Removing Specified Material Patents (Class 210/651)
  • Patent number: 8486267
    Abstract: The development and application of a novel non-polar oil recovery process utilizing a non-dispersive solvent extraction method to coalesce and recover oil from a bio-cellular aqueous slurry is described herein. The process could apply to recovery of algal oil from a lysed algae slurry, recovery of Omega fatty acids from a bio-cellular aqueous feed, recovery of Beta-carotene from a bio-cellular aqueous feed and for the removal from produced water in oil production and similar type applications. The technique of the present invention utilizes a microporous hollow fiber (MHF) membrane contactor. The novel non-polar oil recovery process described herein can be coupled to a collecting fluid (a non-polar solvent such as heptane, a biodiesel mixture or the previously extracted oil) that is circulated through the hollow fiber membrane. In cases where the biodiesel mixture or the previously extracted oil is used the solvent recovery step (e.g. distillation) can be eliminated.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: July 16, 2013
    Assignee: Board of Regents, The University of Texas System
    Inventors: Frank Seibert, Martin Poenie
  • Patent number: 8475661
    Abstract: This invention relates to heterogenous pore polymer nanotube membranes useful in filtration, such as reverse osmosis desalination, nanofiltration, ultrafiltration and gas separation.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: July 2, 2013
    Assignee: Nagare Membranes, LLC
    Inventors: Timothy V. Ratto, Jason K. Holt, Alan W. Szmodis
  • Patent number: 8475660
    Abstract: A method for separating polar lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting polar lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal polar lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. These polar lipids are high value products which can be used as surfactants, detergents, and food additives. Neutral lipids remaining in the algal biomass after extraction of polar lipids can be used to generate renewable fuels.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: July 2, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8475398
    Abstract: An extracorporeal blood processing method using a blood circuit comprising a pair of blood passages attached to opposite flow ends of a blood treatment device and said blood circuit is mounted on a blood pump console, the method includes: withdrawing blood from a vascular system of a human patient and drawing the blood into the blood circuit; pumping the withdrawn blood through one of the pair of blood passages using a first blood pump of the console and into the blood treatment device; pumping the treated blood from the treatment device through the other of the pair of blood passages using a second blood pump of the console; infusing the treated blood from the other blood passage and into the vascular system of the patient, and periodically reversing a flow direction of blood through the pair of blood passages and blood treatment device.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: July 2, 2013
    Assignee: Gambro uf Solutions, Inc.
    Inventor: John O'Mahony
  • Publication number: 20130161256
    Abstract: A method for treating water including intaking a first amount of water into a plurality of treatment blocks, treating the first amount of water, outputting aqueous treated water streams from each of the plurality of treatment blocks, separating the aqueous treated water streams from each of the plurality of treatment blocks into aqueous permeate streams and concentrate reject streams, monitoring each of the aqueous permeate streams, controlling the operation of at least one of the plurality of treatment blocks based on predefined water-characteristic tolerances that fall within a predetermined concentration range based on the different qualities of the aqueous permeate streams, combining the aqueous permeate streams of at least two of the plurality of treatment blocks based on the identified characteristics and the predefined water-characteristic tolerances, and outputting the product water stream and the at least one concentrate reject stream.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Applicant: WATER STANDARD COMPANY LLC
    Inventors: Lisa Henthorne, Ben Movahed
  • Patent number: 8469092
    Abstract: A system comprising a well drilled into an underground formation comprising hydrocarbons; a water supply; a steam production facility, the steam production facility comprising a filter to remove at least 80% of a quantity of divalent cations in the water supply; an exchange resin to remove at least 80% of a quantity of divalent cations in a filtered water stream that has already passed through the filter; a steam injection facility connected to the well and the steam production facility, adapted to inject the steam into the well.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: June 25, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Alvin Curole, Eugene Bruce Greene
  • Patent number: 8460553
    Abstract: The invention provides the combined use of UF and MVR for the treatment of industrial process fluid wastewater that contains recoverable material. The recoverable material desirably has a molecular diameter of less than about 5 to 6 nm and a boiling point of less than about 200 ° C. In one embodiment, the recoverable material may then be utilized in the preparation of another industrial process fluid. In another embodiment, the recoverable material is isolated and retained for later use. The invention thereby provides aqueous industrial process fluid which contains water; one or more of an emulsifier, oil, amine, biocide, thickener, lubricant, dispersant, antioxidant, corrosion inhibitor, alkaline compound, surfactant, and carrier; and one or more chemical compounds recovered from aqueous industrial process fluid wastewater treated with UF and MVR.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: June 11, 2013
    Assignee: Houghton Technical Corp.
