Bonding Nonmetals With Metallic Filler Patents (Class 228/121)
-
Patent number: 11874095Abstract: An impact-absorbing article includes two outer panels that sandwich a fiber-composite post-and-sheet layer. The post-and-sheet layer includes a plurality of fiber-composite “posts” that extend orthogonally with respect to a base.Type: GrantFiled: January 11, 2023Date of Patent: January 16, 2024Assignee: ARRIS COMPOSITES INC.Inventor: Erick Davidson
-
Patent number: 11786974Abstract: An embodiment of a method includes depositing a quantity of first intermediary material onto an electrically insulating substrate in a pattern corresponding to a desired pattern of a first conductive structure. The first intermediary material is adhered to the substrate to form a first intermediate layer to maintain the desired pattern of the first conductive structure. A quantity of a precursor of electrically conductive material is deposited generally along the pattern of the first intermediate layer. Energy is applied to enable migration and consolidation of the first electrically conductive material along the pattern of the first intermediate layer, forming a functional, electrically conductive top layer. At least one of the first electrically conductive material and its precursor has a wetting angle of less than 90° relative to the first intermediate layer, and a wetting angle greater than 90° relative to the substrate. At least one of the depositing steps is an additive deposition step.Type: GrantFiled: May 3, 2018Date of Patent: October 17, 2023Assignee: HAMILTON SUNDSTRAND CORPORATIONInventors: Sameh Dardona, Paul Sheedy
-
Patent number: 11732172Abstract: A method for synthesizing a thermally conductive and stretchable elastomer composite comprises mixing liquid metal and soft material (e.g., elastomer) in a centrifugal or industrial shear mixer under conditions such that the liquid metal forms microscale liquid metal droplets that are dispersed in the soft elastomer. Liquid metal-embedded elastomers, or “LMEEs,” formed in this manner dramatically increase the fracture energy of soft materials up to 50 times over an unfilled polymer. This extreme toughening is achieved by means of (i) increasing energy dissipation, (ii) adaptive crack movement, and (iii) effective elimination of the crack tip. Such properties arise from the deformability and dynamic rearrangement of the LM inclusions during loading, providing a new mechanism to not only prevent crack initiation, but also resist the propagation of existing tears for ultra-tough, highly functional soft materials.Type: GrantFiled: January 4, 2019Date of Patent: August 22, 2023Assignee: CARNEGIE MELLON UNIVERSITYInventors: Navid Kazem, Michael D. Bartlett, Carmel Majidi
-
Patent number: 11712759Abstract: A lead-free soldering foil, for connecting metal and/or metal-coated components. allows the setting of a defined connecting-zone geometry and, with pores and/or voids being formed only to a minimal extent, achieves a high-temperature-resistant soldered connection that ensures great reliability even in staged soldering processes and increases the thermal conductivity of the connecting zone. The lead-free soldering foil is constructed so that, in a soft-solder matrix, two or more composite wires are each individually sandwiched by roll cladding between two soft-solder strips, parallel to one another and parallel to the edges of the strips. These composite wires include a core, which contains a higher-melting, stronger metal/metal alloy in comparison with the soft-solder matrix and around which a shell of another metal/metal alloy is arranged, and, after the roll-cladding operation, there is still 5 pm to 15 pm of soft-solder material arranged above and below at least one of the cores.Type: GrantFiled: February 8, 2021Date of Patent: August 1, 2023Assignee: Pfarr Stanztechnik GmbHInventors: Ralph Maedler, Stephan Reichelt
-
Patent number: 11488880Abstract: Enclosure technology for electronic components is disclosed. An enclosure for an electronic component can comprise a base member and a cover member disposed on the base member such that the cover member and the base member form an enclosure for an electronic component. In one aspect, the base member can have at least one via extending therethrough. The at least one via can be configured to electrically couple an enclosed electronic component with another electronic component external to the enclosure. In another aspect, the cover member can include a protrusion, a receptacle, or both, and the base member can include a mating protrusion, receptacle, or both to facilitate proper alignment of the cover member and the base member. Electronic device packages and associated systems and methods are also disclosed.Type: GrantFiled: June 30, 2017Date of Patent: November 1, 2022Assignee: Intel CorporationInventors: Vijay K. Nair, Digvijay A. Raorane
-
