Sequential Introduction Patents (Class 210/726)
  • Patent number: 7897049
    Abstract: Systems and associated methods for treating contaminant-containing wastewater are provided. The systems generally include a reducing zone for reducing the oxidation-reduction potential of the water and a clean-up zone comprising zero valent iron for removing at least a portion of the contaminant from the contaminant-containing water. The systems are operable to remove one or more contaminants from the contaminant-containing water and are operable for extended durations without clogging due to the formation of iron hydroxides.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: March 1, 2011
    Assignee: Alcoa Inc.
    Inventors: Rajat S. Ghosh, Dennis Fulmer, Kevin Kitzman, John Smith
  • Patent number: 7892437
    Abstract: A method of managing water is provided, in which the water is discharged from an aggregate plant, and therefore contains a large number of fines. The water is first passed through a mesh screen to remove large particles and then collected in a sump. From the sump the water is pumped to a centrifugal cyclone, where some of the fines are separated from the water. Flocculent is then applied to the water, before the water is collected in a pond.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 22, 2011
    Assignee: Allard Contractors Ltd.
    Inventors: Barry Allard, James Allard
  • Patent number: 7824552
    Abstract: A system is provided that includes: (a) a mobile platform; (b) an input pump operatively connected to be capable of pumping a treatment stream through the system; (c) a centrifugal separator operatively connected downstream of the input pump to centrifugally treat the treatment stream; (d) a borate filter operatively connected downstream of the centrifugal separator to filter the treatment stream capable of removing at least some of a borate when the treatment stream is at a pH of 8 or above; and (e) a chemical-additive subsystem operatively connected to be capable of: (i) selectively adding one or more chemical agents to the treatment stream upstream of the centrifugal separator, wherein the chemical agents can be selected to be capable of precipitating dissolved ions selected from the group consisting of: sulfate, calcium, strontium, or barium, magnesium, iron; and (ii) selectively adding a chemical agent to the treatment stream upstream of the borate filter to increase the pH of the treatment stream to 8 o
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: November 2, 2010
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Billy F. Slabaugh, Arron L. Karcher, Michael J. R. Segura, Randy S. Rosine, Max L. Phillippi, Donna L. Harris
  • Patent number: 7820056
    Abstract: A coagulation sedimentation process for water to be treated in which an inorganic coagulant used in a purified water treatment system is limited, and remaining micro flocks and flocks are made greater in density and finer in particle size, thus obtaining clear water better in quality and reducing the amount of sludge production, including a micro flocculation step for micro-flocculating in advance fine suspended particles in water to be treated, a flocculation step for the micro flocks, and a sedimentation separation step for the flocks, in which as a final stage of the flocculation step, a flock-forming inclined plate whose pitch width is from 5 mm or more to 50 mm or less is provided, and an inorganic coagulant is limited so that the turbidity of the water to be treated after passage of the inclined plate at a ratio to that before passage is 4/5 or less.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: October 26, 2010
    Inventor: Hisaaki Ochiai
  • Publication number: 20100243576
    Abstract: Systems and methods for dewatering drilling fluid including a feeder, an aging tank, a polyductor configured between the feeder and the aging tank and a flocculant solution pump fluidly connected to the aging tank. Further, the system includes a portable skid to house the feeder, the aging tank, the polyductor, and the flocculant solution pump. In certain embodiments, the polyductor is configured to mix a liquid with a dry flocculant from the feeder, and disperse a resultant flocculant solution in the aging tank, the aging tank is configured to receive the flocculant solution, and the flocculant solution pump is configured to remove the flocculant solution from the aging tank.