    Inventors: John Michael Burke, Joseph F. Warchol, Tom N. Demopolis
  • Patent number: 8454833
    Abstract: A method is disclosed for filtering a protein in a liquid mixture in a manner that does not substantially damage or otherwise limit the recovery of the protein in the filtration filtrate. The method generally includes passing a liquid mixture containing a protein (e.g., an aqueous vWF mixture) through a filter while applying a counter pressure to the liquid mixture filtrate to accurately reduce and control the pressure differential across the filter. The disclosed method has the advantage that relatively high filtration flow rates can be achieved at relatively low pressure differentials, in contrast to high pressure differentials, which actually reduce the filtration flow rate of protein liquid mixtures. Further, the method can recover substantially all of the protein that is initially present in the liquid mixture.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: June 4, 2013
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Nebojsa Nikolic, Michaela Frey, Wolfgang Grabmayer, Thomas Jancik, Matthias Fried, Klaus Tschetschkowitsch, Kurt Schnecker, Barbara Riegler, Alma Kasapovic
  • Patent number: 8454832
    Abstract: A system and process for treating a hydrocarbon feed mixture containing aromatic compounds is provided to separate the at least one aromatic compound from the hydrocarbon feed stream is provided. A supported ionic liquid membrane, which is a microporous polymeric support containing ionic liquid in its pores, is used to selectively extract aromatics. The hydrocarbon feed mixture is directed to a retentate side of the supported ionic liquid membrane. A permeate stream is drawn from the permeate, side of the supported ionic liquid membrane, which is an aromatic-rich hydrocarbon stream. An aromatic-lean hydrocarbon stream, which is the retentate portion of the original hydrocarbon feed, remains on the retentate side of the supported ionic liquid membrane.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: June 4, 2013
    Assignee: Saudi Arabian Oil Company
    Inventors: Esam Zaki Hamad, Ahmad Abdullah Bahamdan
  • Patent number: 8440085
    Abstract: Devices and methods for separating plasma from biological fluids such as blood and blood products are disclosed.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: May 14, 2013
    Assignee: Pall Corporation
    Inventors: Thomas J. Bormann, Mikhail Fomovsky, Galina Fomovska
  • Patent number: 8419941
    Abstract: A method for yielding concentrated ethanol from an ethanol water solution yielded from ethanol fermentation of a water solution of saccharide generated by a saccharification of the lignocellulose by enzyme is provided. Water is separated from the ethanol water solution yielded from ethanol fermentation of the water solution of saccharide generated by the saccharification of the lignocellulose by enzyme with pervaporation method using a water separation membrane. Condensate prepared by condensing ethanol vapor existing in a space above a liquid level of the ethanol water solution is collected.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: April 16, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazuhiro Kagawa, Pu Qian, Akihisa Tanaka
  • Patent number: 8414766
    Abstract: A serviceable device for filtering lubricating oil includes an inlet and an outlet, a first filtering element and an absorption filtering element. The absorption filtering element is configured to absorb a fluidic contaminant present in the lubricating oil when in contact with the absorption filtering element. A flow path for the lubricating oil is from the inlet, through the first filtering element, and out the outlet. The flow path further includes lubricating oil contact with the absorption filtering element.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: April 9, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Gregory Mordukhovich, James L. Linden, Andrew M. Mance
  • Patent number: 8414806
    Abstract: The present invention refers to a method of fabricating a membrane made of a nanostructured material and its use.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: April 9, 2013
    Assignees: Nanyang Technological University, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Darren Delai Sun, Xiwang Zhang, Jianghong Alan Du, James O Leckie
  • Publication number: 20130082000
    Abstract: A fluid pumping system with energy recovery features may provide feed water to a reverse osmosis unit. The system includes an electronic controller unit that regulates the output of three hydraulic pumps. Each hydraulic pump drives the movement of a piston in a cylinder. The pistons collectively deliver a generally constant flow of high pressure feed water. Valve bodies direct reverse osmosis concentrate to the back sides of the pistons. The electronic controller coordinates the output of the hydraulic pumps with the actuation of the valve bodies. Movement of the pistons is controlled, in part, by a feed back loop to verify the desired hydraulic pump output. Valve bodies are designed to begin closing when an associated piston velocity decreases. The valve body moves after a dwell period when an associated piston should not be moving. The piston and cylinder are designed for exposure to high salt-content water.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: General Electric Company
    Inventors: Matthew D. d'Artenay, Willard D. Childs, Gerard J. Vanderloop, Michael J. Connor, JR.