Patent number: 11482465Abstract: 3D semiconductor packages and methods of forming 3D semiconductor package are described herein. The 3D semiconductor packages are formed by mounting a die stack on an interposer, dispensing a thermal interface material (TIM) layer over the die stack and placing a heat spreading element over and attached to the die stack by the TIM layer. The TIM layer provides a reliable adhesion layer and an efficient thermally conductive path between the die stack and interposer to the heat spreading element. As such, delamination of the TIM layer from the heat spreading element is prevented, efficient heat transfer from the die stack to the heat spreading element is provided, and a thermal resistance along thermal paths through the TIM layer between the interposer and heat spreading element are reduced. Thus, the TIM layer reduces overall operating temperatures and increases overall reliability of the 3D semiconductor packages.Type: GrantFiled: October 18, 2019Date of Patent: October 25, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chen-Hua Yu, Szu-Wei Lu, Ying-Ching Shih, Li-Chung Kuo
-
Patent number: 11069824Abstract: An optical sensor device has an optical semiconductor element fixed into a recessed portion of a base portion, and a pad portion of the optical semiconductor element is electrically connected to a lead portion of the base portion. On an upper surface of a protruding portion provided in an outer region of the base portion, a metallization layer having notch portions, a metal bonding layer, a metallization layer having notch portions, and a lid portion are provided. Through use of the metallization layers and the metal bonding layer, the lid portion can be hermetically bonded to the base portion.Type: GrantFiled: January 31, 2020Date of Patent: July 20, 2021Assignee: ABLIC INC.Inventor: Koji Tsukagoshi
-
Patent number: 11008913Abstract: A support for an electric heating type catalyst, comprising: a honeycomb structure having partition walls that define a plurality of cells, each cell extending from a first end face to a second end face to form a fluid path for a fluid; and a pair of metal electrode portions in which one metal electrode portion of the pair of metal electrode portions is disposed on a side opposite to the other metal electrode portion across a center axis of the honeycomb structure; wherein one or both of the pair of metal electrode portions comprise at least one protruding portion, the protruding portion projecting toward the honeycomb structure side to abut against the honeycomb structure.Type: GrantFiled: August 16, 2019Date of Patent: May 18, 2021Assignee: NGK Insulators, Ltd.Inventor: Naoya Takase
-
Patent number: 10886251Abstract: A multilayer composite bonding material for transient liquid phase bonding a semiconductor device to a metal substrate includes thermal stress compensation layers sandwiched between a pair of bonding layers. The thermal stress compensation layers may include a core layer with a first stiffness sandwiched between a pair of outer layers with a second stiffness that is different than the first stiffness such that a graded stiffness extends across a thickness of the thermal stress compensation layers. The thermal stress compensation layers have a melting point above a sintering temperature and the bonding layers have a melting point below the sintering temperature. The graded stiffness across the thickness of the thermal stress compensation layers compensates for thermal contraction mismatch between the semiconductor device and the metal substrate during cooling from the sintering temperature to ambient temperature.Type: GrantFiled: April 21, 2017Date of Patent: January 5, 2021Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.Inventor: Shailesh N. Joshi
-
Patent number: 10787914Abstract: An airfoil includes a core having a first surface, a skin having a second surface disposed over at least a portion of the first surface of the core, and at least one of a transient liquid phase (TLP) bond and a partial transient liquid phase (PTLP) bond. The bond(s) are disposed between the first surface and the second surface, joining the skin to the core.Type: GrantFiled: August 19, 2014Date of Patent: September 29, 2020Assignee: United Technologies CorporationInventors: Michael G. Abbott, Michael G. McCaffrey, Grant O. Cook, III
-
Patent number: 10716644Abstract: A dental instrument comprising a shaft and a working part adjoined thereto, with the working part having a coating in which abrasive bodies are embedded, is proposed, Firstly, the average proportion of the surface of the abrasive bodies which is covered by the coating can be at least 60%, preferably at least 65%, most preferably at least 70%. Secondly, the coating can, moreover, also consist of a nickel ahoy which additionally contains at least one element selected from the group consisting of titanium, vanadium, niobium, chromium, molybdenum, tungsten, manganese, iron and cobalt. In addition, a process for coating a working part, in particular for producing a dental instrument of this type, and also the use of such a dental instrument for cutting machining of solid bodies are proposed.Type: GrantFiled: June 29, 2017Date of Patent: July 21, 2020Assignee: COLTÈNE/WHALEDENT AGInventors: Ralf Kollefrath, Ulrich Müller, Martin Schlüter
-
Patent number: 10720261Abstract: Disclosed herein is a composite comprising an elastomer with an embedded network of liquid metal inclusions. The composite retains similar flexibility to that of an elastomer but exhibits electrical and thermal properties that differ from the properties of a homogeneous elastomer. The composite has applications for wearable devices and other soft matter electronics, among others.Type: GrantFiled: February 2, 2017Date of Patent: July 21, 2020Assignee: CARNEGIE MELLON UNIVERSITY, a Pennsylvania Non-Profit CorporationInventors: Carmel Majidi, Andrew Fassler, Michael Bartlett, Navid Kazem, Matthew J. Powell-Palm, Jonathan A. Malen