    Type: Application
    Filed: June 14, 2010
    Publication date: September 30, 2010
    Applicant: M-I LLC
    Inventors: Gary E. Fout, Julio Roberto Ronderos, Catalin Ivan
  • Patent number: 7799232
    Abstract: A reducing water purification material having a reducing iron-based precipitate selected from green rust, iron ferrite, reducing iron hydroxide, and a mixture thereof. A wastewater treatment process having steps of adding a reducing iron compound to wastewater, leading the wastewater to which the reducing iron compound is added to a reaction tank and forming a precipitate, separating the formed precipitate by a solid-liquid separation to obtain a sludge, and alkalinizing all or a portion of the separated sludge to form an alkaline sludge followed by returning to the reaction tank, wherein in the precipitation step, the wastewater to which the reducing iron compound is added and the alkaline sludge are mixed and are allowed to react in a non-oxidizing atmosphere under alkaline condition to form a reducing iron compound precipitate as the precipitate, thereby incorporating contaminants in the precipitate to remove the contaminants from the wastewater.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: September 21, 2010
    Assignee: Mitsubishi Materials Corporation
    Inventors: Hiroshi Hayashi, Hitoshi Takeuchi, Hajime Negishi, Shigeyuki Tsuzaki, Yoshio Aikawa, Ayako Mimoto, Shintaro Nakaya
  • Patent number: 7794604
    Abstract: The invention relates to a method for removing lignin from an aqueous solution. It is accomplished by adding a calcium compound and an aluminium compound to said solution. Said calcium compound is preferably calcium chloride and said aluminium compound is preferably a polymeric aluminium hydroxide salt.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: September 14, 2010
    Assignee: Kemira Oyj
    Inventors: Heikki Palonen, Arja Paloniemi, Reetta Taittonen, Päivi Rousu
  • Publication number: 20100187181
    Abstract: The disclosure relates generally to the use of zeolite to assist in dispersion of components in aqueous mineral slurries to release and separate individual components of the slurry, which may then be recovered from the slurry and, in particular, to the use of zeolite in the recovery of bitumen from an oil sands slurry, water recovery from the slurry, and the subsequent consolidation of residual mineral solids.
    Type: Application
    Filed: June 1, 2009
    Publication date: July 29, 2010
    Inventor: Edwin T. Sortwell
  • Publication number: 20100170855
    Abstract: The current invention relates to the modification of precipitate formed from an acidic slurry or solution resulting in decreased settling times and final solids bed volumes. The current invention uses an aqueous synthetic mixture comprising a phosphate, phosphonate, anionic polymer, anionic/cationic polymer blend or combinations thereof in the slurry and/or solution to improve clarification of the process stream. The claimed invention has a significant effect on precipitate morphology consequently improving settling characteristics and allowing for superior solid-liquid separation and process throughput.
    Type: Application
    Filed: January 6, 2009
    Publication date: July 8, 2010
    Inventors: Daniel N. T. Hay, Jasbir S. Gill
  • Publication number: 20100133199
    Abstract: A coagulation sedimentation process for water to be treated in which an inorganic coagulant used in a purified water treatment system is limited, and remaining micro flocks and flocks are made greater in density and finer in particle size, thus obtaining clear water better in quality and reducing the amount of sludge production, including a micro flocculation step for micro-flocculating in advance fine suspended particles in water to be treated, a flocculation step for the micro flocks, and a sedimentation separation step for the flocks, in which as a final stage of the flocculation step, a flock-forming inclined plate whose pitch width is from 5 mm or more to 50 mm or less is provided, and an inorganic coagulant is limited so that the turbidity of the water to be treated after passage of the inclined plate at a ratio to that before passage is 4/5 or less.
    Type: Application
    Filed: July 15, 2008
    Publication date: June 3, 2010
    Inventor: Hisaaki Ochiai
  • Publication number: 20100059452
    Abstract: The invention relates to block polymers, for example, arborescent copolymer compounds, and to methods of making and purifying such compounds. In one embodiment, the invention relates to arborescent polymer compounds that contain one or more styrene polymeric blocks in combination with one or more isobutylene polymeric blocks. In another embodiment, the invention relates to methods for purifying arborescent polymer compounds that contain at least one styrene polymeric block in combination with at least one isobutylene polymeric block.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Applicant: LANXESS, INC.
    Inventor: Gabor Kaszas
  • Patent number: 7670493
    Abstract: A mobile apparatus and method of operation for the pretreatment of wastewater to remove and concentrate fats, oils, grease and settled solids using vacuum flotation and a clarifier and returning the pretreated wastewater to the source structure, tank or sewer system. The vacuum flotation process is enhanced by injecting hydrogen peroxide to increase the dissolved oxygen concentration and a cationic emulsion polymer as a coagulant to the wastewater prior to removal into the vacuum flotation tank by vacuum pumping.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: March 2, 2010
    Inventor: David John Bolam
  • Publication number: 20100044315
    Abstract: A phosphorus removal system is operable to remove phosphorus from an influent. The system includes a first section receiving the influent and discharging a first flow. A first coagulant inlet is positioned upstream of the first section and is in fluid communication with the influent to introduce a first coagulant selected to precipitate phosphorus. A second section receives the first flow and discharges a second flow, and a third section receives the second flow and discharges an effluent. A second coagulant inlet is positioned downstream of the first section and upstream of the third section to introduce a second coagulant selected to precipitate phosphorus.
