Having Electrode Angle Control Patents (Class 219/124.33)
  • Patent number: 10589371
    Abstract: A field system for welding two pipes includes a first pipe engagement structure, a second pipe engagement structure, one or more weld torches, a motor and one or more processors. The one or more weld torches are configured to be positioned within the pipes to create an internal weld at an interface region between the pipes. The motor is operatively associated with the one or more weld torches to rotate the one or more weld torch along the interface region between the pipes. The one or more processors control the motor and the one or more weld torches. The one or more processors operate the motor and the one or more weld torches to generate a complete circumferential weld along the interface region by rotating the one or more weld torches along the interface region in a single rotational direction until the complete circumferential weld is completed.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: March 17, 2020
    Assignee: CRC-EVANS PIPELINE INTERNATIONAL, INC.
    Inventors: Shankar T. Rajagopalan, Siddharth Mallick, Brian L. Kirk, Jose C. Bouche, Jason W. Curbo, Jonathan B. Kettelkamp
  • Patent number: 10391632
    Abstract: Generating a robot control policy that regulates both motion control and interaction with an environment and/or includes a learned potential function and/or dissipative field. Some implementations relate to resampling temporally distributed data points to generate spatially distributed data points, and generating the control policy using the spatially distributed data points. Some implementations additionally or alternatively relate to automatically determining a potential gradient for data points, and generating the control policy using the automatically determined potential gradient. Some implementations additionally or alternatively relate to determining and assigning a prior weight to each of the data points of multiple groups, and generating the control policy using the weights.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 27, 2019
    Assignee: X Development LLC
    Inventor: Seyed Mohammad Khansari Zadeh
  • Patent number: 10105784
    Abstract: The present invention is a weld line-detecting method when fillet welding by an industrial robot including a welding torch is taught. The welding torch on which an angle sensor having a contactor is attached is moved toward a welding object, angle information obtained when the contactor is in contact with the welding object is transmitted to the industrial robot, and the industrial robot moves the welding torch based on the angle information so that the angle of the contactor becomes zero. These operations are repeated, and the welding torch is moved toward a fillet part along the surface of the welding object. When the contactor arrives at the fillet part, a signal indicating that the contactor is pressed in the axial direction of the contactor is transmitted to the industrial robot. The industrial robot detects that the contactor arrives at the position to be welded on the weld line.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: October 23, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Tatsuya Ikeda, Hisashi Kataoka, Tetsuya Takayama, Yasushi Mukai
  • Patent number: 9952581
    Abstract: Systems and methods NC plasma cut a metal fabric based upon a two-dimensional cutting path. An NC cutting machine is controlled to make a first pass along the cutting path with the laser height measuring device to collect height data from the metal fabric positioned on a bed of the NC cutting machine. Positions for starting and stopping a plasma arc of a cutting torch of the NC cutting machine are determined based upon the height data. An enhanced NC program is generated based upon the cutting path, the height data, and the positions for starting and stopping the plasma arc, to control the NC cutting machine to cut metal of the metal fabric along the cutting path.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: April 24, 2018
    Inventor: Matthew Fagan
  • Patent number: 9937578
    Abstract: A welding system including a helmet having one or more sensing devices configured to detect a position and an orientation of a welding torch relative to a workpiece during performance of a welding session, and a controller coupled to the one or more sensing devices and configured to receive arc parameters corresponding to the performance of the welding session.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: April 10, 2018
    Assignee: Illinois Tool Works Inc.
