alkalization can be adopted at a wide range of RO feed at pH 8.5-10, resulting in production of desalinated water with almost nil boron content.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Applicant: SALINE WATER DESALINATION RESEARCH INSTITUTE
    Inventor: ABOU ELFETOUH ZAKI ABD ELLATIF
  • Patent number: 8388846
    Abstract: Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: March 5, 2013
    Assignee: Streamline Automation, LLC
    Inventors: Geoffrey Chew, Alton J. Reich, H. Waite H. Dykes, Jr., Roberto Di Salvo
  • Publication number: 20130048563
    Abstract: The present invention concerns a method of reducing fouling of ceramic membranes by adding an effective amount of a tannin polymer to SAGD process water. Additionally, a cationic and/or an anionic flocculant can also be added to treat the process water. Once the process water is treated, the solids are then separated out and the resulting clean process water is then passed through a ceramic membrane. Typically, the tannin polymer used in treating the process water is comprised of a Mannich reaction product of an amine, an aldehyde, and a tannin. The components are reacted at an acidic pH wherein the molar ratio of amine to tannin present is from about 1.5:1-3.0:1. Exemplary tannin/amine/formaldehyde compounds include tannin/melamine/formaldehyde polymers, and tannin/monoethanolamine/formaldehyde polymers.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Abdul Rafi Khwaja, David M. Polizzotti, Carl Vess, Anthony Yu-Chung Ku
  • Publication number: 20130048561
    Abstract: A method of treating a liquid. The method comprises providing a feed liquid comprising at least one solvent and at least one solute to a first side of a membrane. A single-phase draw solution comprising at least one of an aminium salt, an amidinium salt, and a guanidinium salt is provided to a second side of the membrane. The at least one solvent is osmosed across the membrane and into the single-phase draw solution to form a diluted single-phase draw solution. At least one of CO2, CS2, and COS is removed from the diluted single-phase draw solution to form a first multiple-phase solution comprising a first liquid phase comprising the at least one solvent, and a second liquid phase comprising at least one of an amine compound, an amidine compound, and a guanidine compound. A liquid purification system is also described.
    Type: Application
    Filed: May 24, 2012
    Publication date: February 28, 2013
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Aaron D. Wilson, Frederick F. Stewart, Mark L. Stone
  • Patent number: 8382986
    Abstract: A method of dewatering algae and recycling water therefrom is presented. A method of dewatering a wet algal cell culture includes removing liquid from an algal cell culture to obtain a wet algal biomass having a lower liquid content than the algal cell culture. At least a portion of the liquid removed from the algal cell culture is recycled for use in a different algal cell culture. The method includes adding a water miscible solvent set to the wet algal biomass and waiting an amount of time to permit algal cells of the algal biomass to gather and isolating at least a portion of the gathered algal cells from at least a portion of the solvent set and liquid of the wet algal biomass so that a dewatered algal biomass is generated. The dewatered algal biomass can be used to generated algal products such as biofuels and nutraceuticals.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: February 26, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8377305
    Abstract: A method of controlling fouling in a membrane filtration system (5) of the type where gas is used to clean or scour the membranes (6) wherein the method includes supplying the gas to the system with a continuously variable flow rate. A continuously variable valve arrangement (17) is also disclosed.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: February 19, 2013
    Assignee: Siemens Industry, Inc.