    Type: Application
    Filed: November 5, 2009
    Publication date: February 25, 2010
    Inventors: Eric Allen Lawrence, Joseph E. Zuback
  • Patent number: 7595001
    Abstract: A process and an apparatus are described for treating seven types of saline waters each having a concentration of total dissolved solids exceeding 1 g/L, wherein the concentration of total dissolved solids, the ratio of the chloride ion concentration to the bicarbonate ion concentration and the ratio of the chloride ion concentration to the sulphate ion concentration of each of the water types are as indicated in Table 1. The process includes the steps of contacting the water with a first reagent comprising a source of calcium ions selected from calcium oxide and calcium hydroxide to form a first solid product which is recovered. The process includes a further step of subjecting at least a portion of the partially processed water to at least partial evaporation so as to promote the formation of a precipitate and a mother liquor. The precipitate is recovered as a second product.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: September 29, 2009
    Assignee: GEO-Processors USA, Inc.
    Inventors: Aharon Arakel, Hongjun Tian, Lance James Stapleton
  • Patent number: 7591952
    Abstract: A product and apparatus for cleaning water or industrial and sewage waste water includes a mixture of diatomite that is heated and stirred to impart an enhanced negative electrical charge to the diatomite. A mixture of approximately 50% aluminium chloride (AlCl3) by volume is blended to provide a powder mixture for use as a flocculant in the system. According to a modification, the charged diatomite is instead blended with a mixture of approximately 50% ferric chloride (FeCl3) by volume and is stored in liquid form for later use as a flocculent in the system. From one to five percent, by volume, of polyacrylamide is preferably added to the mixture for use in sewage waste water treatment applications. An efficient system for reacting either the mixture or separately adding the diatomite and the metallic chloride to the water is described.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: September 22, 2009
    Inventor: Wing Yip Young
  • Patent number: 7563373
    Abstract: Processes, methods and systems are provided herein for lowering the concentration of phosphorus in wastewater. The process includes adding a suitable amount of an aluminum-based coagulant/flocculent, for example, an aluminum-silicate coagulant/flocculent product to the wastewater while maintaining the pH of the wastewater at between about 4.5 and about 6.65. This step provides an eventual effluent stream of precipitated aluminum-based, phosphorus-containing flocs dispersed in the wastewater. The next step involves physically removing, as by filtering, the precipitated aluminum-based, phosphorus-containing flocs which is dispersed in the wastewater. These steps are able to provide a wastewater effluent containing less than about 0.03 mg total phosphorus per liter of wastewater. The disclosure also teaches novel methods and systems for carrying out the novel process.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: July 21, 2009
    Assignee: Seprotech Systems Incorporated
    Inventor: Lysane Bolduc
  • Publication number: 20090065443
    Abstract: A water treatment method according to the present invention comprises adding an amphoteric polymer flocculant to polluted water to flocculate suspended solids so that the polluted water becomes treated water, and filtering the treated water. An inorganic flocculent can be added to the treated water after flocculation treatment before filtering the treated water.
    Type: Application
    Filed: March 22, 2007
    Publication date: March 12, 2009
    Applicant: DIA -NITRIX CO., LTD.
