Celestial Navigation Patents (Class 244/3.18)
  • Patent number: 11567101
    Abstract: A system combines contributions from various sensors to obtain an object's position, velocity, or orientation.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: January 31, 2023
    Inventor: Wensheng Hua
  • Patent number: 11079239
    Abstract: A method for directly planning a reentry trajectory in a height-velocity profile includes the following steps: S1, extracting an actual working parameter of an aircraft, setting the maximum value {dot over (Q)}max of a stagnation point heat flux, the maximum value qmax of dynamic pressure, and the maximum value nmax of overload according to the mission requirement, and solving the height-velocity boundary of the reentry trajectory, that is, a lower boundary of the reentry trajectory in the height-velocity profile; S2, solving a reentry trajectory of an initial descent stage according to differential equations of reentry motion, and determining a starting point of a trajectory of a gliding stage according to the trajectory of the initial descent stage; and S3, planning a trajectory in the height-velocity profile satisfying terminal constraints based on the lower boundary in the height-velocity profile, and calculating a corresponding bank angle, to obtain the reentry trajectory.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: August 3, 2021
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Wenya Zhou, Zhentao Nie, Feng Yang, Kai Liu, Guanjun Wang, Zhe Li, Honggang Xu, Feixiong Gao
  • Patent number: 11052618
    Abstract: Tape layup systems and associated methods. A tape layup system includes a feed spool and an uptake spool. The feed spool is configured to carry a tape roll of tackifier tape that includes a tackifier material and a backing material, and the uptake spool is configured to carry a backing material roll of the backing material. The tape layup system further includes a torque transmission system configured to convey a torque from the feed spool to the uptake spool. The tape layup system is configured such that conveying a torque from the feed spool to the uptake spool operates to draw the backing material onto the backing material roll. A method of operating a tape layup system includes generating tension in a tackifier tape to rotate a feed spool and consequently rotating an uptake spool to draw a backing material onto a backing material roll.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: July 6, 2021
    Assignee: The Boeing Company
    Inventor: Allen Halbritter
  • Patent number: 10656261
    Abstract: Modern high velocities and altitudes of long-range projectile launch require a new device capable of predicting the exact geographic location and speed on impact instead of tracking object (or debris) by a radar all the way to the impact. The principle of design for such device was achieved through rigorous application of the classical dynamics for non-inertial reference frame rotating with constant angular velocity. It allowed, based on planet mass and rotational speed together with geographic coordinates and conditions of launch, to significantly improve ballistics accuracy by precisely forecasting behavior of a free falling objects or unmanned capsules in vicinity of a chosen planet under different atmospheric conditions. Providing radar or a sensor compatibility with the proposed device, their performance will be enormously improved by enabling them to point at exact search, rescue, or evacuation area ahead of time.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: May 19, 2020
    Assignee: Bowie State University
    Inventors: Mikhail Yurievich Goloubev, Matsuichiro Shimizu
  • Patent number: 10466013
    Abstract: A counter measure system is provided having a unitary infrared transparent dome including a look angle greater than 180. The dome has two hemispherical regions, with a second region having a truncated bottom end defining an opening to a central cavity inside which electro-optical elements are disposed. The electro-optical elements can view outward through the dome at the look angle. The second region on the dome has a complementary curvature as the first region by continuing a similar radius beyond a transverse horizontal axis or equator. The dome is mounted to a base, which also may be referred to as a bezel. The base defines a rabbet extending circumferentially about the base imaginary center defining an aperture. The base and the dome are formed from different materials but have equivalent coefficients of thermal expansion. In one embodiment the dome if formed from sapphire and the base is titanium.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: November 5, 2019
    Assignee: BAE Systems Information and Electronic Sytems Integration Inc.