  • Patent number: 8398860
    Abstract: A method of purifying a surfactant for use in a pharmaceutical formulation, which comprises mixing the surfactant with a solvent and bringing said mixture into contact with a semi-permeable membrane so as to allow impurities present in the surfactant and having a molecular weight lower than the molecular weight cut-off of the membrane to pass through the membrane, whilst retaining the purified surfactant.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: March 19, 2013
    Assignee: Sindan Pharma SRL
    Inventors: Constantin Busoi, Maria Rotaru, Bogdan-Mihai Oghina, Mariana Surmeian
  • Publication number: 20130056415
    Abstract: A negatively charged microporous filtration medium having a high charge density comprising a porous substrate and a polymerized cross-linked polymeric coating located on the inner and outer surfaces of the substrate. The coating may be formed from a reactant solution comprising negatively charged cross-linkable polymerizeable acrylamidoalkyl monomers and acrylamido cross-linking agents which are polymerized in situ on the substrate. The negatively charged microporous filtration medium are suitable for use as prefiltration membranes for selectively removing protein aggregates from a protein solution.
    Type: Application
    Filed: February 26, 2010
    Publication date: March 7, 2013
    Inventors: Mikhail Kozlov, Kevin Rautio
  • Publication number: 20130056417
    Abstract: The removal of boron from saline water based using alkalized NF membrane pretreatment can be adopted at 90% recovery and pH 8-9.5 to produce softened and alkalized NF permeate having SDI<1 with significant reduction in feed boron, TDS and scale-forming ions, depending on the properties of the NF membrane polymer structure. NF process acts as a softening process, as well as a boron removal process. An additional RO membrane alkalization can be adopted at a wide range of RO feed at pH 8.5-10, resulting in production of desalinated water with almost nil boron content.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Applicant: SALINE WATER DESALINATION RESEARCH INSTITUTE
    Inventor: ABOU ELFETOUH ZAKI ABD ELLATIF
  • Patent number: 8388898
    Abstract: The reduction of nitrogen oxides in gas is carried out, by means of selective reaction of the nitrogen oxide with the reducing agent in the in the solid catalyst. In order to achieve high catalytic activity, the above is carried out at high gas temperatures. As a rule, ceramic filter elements, coated with catalytic material are used. This does, however, give rise to the risk the catalytically active components are stripped from the filter during the hot gas filtration. A ceramic filter element with support material in the form of particles, with binder material and catalytic material is thus disclosed, whereby the binder material comprises catalytic material, or the binder material is partly replaced by the catalyst material and the support material particles (1) are connected to each other by means of the catalyst and/or binder material.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: March 5, 2013
    Assignee: Pall Corporation
    Inventors: Steffen Heidenreich, Max-Eckhard Roessler, Astrid Walch, Manfred Gutmann, Sven Chudzinski
  • Patent number: 8388847
    Abstract: The invention relates generally to methods of concentrating mixtures including shear sensitive biopolymers, such as von Willebrand Factor. Conventional methods of concentrating biopolymers impart too much shear stress, which causes the degradation of shear sensitive biopolymers. The methods disclosed herein reduce the shear stress while maintaining a high rate of filtrate flux. Disclosed herein is a method for concentrating shear sensitive biopolymers including flowing a mixture with a shear sensitive biopolymer into a hollow fiber dialysis module to form a retentate having a shear sensitive biopolymer concentration that is greater than that of the mixture. Hollow fiber dialysis modules have high filtrate fluxes and low shear rates at low flow rates. This ensures a high product yield and minimal loss of shear sensitive biopolymers.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: March 5, 2013
    Assignees: Baxter International Inc., Baxter Healthcare SA
    Inventors: Artur Mitterer, Meinhard Hasslacher, Christa Mayer
  • Patent number: 8388848
    Abstract: A liquid separation device is provided, and is capable of suppressing the lowering of filtration function due to an increase in flow channel resistance of permeated liquid which results in a separation membrane falling in a groove of a permeated liquid flow channel material along with accompanied breakage of the separation membrane surface. A permeated liquid flow channel material is disposed on the back side of a separation membrane composed of a sheet-like material having a linear groove and a linear crest alternately arrayed on one surface or both surfaces, wherein a groove width of the linear groove in the sheet-like material is 10 to 200 ?m, and a ratio of the groove width of the linear groove to the pitch of the linear groove is 0.45 or more.