    Inventor: Shigeru Tanabe
  • Patent number: 7491333
    Abstract: A process for the treatment of industrial waste water. The process includes the steps of admixing partially-treated waste water containing precipitated impurities with a flocculating agent in a flocculation basin, directing the admixed waste water to an elongated sedimentation basin, allowing flocculated solids in the waste water to settle to the bottom of the sedimentation basin, removing the settled solids from the bottom of the sedimentation basin and directing the treated water from the sedimentation basin. The process can further include the step of adjusting the pH of the waste water to precipitate impurities in the waste water prior to the addition of the flocculation agent. The elongated sedimentation basin can include a pair of sloped sides to consolidate the settled solids at the bottom of the basin. The settled solids can then be removed by suction. The basins can be formed from the excavation or impoundment of earth in an area adjacent to a waste water-generating facility.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: February 17, 2009
    Assignee: Cleanwater Technologies, LLC
    Inventors: Donald A. Luke, Vaughn V. Astley
  • Publication number: 20080293926
    Abstract: The present invention relates to a method of separating a target from a liquid, which includes providing a polymer in an aqueous liquid, which polymer comprises at least one hydrophobic portion; contacting the polymer-containing liquid with the liquid comprising the target; applying a stimulus to the resulting mixture; and maintaining it until a reversible phase separation is obtained. One phase is polymer-rich and contains target(s) and another phase is polymer-poor. By either maintaining the stimulus, or applying a different stimulus and maintaining it, the polymer-rich phase is transformed into a substantially solid phase.
    Type: Application
    Filed: December 21, 2006
    Publication date: November 27, 2008
    Applicant: GE HEALTHCARE BIO-SCIENCES AB
    Inventors: Elisabeth Hallgren, Ronnie Palmgren, Linda Svensson
  • Patent number: 7445717
    Abstract: A waste stream is treated in a pre-filter having media, preferably sand, connected below a zero-valent metal column reactor incorporating a metal with reducing potential, preferably elemental iron (Fe0); the combination preferably configured as a single unit. The waste stream is pumped through the pre-filter to trap solids and deoxygenate it, then enters the reactor and is subjected to a reducing process. Most of the Fe0 is transformed to the ferrous ion (Fe+2), mixed with the reduced product, and fed to a continuous stirred tank reactor (CSTR) in which Fenton oxidation occurs. The output is then sent to a sedimentation tank and pH-neutralized using a strong base such as sodium hydroxide (NaOH). The aqueous portion is drawn off and the sludge pumped from the sedimentation tank. The system is monitored and controlled to optimize required additives, while monitoring of pressure drop across the pre-filter and column reactor establishes replacement requirements.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: November 4, 2008
    Assignee: United States of America as represented by the Secretary of the Army
    Inventors: Daniel K. Cha, Seok-Young Oh, Pei C. Chiu, Byung J. Kim
  • Patent number: 7429329
    Abstract: A hybrid chemical/mechanical dewatering sewage treatment plant and method employing rapid sludge chemical dewatering technology in conjunction with slower conventional mechanical dewatering solids agglomeration and disposal methods to meet operating constraints and environmental permitting restrictions and siting limitations for disposal of sewage and wastewater.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: September 30, 2008
    Assignee: Earth Renaissance Technologies, LLC
    Inventor: Marcus G. Theodore
  • Patent number: 7413664
    Abstract: A process for removing selenium from an aqueous stream using a supported sulfur material, to convert selenocyanate to selenite, followed by removal of the selenite from the aqueous stream.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: August 19, 2008
    Assignee: ConocoPhillips Company
    Inventors: Charles J. Lord, III, Larry E. Reed
  • Publication number: 20080149568
    Abstract: The invention relates to a method for removing lignin from an aqueous solution. It is accomplished by adding a calcium compound and an aluminium compound to said solution. Said calcium compound is preferably calcium chloride and said aluminium compound is preferably a polymeric aluminium hydroxide salt.
    Type: Application
    Filed: July 8, 2005
    Publication date: June 26, 2008
    Applicant: KEMIRA OYJ
    Inventors: Heikki Palonen, Arja Paloniemi, Reetta Taittonen, Paivi Rousu
  • Patent number: 7374694
    Abstract: The invention relates to a method and installation for treating water for human consumption, for an industrial process, for agricultural purposes or for other purposes. The method used to remineralize raw water comprises a stage in which carbon dioxide and at least one inorganic base are injected. According to the invention, the method comprises the following stages: the flow Q of raw water is separated into a flow Q1 and a flow Q2; only flow Q1 is remineralized by injecting carbon dioxide and at least one inorganic base, said remineralization being carried out in at least one remineralization basin; remineralized flow Q1 is mixed with untreated flow Q2.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: May 20, 2008
    Assignee: OTV S.A.
    Inventors: Jean-Claude Gaudinot, Gaid Abdelkader
  • Patent number: 7361283
    Abstract: Contaminated waste streams or soil or sludge is subjected to a first treatment stage with an acid liquor at a pH below 2 and at a solids content from 5 to 30%; then the liquid and solid phases from the first treatment stage are separated; the solids from the first treatment stage are mixed with a fresh acid liquor at a pH below 2 and a solids content from 5 to 30%; the liquid and solid phases from the second treatment stage are separated; the liquor separated from the first treatment stage is reacted with a base to precipitate the metals; the precipitated metals are separated and the liquor is recycled for reuse in the process; the solids separated from the second treatment stage are neutralized to adjust the pH to a level acceptable for a soil conditioner or fertilizer or other customized products; and the liquor from the second stage is used as the acidic liquor in the first treatment stage.
    Type: Grant
    Filed: January 19, 2004
    Date of Patent: April 22, 2008
    Assignee: Australian Organic Resources Pty. Ltd.
    Inventors: Bodo Heller, Christopher Michael Starks
  • Patent number: 7329357
    Abstract: A method for removing fluorine from wastewater includes the steps of: adding a fluorine-reactive agent, that comprises a water-soluble sodium compound and a water-soluble aluminum compound, into the wastewater so as to form sodium ions and aluminum ions in the wastewater and so as to precipitate sodium aluminum fluoride by reaction of the sodium ions and the aluminum ions with fluorine ions in the wastewater; and removing the precipitate of sodium aluminum fluoride from the wastewater.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: February 12, 2008
    Inventor: Ming-Hui Liao
  • Patent number: 7279103
    Abstract: Acidic metal-bearing wastewaters are treated to produce a finished water of sufficient purity to meet discharge standards while recovering metals removed in forms which are commercially valuable. The metals are selectively precipitated, either in a batch or in a continuous system, for removal of individual metal products in a specific sequence of steps from the wastewater. In each step, the pH is adjusted to the specific pH range and sulfide ion is introduced to precipitate the metals, excepting the removal of ferric iron and aluminum which is achieved using hydroxide precipitation. Bioconversion process using unique equipment converts sulfate in the wastewater to the hydrogen sulfide gas required for the precipitation process. This bioconversion process reduces the sulfate in the wastewater so that the water can be directly discharged or used for agricultural applications.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: October 9, 2007
    Assignee: United States of America Enviromental Protection Agency
    Inventors: John Burckle, Rakesh Govind, Fred Kawahara, Richard Scharp, Henry Tabak
  • Patent number: 7264735
    Abstract: The present invention relates to a method for producing drinking water having a reduced cluster width and being capable of emitting FIR (Far Infrared Rays) energy by using a solution derived by chemical treatment of a charge generating material.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: September 4, 2007
    Inventor: Won Song Lee
  • Patent number: 7264733
    Abstract: A method and apparatus for treating heavy-metal-containing wastewater using a sulfidizing agent. Sulfidizing treatment is carried out by adding a sulfidizing agent to heavy-metal-containing wastewater, while detecting hydrogen sulfide gas generated from the wastewater, such as to maintain a state in which hydrogen sulfide gas is just starting to be generated from the wastewater. When separately recovering each of a plurality of metals from wastewater in which are mixed ions of the plurality of metals, there is repeated for each of the metals a process in which the acidity of the wastewater is adjusted to within a range suitable for the metal to be separated out and recovered, a sulfidizing reaction is carried out on that metal, and the metal sulfide produced is precipitated and filtered off.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: September 4, 2007
    Assignee: Aquatech Corporation
    Inventors: Toyokazu Matsunami, Akifusa Ohnishi
  • Patent number: 7261820
    Abstract: A method and system for decreasing the concentration of at least one metal in an aqueous solution. The metal may be molybdenum, tungsten, or both. An aqueous solution is introduced into at least one reaction zone, and at least one source of hydroxide ions is provided into the at least one reaction zone in an amount sufficient to precipitate at least some of the mass of the at least one metal. The aqueous solution includes a mass of the at least one metal and a mass of at least one reducing agent. The at least one reducing agent includes at least ferrous iron from at least one source of the at least one reducing agent. A composition of tungsten ferrite or molybdenum tungsten ferrite may be formed. The method may be used for purifying water, for the refining of metals, or to facilitate a chemical analytical determination.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: August 28, 2007