    Inventors: Donald K. Smith, Michael J. Powers, Mark T. Biggie, Greg L. Johnson
  • Patent number: 9703293
    Abstract: An aircraft stall protection system and method include calculating a first angle of attack and a second angle of attack based on aircraft configuration and environmental conditions, the first angle of attack being greater than the second angle of attack. The system and method limit the actual aircraft angle of attack to the first angle of attack for a predetermined period of time and thereafter the system and method limit the actual aircraft angle of attack to the second angle of attack. The system and method allow the aircraft operator or pilot to extract maximum performance from the aircraft for any given set of flight conditions, without the risk of stalling or remaining in a high drag state for a prolonged period of time. This system and method are suitable for use in conjunction with a stall warning system.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: July 11, 2017
    Assignee: THE BOEING COMPANY
    Inventors: David Daniel Leopold, Douglas Lee Wilson, Nikos Damian Mills
  • Patent number: 9482530
    Abstract: Control systems and methods are provided for improved azimuthal pointing control near gimbal zenith/nadir in two-axis gimbal systems mounted to moveable platforms. The system includes a two-axis gimbal and a two-axis pointing device mounted to the two-axis gimbal. The two-axis pointing device directs a line of sight axis based upon a commanded steering direction and movement of the platform in the inertial frame of the line of sight. The two-axis gimbal follows the movement of the two-axis pointing device, keeping the two-axis pointing device from encountering its mechanical limits. In this manner, inertial pointing control is maintained in the near gimbal zenith/nadir regime.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: November 1, 2016
    Assignee: Raytheon Company
    Inventors: Walter W. Norman, Armando Villarreal
  • Patent number: 8532328
    Abstract: A method of navigating a space vehicle. An image of a planet surface is received. The received image is processed to identify edge pixels and angle data. The edge pixels and angle data are used to identify planetary features by shape, size, and spacing relative to other planetary features. At least some of the planetary features are compared with a predefined planet surface description including sizes and locations of planet landmarks. One or more matches are determined between the planetary feature(s) and the planet surface description. Based on the match(es), a location of the space vehicle relative to the planet is determined.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: September 10, 2013
    Assignee: The Boeing Company
    Inventors: David L. Caballero, Thomas Paul Weismuller
  • Patent number: 8478456
    Abstract: Some embodiments relate to a method of controlling a flight of a flight vehicle according to a first mode of operation and changing the mode of operation to a second mode of operation having a different bandwidth than the first mode of operation. Other embodiments relate to a flight-control system for a flight vehicle configured to control a flight of a flight vehicle according to a first mode of operation and to control the flight of the flight vehicle according to a second mode of operation to use less energy than the first mode of operation. Other embodiments relate to a control actuation system configured to control positions of aerodynamic elements in a flight vehicle in response to commands from a guidance system according to a first mode of operation and to change the mode of operation to a second mode of operation having a different bandwidth than the first mode of operation.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: July 2, 2013
    Assignee: Raytheon Company
    Inventors: Jeffery P. Sowers, Karl F. Spiessbach, Donald E. Croft
  • Patent number: 8222582
    Abstract: A method is provided for characterizing luminous celestial objects (e.g., stars) in celestial navigation of a missile system. The method includes segmenting, assigning, measuring, computing, ratioing, producing, scaling, and determining operations. Segmenting includes subdividing wavelength range into discrete contiguous bins. Assigning arranges each bin into a plurality of color bands. Establishing sets a transmissivity to each bin of each color band. Computing calculates broad-based fluxes for a reference value as a reference flux. Ratioing computes a ratio between the target flux to the library flux as a color scale for each band. Squaring determines the library flux for each band as a library flux squared. Producing sums a spectral scale over the color bands, a second multiplication of the color scale and the library flux squared as a first sum product, and sums over all the bands the library flux squared as a second sum product and dividing the sum products.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 17, 2012
    Inventor: Mark J. Anderson
  • Patent number: 8195345
    Abstract: The method for generating an integrated guidance law for aerodynamic missiles uses a strength Pareto evolutionary algorithm (SPEA)-based approach for generating an integrated fuzzy guidance law, which includes three separate fuzzy controllers. Each of these fuzzy controllers is activated in a unique region of missile interception. The distribution of membership functions and the associated rules are obtained by solving a nonlinear constrained multi-objective optimization problem in which final time, energy consumption, and miss distance are treated as competing objectives. A Tabu search is utilized to build a library of initial feasible solutions for the multi-objective optimization algorithm. Additionally, a hierarchical clustering technique is utilized to provide the decision maker with a representative and manageable Pareto-optimal set without destroying the characteristics of the trade-off front. A fuzzy-based system is employed to extract the best compromise solution over the trade-off curve.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: June 5, 2012
    Assignee: King Fahd University of Petroleum & Minerals
    Inventors: Hanafy M. Omar, Mohammad A. Abido
  • Patent number: 8084724
    Abstract: By sharing tasks between the CV and the KVs, the MKV interceptor provides a cost-effective missile defense system capable of intercepting and killing multiple targets. The placement of the acquisition and discrimination sensor and control sensor on the CV to provide target acquisition and discrimination and mid-course guidance for all the KVs avoids the weight and complexity issues associated with trying to “miniaturize” unitary interceptors. The placement of either a short-band imaging sensor and headlamp or a MWIR sensor on each KV overcomes the latency, resolution and bandwidth problems associated with command guidance systems and allows each KV to precisely select a desirable aimpoint and maintain track on that aimpoint to impact. An implicit divert and attitude control system (DACS) using tow or more divert thrusters performs KV divert and attitude maneuvers to respond to the command guidance pre-handover and to maintain track on the aimpoint to terminal intercept post-handover.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: December 27, 2011
    Assignee: Raytheon Company
    Inventors: R. Glenn Brosch, Darin S. Williams, Kent P. Pflibsen, Thomas M. Crawford
  • Patent number: 7737878
    Abstract: A collision and conflict avoidance system for autonomous unmanned air vehicles (UAVs) uses accessible on-board sensors to generate an image of the surrounding airspace. The situation thus established is analyzed for imminent conflicts (collisions, TCAS violations, airspace violations), and, if a probable conflict or collision is detected, a search for avoidance options is started, wherein the avoidance routes as far as possible comply with statutory air traffic regulations. By virtue of the on-board algorithm the system functions independently of a data link. By taking into account the TCAS zones, the remaining air traffic is not disturbed unnecessarily. The system makes it possible both to cover aspects critical for safety and to use more highly developed algorithms in order to take complicated boundary conditions into account when determining the avoidance course.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: June 15, 2010
    Assignee: EADS Deutschland GmbH
    Inventors: Joost van Tooren, Martin Heni, