Abstract: The invention concerns heating metal strips or other coilable strand metal object to an elevated temperature, wherein the metal object is passed in a heating section through a furnace chamber that is made at least partly of an insulating and electrically non-conductive material while being heated through transverse flux induction heating (TFIH) by transverse flux induction heating elements located outside of the chamber which contains a protective non-oxidizing gas or gas mixture. The metal object is of stainless steel that has been cold rolled to a very high degree of surface reflectivity. The cold rolled stainless steel object is passed through the furnace chamber and is heated in the chamber to a processing temperature between 700 and 1200° C. The cold rolled stainless steel object is maintained at that temperature between 700 and 1200° C.
Abstract: A heating apparatus includes a steel belt conveyer having a steel belt with a top part that transports and heats, and induction heating coils having an elliptical or a rectangular shape disposed under or over the top part of the steel belt such that the longitudinal direction of each of the induction heating coils forms an angle of 45° to 135° inclusive with the moving direction of the steel belt. A heating stabilization device can be used in such an apparatus. The heating stabilization device has one or a plurality of rollers that are brought into contact with the top surface of the top part of the steel belt so that the top part of the steel belt is prevented from rising during a heating operation.
Abstract: C-shaped inductors for induction heating a heated steel material that is carried via table rollers. Each C-shaped inductor includes a C-shaped iron core having a pair of legs facing each other by sandwiching a gap through which the heated steel material passes, and heating coils wound around the pair of legs of the C-shaped iron core. A ring-shaped iron core for restricting induced currents generated in the heated steel material is disposed near the C-shaped inductors, and the heated steel material passes through the gap of each C-shaped inductor.
Abstract: An induction heating device which raises the temperature of a metal to be heated for one of melting or hot machining while providing considerably energy saving, increasing yield and observing current safety standards. The device (10) uses a cavity (11) to receive the metal to be heated and at least two magnetic yokes (13) arranged around a periphery of cavity (11), each yoke supporting an independent induction coil (14). The induction coils are mounted and wound in the same direction such that a north pole, of each coil, is located on one side of the cavity and a south pole is located on an opposite side of the cavity. The inductive coils are arranged so as to generate active non null magnetic field zones and inactive zones of null magnetic fields distributed about the periphery of the cavity. An inactive zone of null magnetic fields is located between each adjacent active non null magnetic field zone.
Type:
Grant
Filed:
November 12, 1999
Date of Patent:
December 19, 2000
Assignee:
Internova International Innovation Company B.V.
Abstract: Disclosed is a heating system for heating metal products in an oscillating induction furnace and a method of operation of the heating system. The heating system includes an oscillating induction furnace that in turn comprises a plurality of induction coils interspersed with a plurality of rollers. The metal products are oscillated within the induction coils on the plurality of rollers until heated to a target temperature. A logic device determines the power to be supplied to the induction coils, the number and speed of oscillation passes to conduct, the duration of time to be spent in the oscillating induction furnace, and the loading arrangement of the metal products within the oscillating induction furnace if two or more metal products are to be heated together in the oscillating induction furnace. The power supplied to the initial and final induction coils is metered by the logic device according to the proximity of the metal product to the initial and final induction coils.
Abstract: An apparatus for guiding hot-rolled strips through an inductor, arranged between two adjacent roll stands, of an induction heating device, in particular within a finishing mill behind a strip-casting installation or thin-slab casting installation. The apparatus guides the strip between the roll stands under controlled tension over at least two guide rollers arranged on both sides of the inductor in a plane of travel of the strip which extends centrally through the inductor space between the induction coils. A tension-measurement roller is provided for regulating the tension of the strip and is arranged in front of the inductor and the first guide roller.
Abstract: A device for induction heating a continuously moving metal product in a protective atmosphere includes an induction system. A non-metallic and gas-tight enclosure is disposed around the moving product, between the product and the induction system. Uses include an installation for continuous heat treatment of a moving product, such as a steel strip or wire, in a protective atmosphere, between a fast cooling chamber and an intermediate temperature maintaining chamber.
Abstract: An induction heating coil assembly for use in a roller induction heating line has a magnetic shunt for receiving a portion of an electromagnetic field generated along the axis of the induction coil and directing that portion along a path parallel to a workpiece passing along the heating line. This flux path ensures that eddy currents induced in the workpiece flow primarily perpendicular to the axis of the workpiece, and not along the axis of the workpiece where they could cause arcing between the moving workpiece and the conveyor rolls.
Abstract: A method and apparatus for 360.degree. induction heating of a can body to cure or partially cure a protective coating applied thereto. The can bodies are inductively heated by placing them in a medium frequency, oscillating magnetic field generated by a multiple turn induction coil helically wound around the transport path of the can body. By using a medium-frequency field and by centering the can bodies with respect to the induction coil, the can bodies may be evenly and uniformly heated around 360.degree. of their circumference.
Type:
Grant
Filed:
April 7, 1997
Date of Patent:
October 13, 1998
Assignee:
Nordson Corporation
Inventors:
Barbara Sprenger, Mark Gacka, Robert A. Sprenger, deceased
Abstract: A toner image formed on a recording member is fixed onto the recording member by a fixing device having a heatable member, a heater for heating the heatable member positioned on one side of the heatable member, the recording member being positioned on an opposite side of the heatable member and spaced from the heatable member to heat the recording member by radiation from the heatable member, and a fixing structure for fixing the toner image on the heated recording member. The heatable member can be a fixing belt arranged in a loop while the heater is an electromagnetic induction coil positioned substantially within the loop. The electromagnetic induction coil generates a magnetic flux perpendicular to the transport direction of the fixing belt to produce an eddy-like induction current in a conductive member of the fixing belt to heat the fixing belt. The fixing belt, in turn, heats the recording member on the exterior side of the belt to soften the toner image thereon. The fixing structure, e.g.
Abstract: At the front side of a wafer cassette fitted to a wafer feeding unit of a magnetic levitation wafer conveying device, a wafer stopper for preventing the wafer waiting in the wafer cassette from popping out is provided. The wafer supplied from the magnetic levitation conveying device is supplied into the reaction chamber by magnetic force, and is directly held in the reaction chamber by this magnetic force. Since the wafer stopper is positioned between the wafer cassette fitted in the wafer feeding unit and the starting end of the wafer conveying route, the wafer waiting in the wafer cassette next to the wafer to be conveyed is prevented from popping out together with the wafer to be conveyed. Moreover, the wafer conveyed by the magnetic force can be directly held in the reaction chamber in heated state.
Type:
Grant
Filed:
February 13, 1996
Date of Patent:
May 5, 1998
Assignee:
Kabushiki Kaisha Toshiba
Inventors:
Yoshiyuki Shioyama, Masako Hori, Koji Kimura
Abstract: An induction heating coil assembly for use in a roller induction heating line has a magnetic shunt for receiving a portion of an electromagnetic field generated along the axis of the induction coil and directing that portion along a path parallel to a workpiece passing along the heating line. This flux path ensures that eddy currents induced in the workpiece flow primarily perpendicular to the axis of the workpiece, and not along the axis of the workpiece where they could cause arcing between the moving workpiece and the conveyor rolls.
Type:
Grant
Filed:
February 6, 1995
Date of Patent:
August 27, 1996
Assignee:
Inductotherm Corp.
Inventors:
Vitaly Peysakhovich, Nicolas P. Cignetti, Hans G. Heine, John H. Mortimer
Abstract: Apparatus for inductively heating metal can lids operates at medium frequency, with a many-turn induction coil wrapped partly or entirely around the can closures. No focusing cores are required, nor need the conductors be water cooled. Can ends may be fed through the apparatus in-stick. IGBTs are used in the H-bridge of the inverter. A control system is also provided which minimizes peak current flow through the switches and obviates the need for a series inductor conventionally used for current limiting. The control system monitors the tank voltage phase angle and turns the switches on and off in optimal response thereto. Can lids are separated magnetically while being motivated by sequentially switched electromagnets, and can bodies may be rotated by a split conveyor belt while being transported through inductive heating apparatus.
Type:
Grant
Filed:
August 24, 1994
Date of Patent:
June 25, 1996
Assignee:
Nordson Corporation
Inventors:
Robert A. Sprenger, Douglas F. Shepherd
Abstract: Electrical connector components, for example, a pin terminal constructed from a solid wire pin and a formed metal body, are attached to a web carrier and fed through an inductive heating station, thereby bonding the components together. The components are pre-treated with a conductive bonding material which can be cured, flowed, or set by applying heat. The web carrier may be wound on a first spool, fed through the inductive heating station, and wound onto a second spool, for ready feed to and from successive production steps. The temperature of the heating operation may be controlled by varying the speed of the web feed and the strength of the inductive field, so as to ensure repeatable, uniform heating, at a high economical speed. In addition, the tip of the pin can be cooled during the heating operation, to prevent heat damage or contamination of the pin.
Type:
Grant
Filed:
January 17, 1995
Date of Patent:
May 21, 1996
Assignee:
Cardell Corporation
Inventors:
Jonathan Childs, Charles R. Schotthoefer
Abstract: Apparatus for spacing a plurality of substantially plate-like ferromagnetic workpieces such as can lids, in face-to-face relationship along a row, comprises a plurality of magnetic elements, each extending longitudinally along the row and different ones of the elements being disposed at different angular positions around the row, each of the magnetic elements being disposed and oriented to prevent the workpieces from pivoting about a distal edge of the workpiece due to the combined magnetic attraction of the workpiece by all others of the magnetic elements.
Abstract: A roller for furnaces, is used with a plurality of rollers substantially parallel to each other. The roller is provided with a plurality of annular collars which are side by side and spaced apart. The annular collars are cooled by means of a flow of cooling fluid which is oriented transversely with respect to their axis and parallel to their median plane. The annular riders are made in tubular form and may be of toroidal form and are connected separately each to the supply duct and to the return duct for the cooling fluid. They may also be formed by the individual turns of a tubular spiral or by a number of successive segments of a spiral which are connected via their ends to the supply duct and to the return duct.
Abstract: This disclosure relates to an apparatus for and a method of electrical inductance heating of metal strips and slabs. The heating method involves a plurality of pairs of individual electrical coils exposed on opposite sides of a path of movement of a metal strip or slab wherein the coils are elongated longitudinally of the path of movement of the metal member, such as a strip or slab, whereby the pattern of heating is in the way of stripes. Further, to eliminate any pulsing of current within the strip or slab being heated, each coil is spaced from a transversely adjacent coil a distance corresponding substantially to the effective heating width of that coil. The coils of a next longitudinal adjacent set of coils are transversely offset relative to the coils of the first mentioned set of coils so that each coil of the second set is aligned with a space between coils of the first set. This provides for a heating of the strip or slab in stripes and prevents overheating of the edges of the strip or slab.