    Type: Grant
    Filed: March 31, 2007
    Date of Patent: March 5, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Yoshifumi Odaka, Toshimasa Katayama, Tsunemitsu Kitagawa
  • Patent number: 8382986
    Abstract: A method of dewatering algae and recycling water therefrom is presented. A method of dewatering a wet algal cell culture includes removing liquid from an algal cell culture to obtain a wet algal biomass having a lower liquid content than the algal cell culture. At least a portion of the liquid removed from the algal cell culture is recycled for use in a different algal cell culture. The method includes adding a water miscible solvent set to the wet algal biomass and waiting an amount of time to permit algal cells of the algal biomass to gather and isolating at least a portion of the gathered algal cells from at least a portion of the solvent set and liquid of the wet algal biomass so that a dewatered algal biomass is generated. The dewatered algal biomass can be used to generated algal products such as biofuels and nutraceuticals.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: February 26, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Publication number: 20130040282
    Abstract: A method for removing a photosensitizer from a platelet preservation composition is disclosed. The method comprises passing the platelet preservation composition through a tangential flow filtration device to separate the photosensitizer from the platelets in the platelet preservation composition.
    Type: Application
    Filed: September 25, 2012
    Publication date: February 14, 2013
    Applicant: BIOVEC TRANSFUSION, LLC
    Inventor: Lakshman R. Sehgal
  • Patent number: 8371262
    Abstract: A device for removing a fluidic contaminant from engine oil in an internal combustion engine includes a fluid absorbing element having a mounting element and a fluid absorption media assembled into a sump of a crankcase of the internal combustion engine. A first portion of the fluid absorption media is immersed within the engine oil contained in the sump when the engine is not operating and a second portion of the fluid absorption media is exposed to ambient air contained in a head space of the crankcase. The fluid absorption media is configured to absorb a fluidic contaminant in the engine oil during a period when the engine is not operating and to desorb the absorbed fluidic contaminant.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: February 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Gregory Mordukhovich, James L. Linden, Andrew M. Mance
  • Patent number: 8361320
    Abstract: Biological fluid filtration systems including biological fluid filtration devices capable of filtering blood or blood products, including the removal of leukocytes from the blood or blood product. Each system includes a means to automatically drain the biological fluid upstream of the biological fluid filtration media disposed in the biological fluid filtration device. Both single sided and double sided biological fluid filtration devices are disclosed, including double sided biological fluid filtration devices with a solid partition wall with a first independent fluid flow path on one side of the partition wall, and a second independent fluid flow path on the other side of the partition wall. Draining means include vent filtration devices, diaphragm draining devices, and biological fluid filtration devices that include an integral diaphragm.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: January 29, 2013
    Assignee: Hemerus Medical, LLC
    Inventor: Peter Zuk, Jr.