    Assignee: General Electric Company
    Inventors: Brian Charles Blakey, James Rulon Young Rawson, Bang Mo Kim, Angelo Anthony Bracco
  • Patent number: 7220360
    Abstract: This invention offers an integrated technology in sequential treatment of wastewater. Low biodegradable organics and heavy metal ions are both contained in wastewater from surface finishing processes. The aim of the invention is to find the solution for treatment of organics and heavy metal ions in complicated wastewater that contains organics and heavy metal ions sequentially. Low biodegradable organics are oxidized by a fenton process with pH ranging from 2 to 5 and temperature ranging from 20° C. to 100° C. Heavy metal ions are then treated by a ferrite process with pH ranging from 8 to 12 and temperature ranging from 20° C. to 100° C. The integrated technology of the fenton process and the ferrite process (2FP) is advantageous to treat the wastewater from surface finishing processes, decrease the production of iron sludge caused in the fenton process and increase the quality of ferrite products.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 22, 2007
    Assignee: National Cheng Kung University
    Inventors: Hung-Ta Chen, Min-Shing Tsai, Juu-En Chang, Tsair-Fuh Lin, Ting-Che Hsiao, Jun-Yi Wu, You-Shen Chen
  • Patent number: 7138063
    Abstract: An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: November 21, 2006
    Assignee: Sandia Corporation
    Inventors: David M. Teter, Patrick V. Brady, James L. Krumhansl, Nadim R. Khandaker
  • Patent number: 7135116
    Abstract: The present invention relates to a process for treating a wastewater comprising an ammonium ion species and a phosphorus ion species. The process comprises the steps of: (i) treating the effluent in a first stage of the process to convert the phosphorus to a phosphorus-containing salt; (ii) treating the wastewater in a second stage of the process to convert the ammonium ion species to gaseous ammonia; (iii) removing the struvite and/or other phosphorous containing salts from the effluent; and (iv) removing the gaseous ammonia from the wastewater.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: November 14, 2006
    Inventor: Kenneth Haggerty
  • Patent number: 7077963
    Abstract: The invention provides compositions comprising bauxite refinery residues that have been reacted with sufficient calcium and magnesium ions that they have a reaction pH of less than 10.5, and one or more water treating additives. The invention also provides processes for treatment of water containing dissolved inorganic substances involving stepwise treatment of the water in which the reacted bauxite refinery residues are added after the addition of a pH-raising additive. The invention also provides processes for treatment of water containing dissolved inorganic substances in which the reacted bauxite refinery residues are added stepwise, with one or more water treating additives also being added in at least one of the steps.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: July 18, 2006
    Assignee: Nauveau Technology Investments
    Inventors: David M McConchie, Malcolm William Clark, Fiona Gaye Davies-McConchie
  • Patent number: 7048860
    Abstract: This invention relates to a method for treating acidic waste water, particularly mine effluent, and to a solid waste water treating material useful for the method. This waste water treating material is obtained by solidifying a mixture of rock wool and an inorganic binder mainly containing at least one kind selected from silicates, hydroxides and oxides of alkaline earth metals and alkali metals and has a porosity of 50% or more. When brought into contact with acidic waste water containing iron ions and sulfate ions, this waste treating material can not only neutralize the waste water but also remove harmful heavy metals such as iron and arsenic. Furthermore, it is easy to dispose the spent waste water treating material.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: May 23, 2006
    Assignee: Nippon Steel Chemical Co., Ltd.
    Inventor: Tohru Oishi
  • Patent number: 7048852
    Abstract: A method of treating liquid including mixing coagulant with the liquid, introducing mixed coagulant and liquid into a primary reaction zone, containing an agitator, of a reactor which is substantially concentrically positioned with respect to a secondary reaction zone of the reactor, introducing flocculant into the primary reaction zone at a location between the agitator and where the mixed coagulant and liquid are introduced into the primary reaction zone, mixing the mixed coagulant and liquid with the flocculant and causing the resulting mixture to flow into the secondary reaction zone, introducing an encapsulating agent into the secondary reaction zone, recirculating the liquid and encapsulated flocs through the primary and secondary reaction zone, and passing the liquid and encapsulated flocs outwardly of the reactor, and an apparatus for treating liquids including a reactor, a draft tube substantially concentrically positioned within the reactor and being positioned such that the liquids may flow inwardl
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: May 23, 2006
    Assignee: Infilco Degremont, Inc.