    Inventors: Fufang Zha, Warren Thomas Johnson, Thomas William Beck, Roger William Phelps, Etienne Ulysse Brois
  • Patent number: 8377308
    Abstract: A dialysate regeneration unit adapted for regenerating a dialysate containing carrier substances comprises a first flow path and a second flow path. The first flow path comprises a first supply unit adapted for adding an acidic fluid to the dialysate flowing in the first flow path, and a detoxification unit located downstream of the first supply unit. The detoxification unit is adapted for removing toxins from the acidified dialysate flowing in the first flow path. The second flow path extends in parallel to the first flow path. The second flow path comprises a second supply unit adapted for adding an alkaline fluid to the dialysate flowing in the second flow path, and a further detoxification unit located downstream of the second supply unit. The further detoxification unit is adapted for removing toxins from the alkalized dialysate flowing in the second flow path.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: February 19, 2013
    Assignee: Hepa Wash GmbH
    Inventors: Bernhard Kreymann, Catherine Elisabeth Schreiber, Ahmed Nabeel Al-Chalabi
  • Patent number: 8366924
    Abstract: The present invention is directed to a method and apparatus for desalinating seawater utilizing a two stage seawater desalination system, a first stage including at least one high performance nanofiltration membrane to receive seawater feed pressurized by a first stage pump sufficiently and to produce a first permeate, and a second stage including at least one high performance nanofiltration membrane to receive the first permeate pressurized by a second stage pump to between about 200 psi and about 300 psi to produce potable water.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: February 5, 2013
    Assignee: City of Long Beach
    Inventor: Diem Xuan Vuong
  • Publication number: 20130026097
    Abstract: A combined chlorine agent having a low concentration of free chlorine and a high concentration of combined chlorine whereby combined chlorine concentration of water can be heightened when added to water systems at a low concentration of free chlorine, methods of efficient production and chlorine treatment at low free chlorine concentration are provided. The combined chlorine agent consists of an aqueous agent which comprises alkali consisting of alkali metal hydroxide, sulfamic acid, and oxidizing agent based on chlorine, wherein the composition ratio of the oxidizing agent based on chlorine to the sulfamic acid is in the range from 0.45 to 0.6 by Cl/N (mole ratio), the composition ratio of the oxidizing agent based on chlorine to alkali is in the range from 0.3 to 0.4 by Cl/alkali metal (mole ratio), and free chlorine concentration in the aqueous agent is 2% by weight or lower of total chlorine concentration.
    Type: Application
    Filed: March 30, 2011
    Publication date: January 31, 2013
    Applicant: KURITA WATER INDUSTRIES LTD.
    Inventors: Takanori Hirao, Tetsuya Aoki
  • Patent number: 8361328
    Abstract: A nanotube separation method includes depositing a tag on a nanotube in a nanotube mixture. The nanotube has a defect and the tag deposits at the defect where a deposition rate is greater than on another nanotube in the mixture lacking the defect. The method includes removing the tagged nanotube from the mixture by using the tag. As one option, the tag may contain a ferromagnetic material and the removing may include applying a magnetic field. As another option, the tag may contain an ionic material and the removing may include applying an electric field. As a further option, the tag may contain an atom having an atomic mass greater than the atomic mass of carbon and the removing may include applying a centrifugal force to the nanotube mixture. Any two or more of the indicated removal techniques may be combined.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: January 29, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Publication number: 20130020259
    Abstract: A method of producing desalinated water and recovering minerals from the feedwater uses membrane separation and electrodialysis brine concentration. This process can recover all of the minerals as high purity industrial minerals, including capturing the calcium and sulfate as agricultural grade gypsum and boron as high purity boric acid. In addition the process allows the use of low cost lime or dolime to produce valuable magnesium hydroxide.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Applicant: Katana Energy LLC
    Inventor: Paul Steven Wallace
  • Patent number: 8349185
    Abstract: The invention pertains to a method for rebalancing a solvent solution useful for treating photosensitive printing elements having a photopolymerizable layer. The solvent solution becomes contaminated with unpolymerized material and other materials that release from the photosensitive printing elements during washout treating, and separation of contaminates also removes some of one or more components in the used solvent solution. The method rebalances the proportion of the components in a solvent solution having 3 or more components. The method includes measuring a reclaimant, which has been separated from the contaminates, for two or more properties, calculating a mass of the components to be added to the reclaimant based on an equation generated for each measured property, and adding the mass of the component or components to the reclaimant to adjust the proportion of the components in the reclaimant to targeted proportions.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 8, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark A. Hackler, Rajgopal Subramanian
  • Publication number: 20120325745
    Abstract: The invention relates to systems and methods of treating water by directing the water to a first reverse osmosis (RO) membrane; separating the water using the first RO membrane; adding a chelating agent to first permeate and/or raising the pH of the first permeate to between about 5.5 and 7.5 before a second RO membrane; and separating the first permeate into a second permeate and a second concentrate using the second RO membrane, thereby separating constituents from the water.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 27, 2012
    Inventors: John F. Bossler, Hari Bhushan Gupta, Kenneth R. Workman, Jospeh C. Jimerson
  • Patent number: 8336226
    Abstract: A process for removing water from solid material using liquid-solid extraction and liquid-liquid extraction. In most embodiments, multiple solvents are used to remove the water from the solids and obtain dry solids. Multiple solvents facilitate the removal of the water from the solids, by replacing the water with a solvent, replacing that solvent with a different solvent, and then eventually removing the second solvent from the solids. The process utilizes a lesser amount of thermal energy to dry the solids and separate the solvents than conventionally used in drying processes. The first solvent selected has a lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property, than water. Each additional solvent can have a still lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: December 25, 2012
    Assignee: KFI Intellectual Properties, L.L.C.