  • Patent number: 8361322
    Abstract: A solid-phase extraction device utilizing a section of expanded polytetrafluoroethylene (ePTFE) tubing as the stationary phase is disclosed. The microscopic pores of ePTFE tubing are impregnated with a binding agent having an affinity for a target constituent within a matrix. The matrix is prepared and loaded onto the stationary phase of the system. The target constituent is retained by the stationary phase. The constituent is stripped from the stationary phase with a stripping solution, and collected for further analysis or use.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: January 29, 2013
    Assignee: ALS Group USA, Corp
    Inventors: Stephen M. Workman, Robert T. Shannon
  • Patent number: 8357300
    Abstract: A method for reducing a boron concentration in a boron-containing aqueous liquid involves administering micelle(s) for selective boron adsorption to the boron-containing aqueous liquid to produce boron-bonded micelle(s), wherein the micelle(s) comprise a reaction product of an N-substituted-glucamine and a glycidyl ether; passing the micelle-containing aqueous liquid through a membrane to separate the boron-bonded micelle(s) from the aqueous liquid; and recovering a permeate having a reduced boron concentration from the membrane. A material capable of selectively adsorbing boron from a boron-containing aqueous liquid contains at least one micelle having a hydrophobic tail and a head comprising a hydrophilic functional group having formula (I): R1—O-A??(I) R1 represents a hydrocarbon group selected from the group consisting of substituted and unsubstituted aromatic, linear aliphatic, and branched aliphatic hydrocarbon groups and mixtures thereof, and A contains hydroxyl and amine groups.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: January 22, 2013
    Assignee: Hydranautics
    Inventors: Il Juhn Roh, Mark Wilf, Craig R. Bartels
  • Patent number: 8344179
    Abstract: A method of recovering formate from halide-contaminated formate brine that includes mixing a formate recovery solvent and the halide-contaminated formate brine; separating halide contaminants from the formate; and recovering the formate from the formate recovery solvent is disclosed.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: January 1, 2013
    Assignee: M-1 L.L.C.
    Inventors: Robert L. Horton, Hui Zhang, Morris Arvie, Jr.
  • Patent number: 8343348
    Abstract: A method for producing a carbon membrane of the present invention is a production method where a carbon membrane obtained by subjecting a carbon-containing layer to thermal decomposition in an oxygen inert atmosphere while sending a gas mixture containing an oxidizing gas thereinto is thermally heated. The carbon membrane is subjected to a heating oxidation treatment with controlling the ratio of the flow rate of the gas mixture to the areas of the carbon membrane to 0.5 cm/min. or more to control (temperature ° C.)2×time (h)/10000, which is the relation between the temperature of the gas mixture and the flow time, to 9 to 32. This enables to obtain a carbon film which selectively separates alcohols having 2 or less carbon atoms from a liquid mixture of the alcohols having 2 or less carbon atoms and organic compounds having 5 to 9 carbon atoms.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: January 1, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Aya Satoh, Nobuhiko Mori
  • Publication number: 20120325747
    Abstract: A system is provided that includes one or more acoustic microfilters through which is flowed a mixture of a fluid and a particulate to selectively filter particles from the fluid. Also included are one or more phononic crystal units coupled to the acoustic microfilter(s) to further selectively filter particles from the fluid. Related apparatus, systems, techniques and articles are also described.
    Type: Application
    Filed: August 23, 2011
    Publication date: December 27, 2012
    Applicant: FloDesign Sonics, Inc.
    Inventors: Edward A. Rietman, Bart Lipkens, Jason Dionne
  • Patent number: 8337702
    Abstract: A method for treating wastewater containing heavy metals comprising directing the wastewater across a reverse osmosis aromatic polyamide membrane at low pressure ranging from 40-120 psi, the membrane being capable of removing at least 90% of the target heavy metals from the wastewater.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: December 25, 2012
    Assignee: Universiti Teknologi Malaysia
    Inventors: Zaini Ujang, Myzairah Hamdzah, Hiroaki Ozaki
  • Publication number: 20120322119
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Application
    Filed: October 21, 2011
    Publication date: December 20, 2012
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Publication number: 20120315664
    Abstract: An assembly and method are disclosed for the filtration of a liquid and the use thereof, wherein a supporting body is designed in a recess of a carrier and a filter membrane lies flat on the supporting body. The filter membrane and the supporting body are designed to be permeable to liquids and thus serve as filters, in particular for filtering tumor cells from blood. The carrier can having standard shapes of an object carrier for microscopy and the filtration residue on the filter membrane can be easily handled and examined in the microscope. As a result of the filter membrane lying level on the supporting body, the filtration residue can be particularly well examined microscopically.