-
Patent number: 10646964Abstract: Bonded surfaces are formed by adhering first nanorods and second nanorods to respective first and second surfaces. The first shell is formed on the first nanorods and the second shell is formed on the second nanorods, wherein at least one of the first nanorods and second nanorods, and the first shell and the second shell are formed of distinct metals. The surfaces are then exposed to at least one condition that causes the distinct metals to form an alloy, such as eutectic alloy having a melting point below the temperature at which the alloy is formed, thereby bonding the surfaces upon which solidification of the alloy.Type: GrantFiled: July 19, 2016Date of Patent: May 12, 2020Assignees: Northeastern University, University of North Florida Board of TrusteesInventors: Stephen Peter Stagon, Hanchen Huang, Paul Robert Elliott
-
Patent number: 10646941Abstract: A method for the joining of ceramic pieces with a hermetically sealed joint comprising brazing a layer of joining material between the two pieces. The wetting and flow of the joining material is controlled by the selection of the joining material, the joining temperature, the joining atmosphere, and other factors. The ceramic pieces may be aluminum nitride and the pieces may be brazed with an aluminum alloy under controlled atmosphere. The joint material is adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck.Type: GrantFiled: January 30, 2017Date of Patent: May 12, 2020Assignee: Component Re-Engineering Company, Inc.Inventors: Alfred Grant Elliot, Brent Donald Alfred Elliot, Frank Balma, Richard Erich Schuster, Dennis George Rex, Alexander Veytser
-
Patent number: 10607857Abstract: A method of joining a semiconductor die to a passive heat exchanger can include applying a bond enhancing agent to a semiconductor device; creating an assembly that includes a thermal interface disposed on the semiconductor device such that a first major surface of the thermal interface material is in touching relation with the bond enhancing agent on the semiconductor device, and a heat exchanger disposed in touching relation with a second major surface of the thermal interface material; and reflowing the assembly such that the thermal interface bonds the heat exchanger to the semiconductor device. Embodiments can use the ability of indium to bond to a non-metallic surface to form the thermal interface, which may be enhanced by a secondary coating on either or both joining surfaces.Type: GrantFiled: December 6, 2017Date of Patent: March 31, 2020Assignee: INDIUM CORPORATIONInventors: Ross B. Berntson, James E. Hisert, Robert N. Jarrett, Jordan P. Ross
-
Patent number: 10596782Abstract: A substrate for a printed circuit board according to an embodiment of the present invention includes a resin film and a metal layer stacked on at least one of surfaces of the resin film. An average diffusion depth of a main metal of the metal layer in the resin film is 100 nm or less after a weather resistance test in which the substrate is held at 150° C. for seven days. The average diffusion depth is preferably 80 nm or less before the weather resistance test.Type: GrantFiled: June 1, 2016Date of Patent: March 24, 2020Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC PRINTED CIRCUITS, INC.Inventors: Kayo Hashizume, Yoshio Oka, Takashi Kasuga, Jinjoo Park, Hiroshi Ueda
-
Patent number: 10588220Abstract: A method of manufacturing includes bonding a paste material to an organic substrate by a polymer thick film (PTF) process to form a PTF trace, coating a sinterable material over the PTF trace, and sintering the sinterable material to the PTF trace.Type: GrantFiled: July 19, 2018Date of Patent: March 10, 2020Assignee: Molex, LLCInventor: Patrick Weber
-
Patent number: 10585009Abstract: A pressure measurement cell is disclosed including a base body, substantially cylindrical at least in sections, a measuring membrane joined to the base body in a pressure-tight manner along a perimeter joint to form a measurement chamber between the base body and the measuring membrane, and a joining material that joins the perimeter joint between the base body and the measuring membrane. The base body and/or the measuring membrane have/has a stepped recess into which the joining material is at least partially disposed, the stepped recess structured to yield a minimum distance between the base body and the measuring membrane.Type: GrantFiled: November 3, 2015Date of Patent: March 10, 2020Assignee: Endress+Hauser SE+Co. KGInventors: Ulfert Drewes, Nils Ponath, Andreas Rossberg, Elke Schmidt, Anh Tuan Tham
-
Patent number: 10497853Abstract: A device (100) includes a first chip (104) having a first circuit element (112), a first interconnect pad (116) in electrical contact (118) with the first circuit element, and a barrier layer (120) on the first interconnect pad, a superconducting bump bond (106) on the barrier layer, and a second chip (102) joined to the first chip by the superconducting bump bond, the second chip having a quantum circuit element (108), in which the superconducting bump bond provides an electrical connection between the first circuit element and the quantum circuit element.Type: GrantFiled: December 30, 2015Date of Patent: December 3, 2019Assignee: Google LLCInventors: Joshua Yousouf Mutus, Erik Anthony Lucero
-
Patent number: 10487670Abstract: A blade for a gas turbine engine comprises a blade portion having a first end and a second end and an engagement portion including a first surface coupled to the second end of the blade portion and a second surface coupled to the second end of the blade portion, the first and second surfaces arranged to extend divergently away from one another. The engagement portion is adapted for coupling to a wheel included in a gas turbine engine wheel.Type: GrantFiled: December 23, 2013Date of Patent: November 26, 2019Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies Inc.Inventors: David J. Thomas, Richard C. Uskert, Adam L. Chamberlain, Matthew Peter Basiletti
-
Patent number: 10468579Abstract: A device (100) includes a first chip (104) having a first circuit element (112), a first interconnect pad (116) in electrical contact (118) with the first circuit element, and a barrier layer (120) on the first interconnect pad, a superconducting bump bond (106) on the barrier layer, and a second chip (102) joined to the first chip by the superconducting bump bond, the second chip having a quantum circuit element (108), in which the superconducting bump bond provides an electrical connection between the first circuit element and the quantum circuit element.Type: GrantFiled: December 30, 2015Date of Patent: November 5, 2019Assignee: Google LLCInventors: Joshua Yousouf Mutus, Erik Anthony Lucero
-
Patent number: 10384283Abstract: A method for the joining of ceramic pieces with a hermetically sealed joint comprising brazing a layer of joining material between the two pieces. The ceramic pieces may be aluminum nitride or other ceramics, and the pieces may be brazed with a silicon and an alloying element under controlled atmosphere. The joint material is adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the interior of a heater or electrostatic chuck.Type: GrantFiled: December 29, 2015Date of Patent: August 20, 2019Assignee: Component Re-Engineering Company, Inc.Inventors: Brent Elliot, Alfred Grant Elliott
-
Patent number: 10373928Abstract: A method for electrically interconnecting two substrates, each having a corresponding set of preformed electrical contacts, the substrates comprising an electronic circuit, and the resulting module, is provided. A liquid curable adhesive is provided over the set of contacts of a first substrate, and the set of electrical contacts of the second substrate is aligned with the set of electrical contacts of the first substrate. The sets of electrical contacts of the first and second substrate are compressed to displace the liquid curable adhesive from the inter-contact region, and provide electrical communication between the respective sets of electrical contacts. The liquid curable adhesive is then cured to form a solid matrix which maintains a relative compression between the respective sets of electrical contacts. One embodiment of the module comprises a high-speed superconducting circuit which operates at cryogenic temperatures.Type: GrantFiled: May 1, 2017Date of Patent: August 6, 2019Assignee: Hypres, inc.Inventor: Vladimir V. Dotsenko
-
Patent number: 10375825Abstract: This power module substrate includes a copper plate that is formed of copper or a copper alloy and is laminated on a surface of a ceramic substrate 11; a nitride layer 31 that is formed on the surface of the ceramic substrate 11 between the copper plate and the ceramic substrate 11; and an Ag—Cu eutectic structure layer 32 having a thickness of 15 ?m or less that is formed between the nitride layer and the copper plate.Type: GrantFiled: October 10, 2016Date of Patent: August 6, 2019Assignee: MITSUBISHI MATERIALS CORPORATIONInventors: Nobuyuki Terasaki, Yoshiyuki Nagatomo, Kimihito Nishikawa, Yoshirou Kuromitsu
-
Patent number: 10364190Abstract: A method of producing a component of a composite of diamond and a binder, wherein a Hot Isostatic gas Pressure process (HIP) is used, includes the step of enclosing a de-bound green body having compacted diamond particles in an infiltrant. The method includes the further steps of enclosing the de-bound green body and the infiltrant in a Zr-capsule that has Zirconium as a main constituent and sealing the Zr-capsule, and applying a predetermined pressure-temperature cycle on the unit formed by the de-bound green body, infiltrant and capsule in which the infiltrant infiltrates the de-bound green body and the de-bound green body is further densified in the sense that the volume thereof is decreased.Type: GrantFiled: August 25, 2016Date of Patent: July 30, 2019Assignee: SANDVIK INTELLECTUAL PROPERTY ABInventors: Susanne Norgren, Johan Sundstrom, Malin Martensson, Anna Ekmarker
-
Patent number: 10357840Abstract: The invention relates to a method for forming a bonded joint between a structure that is applied to a glass substrate, in particular a printed conductive structure and an electrical connecting component, in particular a solder base by using solder coated or non-solder coated reactive nanometer multilayer foils which are made from at least two exothermally reacting materials. Initially preconfiguring the reactive nanometer multilayer foils according to the opposing joining surfaces of the conductive structure and the electrical closure element is performed.Type: GrantFiled: August 17, 2017Date of Patent: July 23, 2019Assignee: FEW Fahrzeugelektrik Werk GmbH & Co. KGInventors: Roy Gleisberg, Björn Schneider, André Jenrich
-
Patent number: 10319664Abstract: A bonded body is provided in which an aluminum alloy member formed from an aluminum alloy, and a metal member formed from copper, nickel, or silver are bonded to each other. The aluminum alloy member is constituted by an aluminum alloy in which a concentration of Si is in a range of 1 mass % to 25 mass %. The aluminum alloy member and the metal member are subjected to solid-phase diffusion bonding. A compound layer, which is formed through diffusion of Al of the aluminum alloy member and a metal element of the metal member, is provided at a bonding interface between the aluminum alloy member and the metal member. A Mg-concentrated layer, in which a concentration of Mg is to 3 mass % or greater, is formed at the inside of the compound layer, and the thickness of the Mg-concentrated layer is in a range of 1 ?m to 30 ?m.Type: GrantFiled: April 11, 2016Date of Patent: June 11, 2019Assignee: MITSUBISHI MATERIALS CORPORATIONInventors: Nobuyuki Terasaki, Yoshiyuki Nagatomo
-
Patent number: 10319426Abstract: A semiconductor structure includes an electrode, a ferroelectric material adjacent the electrode, the ferroelectric material comprising an oxide of at least one of hafnium and zirconium, the ferroelectric material doped with bismuth, and another electrode adjacent the ferroelectric material on an opposite side thereof from the first electrode. Related semiconductor structures, memory cells, semiconductor devices, electronic systems, and related methods are disclosed.Type: GrantFiled: May 9, 2017Date of Patent: June 11, 2019Assignee: Micron Technology, Inc.Inventors: Albert Liao, Wayne I. Kinney, Yi Fang Lee, Manzar Siddik
-
Patent number: 10160066Abstract: The present disclosure relates a bonding system formed by a process that provides a first substrate and a second substrate. A flux coating is applied to the first contact surface, and a solder-adhesive mixture comprising an adhesive and a plurality of solder elements in at least a portion of the adhesive is applied to the first contact surface. The second substrate is positioned adjacent the solder-adhesive mixture much that a second contact surface of the second surface is opposite the first contact surface, and heat is applied to the solder-adhesive mixture by way of at least one of the first and second contact surfaces. The solder-adhesive mixture is heated to a temperature that is intended to at least partially melt or at least partially vaporize the flux coating upon contact to promote a bonding condition between the solder-adhesive mixture and the first substrate.Type: GrantFiled: November 1, 2016Date of Patent: December 25, 2018Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Xin Yang, Blair E. Carlson, Yongbing Li
-
Patent number: 10155301Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) comprising a polycrystalline diamond (“PCD”) table including at least a portion having aluminum carbide disposed interstitially between bonded-together diamond grains thereof, and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate, and a PCD table bonded to the substrate. The PCD table includes a plurality of bonded-together diamond grains defining a plurality of interstitial regions. The PCD table further includes aluminum carbide disposed in at least a portion of the plurality of interstitial regions.Type: GrantFiled: February 12, 2015Date of Patent: December 18, 2018Assignee: US SYNTHETIC CORPORATIONInventors: Paul Douglas Jones, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess
-
Patent number: 10153183Abstract: A method for the joining of ceramic pieces into an assembly adapted to be used in semiconductor processing. The joined pieces are adapted to withstand the environments within a process chamber during substrate processing, chamber cleaning processes, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck. The ceramic pieces may be aluminum nitride and the pieces may be brazed with aluminum. The joint material is adapted to withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck. The joint is adapted to provide a hermetic seal across the joint. The joined pieces are adapted to be separated at a later time should rework or replacement of one of the pieces be desired.Type: GrantFiled: November 17, 2014Date of Patent: December 11, 2018Assignee: Component Re-Engineering Company, Inc.Inventors: Alfred Grant Elliot, Brent Donald Alfred Elliot, Frank Balma, Richard Erich Schuster, Dennis George Rex, Alexander Veytser
-
Patent number: 10071543Abstract: A precipitation-hardened partial transient liquid phase bond and method of making same is provided. The bond is created at a bonding temperature and then, based on the phase diagrams corresponding to the materials in the interlayer between the bonded materials, the bond is held at a lower heat-treatment temperature to achieve a precipitation-hardened structure.Type: GrantFiled: February 27, 2014Date of Patent: September 11, 2018Assignee: UNITED TECHNOLOGIES CORPORATIONInventor: Grant O. Cook, III
-
Patent number: 10014273Abstract: A fixture assembly and method of forming a chip assembly is provided. The fixture assembly includes a first plate having an opening sized to accommodate a chip mounted on a laminate. The fixture assembly further includes a second plate mated to the first plate by at least one mechanical fastening mechanism. The fixture assembly further includes a space defined by facing surfaces of the first plate and the second plate and confined by a raised stepped portion of at least one of the first plate and the second plate. The space is coincident with the opening. The space is sized and shaped such that the laminate is confined within the space and directly abuts the stepped portion and the facing surfaces of the first plate and the second plate to be confined in X, Y and Z directions.Type: GrantFiled: July 21, 2016Date of Patent: July 3, 2018Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Thomas E. Lombardi, Donald Merte, Gregg B. Monjeau, David L. Questad, Son K. Tran
-
Patent number: 10000422Abstract: The present invention provides a ceramic to ceramic joint and methods for making such a joint. Generally, the joint includes a first ceramic part and a second ceramic part, wherein the first and second ceramic parts each include a ceramic-carbide or a ceramic-nitride material. In some cases, an aluminum-initiated joint region joins the first and second ceramic parts. This joint region typically includes chemical species from the first and second ceramic parts that have diffused into the joint region. Additionally, the first and second ceramic parts each typically include a joint diffusion zone that is disposed adjacent to the joint region and which includes aluminum species from the joint region that have diffused into the joint diffusion zone. Other implementations are also described.Type: GrantFiled: May 11, 2015Date of Patent: June 19, 2018Assignee: CoorsTek, Inc.Inventors: Joseph R Fellows, Merrill Wilson
-
Patent number: 9969654Abstract: A means for attaching a metallic component to a non-metallic component using a compliant material having thermal properties intermediate those of the metallic component to a non-metallic component is provided. The method can accommodate CTE mismatches and wear-type problems common to many assemblies of dissimilar materials. In particular, the method provides a sufficient wear surface to accommodate relative motion and provide a durable wear surface that does not excessively wear/gall/mico-weld itself together and provides the necessary damping and motion for proper operation in aeronautical applications.Type: GrantFiled: January 21, 2015Date of Patent: May 15, 2018Assignee: UNITED TECHNOLOGIES CORPORATIONInventors: Benjamin T. Fisk, Grant O. Cook, III
-
Patent number: 9968012Abstract: A heat-sink-attached-power module substrate (1) has a configuration such that either one of a metal layer (13) and a heat sink (31) is composed of aluminum or an aluminum alloy, and the other one of them is composed of copper or a copper alloy, the metal layer (13) and the heat sink (31) are bonded together by solid phase diffusion bonding, an intermetallic compound layer formed of copper and aluminum is formed in a bonding interface between the metal layer (13) and the heat sink (31), and an oxide is dispersed in an interface between the intermetallic compound layer and either one of the metal layer (13) composed of copper or a copper alloy and heat sink (31) composed of copper or a copper alloy in a layered form along the interface.Type: GrantFiled: October 11, 2013Date of Patent: May 8, 2018Assignee: MITSUBISHI MATERIALS CORPORATIONInventors: Nobuyuki Terasaki, Yoshiyuki Nagatomo, Yoshirou Kuromitsu
-
Patent number: 9947560Abstract: An integrated circuit (IC) package, assembly tool and method for assembling an IC package are described herein. In a first example, an IC package is provided that includes a package substrate, at least a first integrated circuit (IC) die and a cover. The first integrated circuit (IC) die is mechanically and electrically coupled to the package substrate via solder connections. The cover is bonded to the package substrate. The cover encloses the first IC die and is laterally offset from a peripheral edge of the package substrate.Type: GrantFiled: November 22, 2016Date of Patent: April 17, 2018Assignee: XILINX, INC.Inventors: Mohsen H. Mardi, David Tan, Gamal Refai-Ahmed
-
Patent number: 9931717Abstract: An assembly comprising: two ceramic bodies, which are joined by means of a joint of an active hard solder, or braze, wherein the active hard solder, or braze, has a continuous core volume, which is spaced, in each case, from the ceramic bodies by at least 1 ?m, and an average composition CK with a liquidus temperature Tl(CK), wherein the composition CK has a coefficient of thermal expansion ?(CK), wherein ?(CK)=m·?(K), wherein m?1.5, especially m?1.3 and preferably m?1.2, wherein ?(K) is the average coefficient of thermal expansion of the ceramic material of the ceramic bodies, wherein the joint has boundary layers, which border on the ceramic body, wherein at least one of the boundary layers, which lies outside of the core volume, has an average composition CB with a liquidus temperature Tl(CB), which lies not less than 50 K, preferably not less than 100 K, and especially preferably not less than 200 K, under the liquidus temperature Tl(CK) of the average composition CK of the core volume.Type: GrantFiled: October 28, 2013Date of Patent: April 3, 2018Assignee: ENDRESS + HAUSER GMBH + CO. KGInventors: Andreas Rossberg, Elke Schmidt, Markus Rettenmayr, Peter Siegmund