    Inventors: Robert A. Wills, James Faulconbridge
  • Publication number: 20120305483
    Abstract: A method for removing contaminants from an influent wastewater stream includes initially chemically adjusting a pH of the influent wastewater stream to less than about 3.5 or maintaining the pH of the influent stream at less than about 3.5. After initially adjusting or maintaining the pH of the influent wastewater stream, the wastewater is directed to a first reverse osmosis system and contaminants are removed from the wastewater. The wastewater is then directed to a second reverse osmosis where additional contaminants are removed from the wastewater. After the wastewater has been subjected to treatment in the first reverse osmosis system and prior to treatment in the second reverse osmosis system, the pH of the wastewater is adjusted upwardly.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 6, 2012
    Inventors: LNSP Nagghappan, Robert P. Helwick
  • Patent number: 8323500
    Abstract: A process for removing water from solid material using liquid-solid extraction and liquid-liquid extraction. In most embodiments, multiple solvents are used to step-wise remove the water from the solids and obtain dry solids. Multiple solvents facilitate the removal of the water from the solids, by step-wise replacing the water with a solvent, replacing that solvent with a different solvent, and then eventually removing the second solvent from the solids. The process utilizes a lesser amount of thermal energy to dry the solids and separate the solvents than conventionally used in drying processes. The first solvent selected has a lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property, than water. Each subsequent solvent has a still lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property then its predecessor.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: December 4, 2012
    Assignee: KFI Intellectual Properties, L.L.C.
    Inventors: Robert A. Wills, James A. Faulconbridge
  • Patent number: 8318020
    Abstract: When a separation membrane (3) is washed with a chemical solution that is a sodium hypochlorite solution, which has a high concentration, diluted with membrane treated water stored in a chemical solution tank (6), an ammonic nitrogen concentration in membrane-treated water is monitored with a monitoring device (9), and a control device (8) controls a chemical solution dosing pump (7) using the concentration measured by the device (9) to adjust a dilution rate. Thereby, even when water quality of membrane-treated water varies, a sodium hypochlorite concentration in backwashing water can be retained constant, and fluctuation in the chemical washing effect can be prevented.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: November 27, 2012
    Assignee: Metawater Co., Ltd.
    Inventors: Koichiro Kando, Motoharu Noguchi
  • Patent number: 8313648
    Abstract: A method for producing biofuels is provided that includes dewatering intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrodeoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock. The method further includes supplying the hydrogenation and deoxygenation processes with hydrogen produced from reformed light hydrocarbons or an algae culture.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: November 20, 2012
    Assignee: Heliae Development, LLC
    Inventors: Aniket Kale, Luca Costantino Zullo, Sandip Shinde
  • Patent number: 8313653
    Abstract: This invention relates generally to processes for extracting iron and/or calcium from geothermal brines.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: November 20, 2012
    Assignee: Midamerican Energy Holdings Company
    Inventors: John L. Featherstone, George Furmanski
  • Patent number: 8313647
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: November 20, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8308949
    Abstract: Methods for selective extraction and fractionation of algal lipids and algal products are disclosed. A method of selective removal of products from an algal biomass provides for single and multistep extraction processes which enable efficient separation of algal components. Among these components are neutral lipids synthesized by algae, which are extracted by the methods disclosed herein for the production of renewable fuels.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 13, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8308956
    Abstract: A method for membrane fluid filtration and remediation is described herein. The method can include flowing a slurry into a scalping shaker and separating a first particulate from the slurry, forming a first effluent. Free oil can be removed from the first effluent using a first weir, forming a cleaned effluent that can be discharged using a second weir. The cleaned effluent can flow through an absorbent material disposed over a circulation tank for removing more free oil from the cleaned effluent, forming a circulation effluent. A sludge can settle from the circulation effluent within the circulation tank, forming a cleaned circulation stream. The cleaned circulation stream can flow through an ultra-filtration membrane which can separate the cleaned circulation stream, forming a clean permeate and a dirty concentrate. The dirty concentrate can flow back to the circulation tank for further processing.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 13, 2012
    Assignee: Tri-Flo International, Inc.