    Inventor: Peter Temple Ballard
  • Patent number: 6969467
    Abstract: In hydrate-based desalination or other water purification conducted using naturally buoyant or trapped-gas-assisted buoyancy hydrate in a hydrate fractionation column, a portion of fresh or purified product water is extracted from an upper, hydrate dissociation region of the fractionation column and reintroduced into a lower portion of the fractionation column at a point above but generally near a product water/saline water interface. The difference in density between the reintroduced product water and the fluid in the hydrate fractionation column above the point of reintroduction (water, hydrate, and gas) drives a natural circulation system which enhances the rate at which hydrate rises into the hydrate dissociation region.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: November 29, 2005
    Assignee: Marine Desalination Systems, L.L.C.
    Inventors: Michael D. Max, Jens Korsgaard
  • Patent number: 6936177
    Abstract: An object of the present invention is to provide a method for efficiently removing a metal from wastewater formed by subjecting the liquid waste to wet combustion treatment or wet oxidation treatment, said liquid waste resulting from an acrylic acid production process. Provided is a method for removing a metal from wastewater formed by subjecting at least a part of liquid waste to wet combustion treatment or wet oxidation treatment, said liquid waste resulting from an acrylic acid production process involving the steps of forming acrylic acid through catalytic vapor phase oxidation of at least one of propane, propylene, and acrolein, and purifying the acrylic acid through distillation, wherein the method comprises the steps of: (a) removing a solid content from the wastewater; (b) removing carbonate ions and carbonate salts from the treated liquid obtained by the step (a); and (c) removing a metal from the treated liquid from the step (b).
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: August 30, 2005
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shuhei Yada, Kenji Takasaki, Yasushi Ogawa, Yoshiro Suzuki
  • Patent number: 6919031
    Abstract: The present invention is directed to a method and apparatus for the treatment of water and wastewater. In one embodiment, a method of treating water according to the present invention includes mixing sludge and precipitant with the water to be treated, mixing ballast with the water, and separating the water into treated water and sludge. Some or all of the separated sludge may be recycled for mixing with the precipitant and water to be treated.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: July 19, 2005
    Assignee: I. Kruger Inc.
    Inventors: Charles D. Blumenschein, Kashi Banerjee
  • Patent number: 6916426
    Abstract: A method of treating an animal waste slurry so as to efficiently extract nutrients, and which can be performed in a zero-discharge system, comprises flocculating the slurry, processing, e.g. filtering, the flocculated slurry to separate liquid from solid material, drying the solid material, processing the liquid to extract ammonium, phosphorous and potassium from the slurry, all within 24 hours, and preferably on average within 12 hours, of production of the waste material by animals. Since the urates of potassium and ammonium in the slurry take a few hours to break down, they remain in crystalline form and therefore a larger portion of the total amount of potassium and ammonium in the slurry can be extracted.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: July 12, 2005
    Assignee: ATD Waste Systems Inc.
    Inventors: Victor Van Slyke, Hubert Timmenga, Steve Helle, Paul Watkinson, Xiaotao Bi
  • Patent number: 6905606
    Abstract: A method for removing calcium from water containing a high concentration of calcium bicarbonate, permitting a reduction of the calcium bicarbonate equivalent to 200-500 ppm calcium to the level in accordance with the water quality standards for industrial use, not by a method using a large amount of heat and power as heating and deairing, but by a simple chemical treatment. Calcium hydroxide is added to waste water containing a high concentration of calcium in a form of calcium bicarbonate for making them react with each other, and removing calcium by fixing it to calcium bicarbonate.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: June 14, 2005
    Assignee: Stella Chemifa Kabushiki Kaisha
    Inventors: Hirohisa Kikuyama, Toshirou Fukudome, Masayuki Miyashita
  • Patent number: 6863819
    Abstract: The invention provides a method treating acid raw water including the step of neutralising the water by adding calcium carbonate to it in a neutralising stage. The neutralised water is then rendered alkaline or more alkaline by adding an alkali thereto selected from calcium hydroxide, calcium oxide and mixtures thereof in a lime treatment stage. The alkaline water is then treated with carbon dioxide in a carbon dioxide treatment stage, with the carbon dioxide reacting in the carbon dioxide treatment stage with calcium hydroxide dissolved in the water.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: March 8, 2005