    Type: Application
    Filed: January 26, 2011
    Publication date: December 13, 2012
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Katja Friedrich, Walter Gumbrecht, Karsten Hiltawsky, Peter Paulicka
  • Patent number: 8318023
    Abstract: Contaminating water and/or fuel material may be removed from a stream of internal combustion engine lubricating oil being circulated over parts of an operating engine. A suitable membrane material is supported in a suitable housing. At least a portion of the oil stream is flowed over one side of the membrane and water and/or fuel material diffuses through the membrane to its other side where they are gathered and removed from the housing. The water and fuel material may be recovered separately using different membranes or different regions of a membrane. They may be swept from the membranes and housings using streams of flowing air heated to a pre-selected temperatures using waste engine heat for disposition outside the housing. Application of this practice to other membrane-separable mixtures is described.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: November 27, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Gregory Mordukhovich, Andrew M. Mance
  • Patent number: 8313650
    Abstract: A system for regulating a reverse osmosis system to obtain zero wastewater. A reverse osmosis apparatus filters water from the fresh water supply into a concentrate rinse stream and a permeate rinse stream. A concentrate storage tank and a permeate storage tank are downstream of the reverse osmosis apparatus and receive the concentrate rinse stream and the permeate rinse stream, respectively. A concentrate solenoid valve and a permeate solenoid valve control the flow of the concentrate rinse stream and the permeate rinse stream from their respective storage tank. An institutional dishmachine receives the concentrate rinse stream and the permeate rinse stream during a rinse cycle of the institutional dishmachine. A control system is operatively connected to the concentrate solenoid valve and the permeate solenoid valve and control flow of the rinse streams into the institutional dishmachine.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: November 20, 2012
    Assignee: Ecolab USA Inc.
    Inventors: Lee J. Monsrud, Adrian E. Hartz
  • Patent number: 8313651
    Abstract: The present invention discloses a membrane stack comprising a first and second membrane layers, and a spacer layer disposed between said first and second membrane layers, said membrane stack configured such that fluid passes through said membrane stack in a direction substantially perpendicular to the plane of said membrane layers and said spacer layer. The application also discloses a module comprising a membrane as described above, said module having a fluid flow path that is substantially perpendicular to the plane of the major surface of the membrane and spacer layers ins aid membrane stack.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: November 20, 2012
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Elena N. Komkova, Donna Lisa Crossley, Alicja M. Mika
  • Publication number: 20120285890
    Abstract: A process for preparing a reverse osmosis membrane that includes: (A) providing a polyamine, a polyfunctional acid halide, and a flux increasing additive having the formula Z+B? where Z+ is an easily dissociable cation and B? is a beta-diketonate; (B) combining the polyamine, polyfunctional acid halide, and flux increasing additive on the surface of a porous support membrane; and (C) interfacially polymerizing the polyamine and the polyfunctional acid halide, and flux increasing additive on the surface of the porous support membrane to form a reverse osmosis membrane comprising (i) the porous support membrane and (ii) a discrimination layer comprising a polyamide. The reverse osmosis membrane is characterized by a flux that is greater than the flux of the same membrane prepared in the absence of the flux increasing additive.
    Type: Application
    Filed: November 10, 2011
    Publication date: November 15, 2012
    Inventors: Jeffrey Alan Koehler, Christopher James Kurth
  • Publication number: 20120273421
    Abstract: Solvent and acid stable ultrafiltration and nanofiltration membranes including a non-cross-linked base polymer having reactive pendant moieties, the base polymer being modified by forming a cross-linked skin onto a surface thereof, the skin being formed by a cross-linking reaction of reactive pendant moieties on the surface with an oligomer or another polymer as well as methods of manufacture and use thereof, including, inter alia separating metal ions from liquid process streams.
    Type: Application
    Filed: January 13, 2010
    Publication date: November 1, 2012
    Inventors: Mordechai Perry, Vera Ginzburg, Boris Ginzburg, Polina Lapido
  • Patent number: 8293112
    Abstract: A method of removing water and/or methanol from fluid mixtures of the water or methanol with other compounds uses vapor permeation or pervaporation of the water or methanol, as the case may be, from the mixture through a membrane having an amorphous perfluoropolymer selectively permeable layer. The novel process can be applied in such exemplary embodiments as (a) removing water or methanol from mixtures of compounds that have relative volatility of about 1-1.1 or that form azeotropic mixtures with water or methanol, (b) the dehydration of hydrocarbon oil such as hydraulic fluid to concentrations of water less than about 50 ppm, (c) removing water and methanol byproducts of reversible chemical reactions thereby shifting equilibrium to favor high conversion of reactants to desirable products, (d) drying ethanol to less than 0.5 wt.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 23, 2012
    Assignee: CMS Technologies Holdings, Inc.