    Inventors: Tom Jamieson, Edward Beverly Moe
  • Patent number: 8308954
    Abstract: A method of removing a polar solvent from a fluid volume contaminated with at least one polar impurity, such as a free fatty acid, is provided. The method comprises providing a fluid volume that includes at least one polar impurity dissolved in at least one solvent. The fluid volume is contacted with an expanding gas to remove the at least one solvent. The expanding gas may be dissolved into the at least one solvent in the fluid volume to form a gas-expanded solvent. The immiscibility of the polar impurities in the gas-expanded solvent enables separation of the polar impurities from the gas-expanded solvent. After separation of the polar impurities, at least one of the temperature and pressure may be reduced to separate the solvent from the expanding gas such that the clean solvent may be reused.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: November 13, 2012
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Daniel M. Ginosar, Daniel S. Wendt
  • Patent number: 8308951
    Abstract: A method for separating proteins from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting proteins from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal proteins from a wet algal biomass. These proteins are high value products which can be used as renewable sources of food and food additives. Neutral lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: November 13, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8308955
    Abstract: Embodiments described herein generally relate to the separation of carbon nanotubes by reversible gelation.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: November 13, 2012
    Assignee: Empire Technology Development LLC
    Inventor: Seth Adrian Miller
  • Patent number: 8303818
    Abstract: The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: November 6, 2012
    Assignee: Streamline Automation, LLC
    Inventors: Roberto Di Salvo, Alton Reich, H. Waite H. Dykes, Jr., Rodrigo Teixeira
  • Publication number: 20120273418
    Abstract: A system (10) for processing and treating a wastestream, NPP primary water or like fluid from a PWR, VVER or other boron moderated reactor source is disclosed. The system allows discharge amounts of boron to be safely lowered and selectively recovered as a solid for disposal and recycled or reused in other fluid forms; and allows for replenishing of high pH subsystems needed in situ by internal coordinated use of regeneration fluids.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 1, 2012
    Inventors: Dennis A. Brunsell, Charles E. Jensen, Larry E. Beets
  • Publication number: 20120273419
    Abstract: A method for removal of a liquid heat transfer medium from pelletized biomass which has been torrefied by liquid torrefaction by immersing the torrefied biomass into a solvent bath which is miscible with the liquid heat transfer medium, then subjecting the torrefied biomass to the solvent for periodic sonification and/or agitation at a suitable temperature to substantially remove the liquid heat transfer medium from the biomass, separating the solvent from the torrefied biomass and filtering the solvent to remove liquid heat transfer medium residue.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 1, 2012
    Inventor: Herbert E. Fried
  • Publication number: 20120248038
    Abstract: A process for working up alkaline process wastewater from the nitration of aromatic compounds to mono-, di- and trinitroaromatics with a pH of 7.5 to 13 or a mixture W with a pH of 6 to 10 of alkaline process wastewater and the aqueous distillate of the sulfuric acid concentration, comprising the steps of a) acidifying the alkaline process wastewater or the mixture W by adding concentrated sulfuric acid which originates from the workup of the aqueous, sulfuric acid-containing phase obtained in the nitration to a pH below 2, which forms a mixture A consisting of organic phase which separates out and acidic aqueous phase, and b) extracting the mixture A with an aromatic extractant.
    Type: Application
    Filed: December 13, 2010
    Publication date: October 4, 2012
    Applicant: BASF SE
    Inventors: Ruediger Fritz, Renate Hempel, Baerbel Guschel, Helmut Richter, Anne-Kathrin Merten, Michael Zoellinger, Elvira Flegel, Holger Allardt, Reiner Reetz
  • Patent number: 8273248
    Abstract: A method for separating neutral lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting neutral lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal neutral lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. The neutral lipids are removed after first removing a polar lipid fraction and a protein fraction. These neutral lipids can be used to generate renewable fuels as well as food products and supplements.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 25, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: RE43838
    Abstract: The present invention relates to a process for isolating constituents from organic material, comprising the following process steps: a) freeze-drying of the organic material; b) extracting the constituents with a polar solvent or solvent mixture (A) and an organic solvent or solvent mixture (B), it being possible for the extracts of the extraction with (A) and (B) to form one phase; c) combining the extracts (A) and (B) to give one phase; and d) carrying out an esterification/transesterification in the unpolar phase with an alcohol, the esterification/transesterification being carried out in the presence of a volatile acid; the process being a high-throughput process.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: December 4, 2012
    Assignee: Metanomics GmbH
    Inventors: Michael M. Herold, Martin Dostler, Ralf Looser, Tilmann B. Walk, Achim Fegert, Martin Kluttig, Britta Lehmann, Silke Klein, Annette Hennig, Joachim Kopka