    Inventors: William Joshua Becker, Richard Beeson
  • Patent number: 9782812
    Abstract: An apparatus for forming spiral pipe includes a spiral pipe forming station having a feeding device for feeding a continuous strip and a bending device that receives the strip fed from the feeding device. The bending device has a fixed rolling element that forms a spiral pipe having a longitudinal axis and a sidewall. The apparatus also includes a cutting station having a cutting device movably extending in a direction of the longitudinal axis of the spiral pipe. A controller is operatively connected to the spiral pipe forming station and the cutting station to continuously operate the pipe forming station while the cutting station is operated to cut through the sidewall of the spiral pipe to define the one or more register holes.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: October 10, 2017
    Inventor: Roderick Clarence Minch
  • Patent number: 9415512
    Abstract: A system and method for enhancing a visualization of coordinate points within a robot's working envelope is disclosed. Part data associated with a position of a part, which may include part offset from a known position, is read using a teach pendant program. The part data is automatically stored within a hidden program instruction of the teach pendant program. The part data may be stored within the part program in a motion instruction associated with a motion line of the teach pendant program.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: August 16, 2016
    Assignee: Fanuc America Corporation
    Inventors: Sai-Kai Cheng, Gordon Geheb, Nivedhitha Giri, Randy A. Graca, David J. O'Toole
  • Patent number: 8987636
    Abstract: Systems, methods and software products generate multi-pass contours for controlling a numerical control (NC) machine to cut out a part with weld preparation. Weld preparation information is combined with an electronic description of the part to form an enhanced electronic file. Multi-pass contours, usable to control an NC machine to cut out the part with at least one bevel, are generated based upon the enhanced electronic file.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: March 24, 2015
    Inventor: Matthew Fagan
  • Patent number: 8927901
    Abstract: One embodiment of the present invention relates to a system for buried-arc welding with thru-the-arc seam tracking. Another embodiment of the present invention relates to a method for buried-arc welding with thru-the-arc seam tracking.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 6, 2015
    Assignee: Alcoa Inc.
    Inventors: Israel Stol, Floyd Thompson, Richard S. Dulski
  • Patent number: 8901454
    Abstract: In a method for controlling pulse arc welding where an arc is created between a wire and a base material, a pulse waveform different from the pulse waveform for steady-state welding is outputted when a predetermined time has passed since short-circuit welding control was started at arc start, and after a sufficiently large melt pool is formed, the pulse waveform for the steady-state welding is outputted. This reduces the generation of spatters after an arc is created and until the arc is stabilized.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: December 2, 2014
    Assignee: Panasonic Corporation
    Inventors: Akira Nakagawa, Atsuhiro Kawamoto, Junji Fujiwara, Masaru Kowa
  • Publication number: 20140203001
    Abstract: The present invention is a weld line-detecting method when fillet welding by an industrial robot including a welding torch is taught. The welding torch on which an angle sensor having a contactor is attached is moved toward a welding object, angle information obtained when the contactor is in contact with the welding object is transmitted to the industrial robot, and the industrial robot moves the welding torch based on the angle information so that the angle of the contactor becomes zero. These operations are repeated, and the welding torch is moved toward a fillet part along the surface of the welding object. When the contactor arrives at the fillet part, a signal indicating that the contactor is pressed in the axial direction of the contactor is transmitted to the industrial robot. The industrial robot detects that the contactor arrives at the position to be welded on the weld line.
    Type: Application
    Filed: March 20, 2014
    Publication date: July 24, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Tatsuya Ikeda, Hisashi Kataoka, Tetsuya Takayama, Yasushi Mukai
  • Publication number: 20130026148
    Abstract: A welding apparatus of an embodiment includes: a welding torch and a shape sensor attached to a welding robot; a shape data extraction unit extracting, from measured data measured by the shape sensor, shape data representing an outline of an object to be welded; a transformation data calculation unit calculating, based on a position and a posture of the shape sensor, coordinate transformation data for correcting the shape data; a shape data correction unit correcting the shape data based on the coordinate transformation data; an angle calculation unit calculating, based on the corrected shape data, an inclination angle of a groove of the object to be welded; and a welding position and posture determination unit determining, based on the inclination angle of the groove, a position and a posture of the welding torch.
    Type: Application
    Filed: August 2, 2012
    Publication date: January 31, 2013
    Inventors: Kazuo AOYAMA, Tatsuya OODAKE, Shinsaku SATO, Mitsuo IWAKAWA
  • Patent number: 8134097
    Abstract: A plasma torch having a multi-position head is disclosed. The plasma torch includes a torch body and a torch head pivotably connected thereto. Such a construction provides a single plasma torch having several head-to-handle orientations thereby providing a highly versatile plasma torch assembly.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: March 13, 2012
    Assignee: Illinois Tool Works Inc.