-
Patent number: 9831211Abstract: Provided are anisotropic conductive materials, electronic devices including anisotropic conductive materials, and/or methods of manufacturing the electronic devices. An anisotropic conductive material may include a plurality of particles in a matrix material layer. At least some of the particles may include a core portion and a shell portion covering the core portion. The core portion may include a conductive material that is in a liquid state at a temperature greater than 15° C. and less than or equal to about 110° C. or less. For example, the core portion may include at least one of a liquid metal, a low melting point solder, and a nanofiller. The shell portion may include an insulating material. A bonding portion formed by using the anisotropic conductive material may include the core portion outflowed from the particle and may further include an intermetallic compound.Type: GrantFiled: February 4, 2016Date of Patent: November 28, 2017Assignees: Samsung Electronics Co., Ltd., Yonsei University Wonju Industry-Academic Cooperation FoundationInventors: Kunmo Chu, Wonsuk Chang, Chanmoon Chung
-
Patent number: 9769963Abstract: A heat-sink-attached-power module substrate (1) has a configuration such that either one of a metal layer (13) and a heat sink (31) is composed of aluminum or an aluminum alloy, and the other one of them is composed of copper or a copper alloy, the metal layer (13) and the heat sink (31) are bonded together by solid phase diffusion bonding, an intermetallic compound layer formed of copper and aluminum is formed in a bonding interface between the metal layer (13) and the heat sink (31), and an oxide is dispersed in an interface between the intermetallic compound layer and either one of the metal layer (13) composed of copper or a copper alloy and heat sink (31) composed of copper or a copper alloy in a layered form along the interface.Type: GrantFiled: October 11, 2013Date of Patent: September 19, 2017Assignee: MITSUBISHI MATERIALS CORPORATIONInventors: Nobuyuki Terasaki, Yoshiyuki Nagatomo, Yoshirou Kuromitsu
-
Patent number: 9764387Abstract: A polycrystalline diamond (PCD) with diamond grains includes a first zone of the diamond grains and a second zone of the diamond grains. The first zone forms a working surface and a first catalyzing material is disposed within voids of the diamond grains in the first zone. A second catalyzing material is bonded to the diamond grains disposed in the second zone. The first catalyzing material in the first zone is connected to the diamond grains disposed in the first zone less intimately than the second catalyzing material is bonded to the diamond grains in the second zone.Type: GrantFiled: February 17, 2015Date of Patent: September 19, 2017Inventor: Rusty Petree
-
Patent number: 9698078Abstract: A semiconductor module of the present invention includes: a semiconductor element having a first main surface and a second main surface facing the first main surface, the semiconductor element including a front surface electrode and a back surface electrode on the first main surface and the second main surface, respectively; a metal plate electrically connected to the back surface electrode of the semiconductor element through a sintered bonding material including metal nanoparticles; and a plate-shaped conductor electrically connected to the front surface electrode of the semiconductor element through the sintered bonding material including the metal nanoparticles. The metal plate and the conductor include grooves communicating between a bonding region bonded to the semiconductor element and the outside of the bonding region.Type: GrantFiled: July 29, 2014Date of Patent: July 4, 2017Assignee: Mitsubishi Electric CorporationInventor: Yasunari Hino
-
Patent number: 9662729Abstract: A laser guided nano-brazing method for a reinforced aluminum composite material having high volume fraction silicon carbide particles, comprising 4 steps: nanocrystallizing the surface of the reinforced aluminum composite material having high volume fraction silicon carbide particles, preparing solder material, assembling pieces to be soldered, and dual-beam laser brazing. The use of nano-technology for the brazing of reinforced aluminum composite material having high volume fraction silicon carbide particles, and the use of dual-beam laser technology for brazing temperature field control enhance the humidity during the brazing process of said material and filling ability of the solder material, and satisfy the strict requirements of electronic packaging.Type: GrantFiled: April 27, 2013Date of Patent: May 30, 2017Assignee: Henan Jingtai Aerospace High-Novel Materials Technology Co., Ltd.Inventors: Jitai Niu, Dongfeng Cheng, Zeng Gao, Peng Wang, Qiang Li, Baoqing Zhang, Erzhen Mu, Sijie Chen, Hengze Xian, Gang Zeng, Xitao Wang
-