    Inventors: Stuart M. Nemser, Sudipto Majumdar, Kenneth J. Pennisi
  • Publication number: 20120261343
    Abstract: Various aspects of the present invention pertain to porous membranes that comprise: (1) a plurality of pores with pore sizes of more than about 0.1 ?m in diameter; and (2) a plurality of hydrophilic molecules. Additional aspects of the present invention pertain to methods of separating organic compounds from a liquid sample by: (1) providing the porous membrane; and (2) flowing the liquid sample through the porous membrane in order to retain organic compounds on the porous membrane. Further aspects of the present invention pertain to systems for separating organic compounds from a liquid sample. Such systems comprises: (1) the porous membrane; and (2) a flowing unit that enables the liquid sample to flow through the porous membrane. Additional aspects of the present invention pertain to methods of making the above-described porous membranes by: (1) coating a surface of a porous membrane containing 0.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Andrew R. Barron, Samuel J. Maguire-Boyle
  • Patent number: 8287742
    Abstract: Method for separating a volume of whole blood into at least a plasma component and a red blood cell component comprising centrifuging a separation bag containing a volume of whole blood so as to separate therein at least a first component comprising plasma and a second component comprising red blood cells; transferring the first component into a plasma component bag during centrifugation of the separation bag; transferring into the separation bag a volume of wash solution from a wash solution bag during centrifugation of the separation bag; mixing the volume of wash solution with the second component; centrifuging the separation bag so as to separate therein a washed red blood cell component and a supernatant component; and transferring the supernatant component into a waste bag during centrifugation of the separation bag.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: October 16, 2012
    Assignee: Terumo BCT, Inc.
    Inventor: Brian M. Holmes
  • Patent number: 8277660
    Abstract: Disclosed are embodiments of a method and apparatus for the treatment of water containing silica in order to recover as much treated water from a water source as possible while minimizing the generation of waste products. Other embodiments include removing specific elements from the water source and utilizing those elements. Embodiments of the method and apparatus uses in-line physical and physio-chemical treatment methods to remove potential biological, colloidal and hardness foulants continually so that there is minimal loss of water from the water source stream and minimal addition of chemicals to accomplish removal or reduction of these potential recovery-limiting foulants.
    Type: Grant
    Filed: March 12, 2011
    Date of Patent: October 2, 2012
    Assignee: CDM Smith Inc
    Inventors: Robert J. Kimball, Kenneth A. Klinko
  • Patent number: 8273248
    Abstract: A method for separating neutral lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting neutral lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal neutral lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. The neutral lipids are removed after first removing a polar lipid fraction and a protein fraction. These neutral lipids can be used to generate renewable fuels as well as food products and supplements.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 25, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8262778
    Abstract: The invention relates to polymeric ultrafiltration or microfiltration membranes of, for instance, poly(ethylene chlorotrifluoroethylene) (HALAR®), PVDF or PP, incorporating PVME or vinyl methyl ether monomers. The PVME may be present as a coating on the membrane or dispersed throughout the membrane or both. The membranes are preferably hydrophilic with a highly asymmetric structure with a reduced pore size and/or absence of macrovoids as a result of the addition of PVME. The PVME maybe cross-linked. The invention also relates to methods of hydrophilising membranes and/or preparing hydrophilic membranes via thermal or diffusion induced phase separation processed.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: September 11, 2012
    Assignee: Siemens Industry, Inc.