    Inventor: Joseph C. Schneider
  • Patent number: 7571025
    Abstract: A method for controlling a plurality of manipulators, such as multiaxial or multiaxle industrial robots. At least one manipulator functions as the reference manipulator and is moved in a plurality of preset poses within its working area at which internal position values are determined as first desired poses. For each desired pose, subsequently a first actual pose of the reference manipulator is determined by an external measuring system. Subsequently at least one further manipulator moves up to specific poses of the reference manipulator as second desired poses and for each of these poses an actual pose of the further manipulator is determined by an external measuring system. On the basis of actual-desired deviations between the thus determined desired and actual poses of the two manipulators, subsequently a parameter model for the further manipulator is established and with it it is possible to compensate simultaneously both its own errors and those of the reference manipulator.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: August 4, 2009
    Assignee: KUKA Roboter GmbH
    Inventor: Rainer Bischoff
  • Patent number: 7295891
    Abstract: In a method for controlling the movement of a manipulator associated with an interpretation of a given point sequence of poses (positions and orientations) by splines, the motion components are separately parameterized. Thus, marked, subsequent changes to the orientation of robot axes have no undesired effects on the Cartesian movement path of the robot. Suitable algorithms are provided for orientation control by using quaternions or Euler angles.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: November 13, 2007
    Assignee: KUKA Roboter GmbH
    Inventors: Manfred Hüttenhofer, Günther Wiedemann, Stefan Burkhart
  • Patent number: 6853878
    Abstract: A robot controller for teaching a robot with high efficiency. The robot controller including command storage unit (21) where a movement command and a work command are stored, command identifying unit (24) for discriminating between the movement and work commands, unit (22) for making/editing a series of work programs or discrete work programs by a combination of the commands, work program storage units (23) where the work programs are stored so as to control the robot according to the stored program, further including a work section identifying unit (25) for identifying a work section of the work program by way of the command identification unit (24) and work section automatic stopping unit (27) for automatically stopping or suspending the execution of the work program at the work section in a standby state when the work section identifying unit (25) identifies the work section during the execution of the work program.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: February 8, 2005
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Takahide Hirayama, Shinji Okumura, Hiyoyuki Handa, Takeshi Okamoto
  • Patent number: 6201207
    Abstract: A torch angle setting apparatus includes vertical links arranged in a vertical direction, the respective lower end of which is supported on a frame so as to be pivotally rotatable, and coupled with horizontal links at an upper end and an intermediate position of the vertical links for constituting a three-dimensionally parallel link. The torch angle setting apparatus also includes an inclining member constituted of a motor, an arm and a transmission member for inclining the vertical links by pivotally rotating the arm, a swinging member constituted of a swinging motor, a conducting member, splines for, including the inclining member, swinging conically the vertical links on fulcrums at the frame as a center, and a cutting torch moving in parallel to the vertical links.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: March 13, 2001
    Assignee: Koike Sanso Kogyo Co., Ltd.
    Inventors: Yoichi Maruyama, Takashi Kawaguchi
  • Patent number: RE40212
    Abstract: First, an operator sequentially teaches the start point A, the end point F and junction points B, C, D, E on the welding path by moving the torch head by jog feed without paying attention to the torch orientation. Next, a reference plane to define the orientation of the torch is specified, and an inclination angle and a forward angle representing the torch orientation be inputted into a robot controller. On the basis of these inputted angle data and the taught data, a basic welding orientation is automatically calculated. Further auxiliary points are set around the junction points B through E each forming corner parts connecting straight lines; tool vectors which may give a smooth torch orientation change through the corner parts are automatically calculated for the auxiliary points and the junction points; and on the basis of the results, a welding program is produced.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: April 1, 2008
    Assignee: Fanuc Ltd
    Inventors: Atsushi Watanabe, Takayuki Ito, Tatsuo Karakama