    Assignee: CSIR
    Inventor: Johannes Phillippus Maree
  • Patent number: 6863825
    Abstract: Arsenic is removed from water and other aqueous feeds by (1) treating the feed with a compound containing cerium in the +4 oxidation state, preferably cerium dioxide, to oxidize arsenic in the +3 oxidation state to arsenic in the +5 oxidation state and (2) removing the arsenic in the +5 oxidation state from the aqueous phase, normally by contacting the treated feed with alumina or other precipitating agent containing cations in the +3 oxidation state.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: March 8, 2005
    Assignee: Union Oil Company of California
    Inventors: Richard Donald Witham, Edward Bayer McNew, John Leslie Burba, III
  • Patent number: 6861041
    Abstract: A method for treating and upgrading effluents containing at least a metallic sulphate comprising adding at least a base to the effluent to precipitate the metallic ions in the form of iron oxy-hydroxides Fe(OHx) wherein x=2 and/or 3; separating the precipitated hydroxide calcium sulphate CaSO4; and separating the calcium sulphate CaSO4 precipitated during the preceding step. Said method enables obtainment of calcium sulphate (white gypsum) substantially free of metals and therefore capable of being upgraded and iron oxy-hydroxides likewise capable of being upgraded.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: March 1, 2005
    Assignee: Sarp Industries
    Inventors: Francois Hyvrard, Pascal Muller
  • Patent number: 6827860
    Abstract: Nickel and lead ions are eliminated from an acidic concentrated iron(II) salt solution by adding an alkali sulfide and precipitating nickel and lead sulphides.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: December 7, 2004
    Assignee: Kronos Titan GmbH & Co. OHG
    Inventor: Dieter Schinkitz
  • Patent number: 6821434
    Abstract: Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: November 23, 2004
    Assignee: Sandia Corporation
    Inventors: Robert C. Moore, D. Richard Anderson
  • Patent number: 6802981
    Abstract: A novel system and method for purification and disinfection of water containing contaminates is provided. The system includes an aeration column, a first intermediate tank, a first mechanical filter, an electric discharge device, a second intermediate tank, a second mechanical filter and a sorption filter. The water is firstly aerated by continuous mixing the water with air and ozone-air mixture. The water obtained after the aeration is treated with coagulant materials in a medium of the ozone-air mixture. Further, the water is filtered from coagulated particles. Thereafter, the water is treated by electric discharges in an air medium. The water is then treated again with coagulant materials. Finally, the water is filtered from remaining contaminates.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: October 12, 2004
    Assignee: Aquapure Technologies Ltd.
    Inventors: Natalia Grigorievna Ryazanova, Nikolay Danilovich Ryazanov
  • Patent number: 6802980
    Abstract: A method for removing dissolved arsenic from an aqueous medium comprising adding lime to the aqueous medium, and adding one or more sources of divalent metal ions other than calcium and magnesium to the aqueous medium, whereby dissolved arsenic in the aqueous medium is reduced to a lower level than possible if only the step of adding lime were performed. Also a composition of matter for removing dissolved arsenic from an aqueous medium comprising lime and one or more sources of divalent copper and/or zinc metal ions.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: October 12, 2004
    Assignee: Sandia Corporation
    Inventors: Nadim R. Khandaker, Patrick V. Brady, David M. Teter, James L. Krumhansl
  • Publication number: 20040159613
    Abstract: The present invention is directed to a novel method and system for enhancing the efficiency of hydraulic centrifugal separators (cyclones) in the removal of fine size particles from a liquid carrying medium. More particularly, it is concerned with improvements in the removal efficiency of any number of cyclonic devices that rely on the use of centrifugal force to separate fine size particles of differing density from the liquid carrying medium by addition of polymeric additives, both before, and, as necessary, inside the cyclone body.
    Type: Application
    Filed: February 13, 2003
    Publication date: August 19, 2004
    Inventors: Patrick W. Bair, Charlynn Bair
  • Patent number: 6761775
    Abstract: The present invention relates to anaerobic curing impregnation sealant compositions which are readily separable from water upon mixing.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: July 13, 2004
    Assignee: Henkel Corporation
    Inventors: Frederick F. Newberth, III, Charles M. Muisener, Stephen W. Ernst