Patent number: 9610451Abstract: One aspect provides a method of attaching a feedthrough to a titanium housing of an implantable medical device. The method includes providing the housing with a flange forming a recess about an opening through the housing, the opening disposed within the recess. A feedthrough is positioned within the recess so as to form a gap between the flange and an insulator of the feedthrough. A braze preform is then positioned within the recess about the insulator, the braze preform comprising a biocompatible braze material having a melting point less than a ?-transus temperature of the titanium of the housing. The preform is melted at a temperature less than the ?-transus temperature of the titanium of the housing such that the melted braze material fills at least the gap, and then cooled to form a braze joint which bonds the insulator to the housing and hermetically seals the opening.Type: GrantFiled: December 12, 2013Date of Patent: April 4, 2017Assignee: Heraeus Deutschland GmbH & Co. KGInventors: Jacob Markham, Ulrich Hausch
-
Patent number: 9598321Abstract: A method and apparatus for providing molten metal infiltration into a component is provided.Type: GrantFiled: March 12, 2014Date of Patent: March 21, 2017Assignee: Rolls-Royce CorporationInventor: Andrew J. Lazur
-
Patent number: 9556074Abstract: A method for the joining of ceramic pieces with a hermetically sealed joint comprising brazing a continuous layer of joining material between the two pieces. The wetting and flow of the joining material is controlled by the selection of the joining material, the joining temperature, the time at temperature, the joining atmosphere, and other factors. The ceramic pieces may be aluminum nitride and the pieces may be brazed with an aluminum alloy under controlled atmosphere. The joint material is adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck.Type: GrantFiled: November 20, 2012Date of Patent: January 31, 2017Inventors: Alfred Grant Elliot, Brent Donald Alfred Elliot, Frank Balma, Richard Erich Schuster, Dennis George Rex, Alexander Veytser
-
Patent number: 9370795Abstract: A method for applying a wear protection layer to a continuous flow machine component which has a base material comprising titanium is provided. The method includes the following steps: mixing a solder which comprises an alloy comprising titanium and particles which are distributed in the alloy and have a reaction agent; applying the solder to predetermined points of the continuous flow machine component; introducing a heat volume into the solder and the continuous flow machine component so that the alloy becomes liquid and the reaction agent changes through diffusion processes with the solder and undergoes a chemical reaction with the alloy, forming a hard aggregate; and cooling the solder so that the alloy becomes solid.Type: GrantFiled: September 21, 2012Date of Patent: June 21, 2016Assignee: Siemens AktiengesellschaftInventors: Jochen Barnikel, Susanne Gollerthan, Harald Krappitz, Ingo Reinkensmeier
-
Patent number: 9374893Abstract: A production method for a metallized substrate to produce a metallized substrate which comprises: a sintered nitride ceramic substrate; a titanium nitride layer formed on the sintered substrate; and a metal layer containing copper, silver and titanium formed on the titanium nitride layer. The method comprises: a step of layering a first paste layer containing copper powder and titanium hydride powder on the sintered nitride ceramic substrate, to produce a first layered body; a step of layering a second paste layer containing silver-copper alloy powder on the first paste layer of the first layered body, to produce a second layered body; and a step of firing the second layered body, to thereby form the titanium nitride layer and the metal layer on the sintered nitride ceramic substrate.Type: GrantFiled: February 28, 2011Date of Patent: June 21, 2016Assignee: TOKUYAMA CORPORATIONInventor: Naoto Takahashi
-
Patent number: 9358765Abstract: A method for coating of a first substrate with a first diffusion bond layer by deposition of a first material which forms the first diffusion bond layer on a first surface of the first substrate such that the first diffusion bond layer forms a grain surface with an average grain diameter H parallel to the first surface smaller than 1 ?m. The invention further relates to a method for bonding of a first substrate which has been coated as described above to a second substrate which has a second diffusion bond layer, the method of the bonding comprising the following steps: bring a first diffusion bond layer of a first substrate into contact with a second diffusion bond layer of a second substrate, pressing the substrates together to form a permanent metal diffusion bond between the first and second substrates.Type: GrantFiled: September 28, 2012Date of Patent: June 7, 2016Assignee: EV GROUP E. THALLNER GMBHInventors: Markus Wimplinger, Bernhard Rebhan
-
Patent number: 9355984Abstract: An embodiment method for fabricating electronic devices having two components connected by a metal layer includes applying a metal layer to each component and connecting the metal layers such that a single metal layer is formed.Type: GrantFiled: July 18, 2013Date of Patent: May 31, 2016Assignee: Infineon Technologies AGInventors: Irmgard Escher-Poeppel, Eduard Knauer, Thomas Kunstmann, Peter Scherl, Raimund Foerg