    Inventors: Daniel Mullette, Joachim Muller, Neeta Patel
  • Patent number: 8257593
    Abstract: A device, system and method for exchanging components between first and second fluids by direct contact in a microfluidic channel. The fluids flow as thin layers in the channel. One of the fluids is passed through a filter upon exiting the channel and is recycled through a secondary processor which changes the fluid's properties. The recycled fluid is reused for further exchange. The filter excludes blood cells from the recycled fluid and prevents or limits clogging of the filter. The secondary processor removes metabolic waste and water by diafiltration.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 4, 2012
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Edward F. Leonard, Alan C. West, Christian Paul Aucoin, Edgar E. Nanne
  • Patent number: 8241503
    Abstract: Disclosed is an economical process for the purification of water containing soluble and sparingly soluble inorganic compounds using single-stage or two-stage membrane processes that integrate membrane water purification with chemical precipitation softening and residual hardness and silica removal from the membrane concentrates using ion exchange resins and silica sequestering media, respectively.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: August 14, 2012
    Inventor: Riad Al-Samadi
  • Publication number: 20120193291
    Abstract: A group of mutant PTP ? genes in malignant tumor are provided, which are ?PTP?245, ?PTP?652 and ?PTP?445 respectively. The mutation includes insertion of 95 new nucleotides after nucleotide at position 711, deletion of nucleotides at position 1015-1437, and deletion of nucleotides at position 1015-1437 accompanied by insertion of 340 nucleotides after coding exon at position 1681 and fusion of 26 new amino acids at C-terminal. The group of mutant PTP ? genes in different types of malignant tumor disclosed in the present application have not been reported all over the world so far. The detection method of using PTP ? mutant genes is useful in exactly diagnosing malignant tumor, developing new anti-tumor drugs, and targeted treatment at molecular pathologic level.
    Type: Application
    Filed: November 25, 2010
    Publication date: August 2, 2012
    Inventor: Zhiwei Pan
  • Patent number: 8231788
    Abstract: A separation module and method are disclosed for processing a liquid sample and providing high conversion by operating a single-pass tangential-flow process without a recirculation loop. In one embodiment, the separation module includes three reservoirs and has at least one long, thin channel with a large ratio of channel membrane area to: channel void volume; volume of a sample feed reservoir; and volume of the feed sample. In another embodiment, the separation module includes two reservoirs and a hydrophobic vent. The single-pass process provides high conversion while operating with relatively low pressure sources.
    Type: Grant
    Filed: February 15, 2009
    Date of Patent: July 31, 2012
    Assignee: SPF Innovations, LLC
    Inventors: Leon Mir, Gaston de los Reyes
  • Publication number: 20120187046
    Abstract: Sulfur contaminants, such as elemental sulfur (S8), hydrogen sulfide and other sulfur components in fluids (e.g., air, natural gas, and other gases, as well as water and other liquids) are removed using a silicone-based chemical filter/bath. In one embodiment, a silicone-based chemical filter includes a membrane having a cross-linked silicone that is a reaction product of an olefin and a polyhydrosiloxane. For example, sulfur contaminants in air may be removed by passing the air through the membrane before the air enters a data center or other facility housing computer systems. In another embodiment, a silicone-based chemical bath includes a housing having an inlet port, an outlet port, and a chamber containing a silicone oil. For example, sulfur contaminants in air may be removed by passing the air through the silicone oil in the chamber before the air enters a data center or other facility housing computer systems.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dylan J. Boday, Joseph Kuczynski, Robert E. Meyer, III, Timothy J. Tofil
  • Patent number: 8226829
    Abstract: Process for separating a dissolved complex catalyst of a metal of group 4, 5, 6, 7, 8, 9 or 10 of the Periodic Table of the Elements and/or any free organophosphorus ligand present from a nonaqueous hydroformylation reaction mixture which contains an aldehyde product and an organic solvent at least one membrane which is more permeable to the hydroformylation product than to the organophosphorus ligand, the separation being carried out under a carbon monoxide partial vapor pressure of more than 200 kPa.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: July 24, 2012
    Assignee: Evonik Oxenc GmbH
    Inventors: Klaus-Diether Wiese, Goetz Baumgarten, Franz-Felix Kuppinger, Oliver Moeller, Dagmara Ortmann, Cornelia Borgmann, Wilfried Bueschken
  • Patent number: H2273
    Abstract: A particulate filter is provided for passing through select permeate particles in a fluid medium from inflow to outflow regions while restraining reticulate particles. The filter includes a coarse-grain ceramic porous substrate, an intermediate-grain porous ceramic layer, a fine-grain ceramic porous membrane, and a channel there-through. The substrate opens into the outflow region as an outflow cavity. The intermediate-grain porous ceramic layer is disposed on the substrate. The fine-grain ceramic porous membrane is disposed on the layer and opens into the inflow region containing the medium as an inflow cavity. The channel directionally expands and connects the inflow and outflow cavities together by a substantially funnel-shape passage. The inflow cavity permits the permeate particles and the medium but obstructs the reticulate particles.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: December 4, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Nicholas V. Nechitailo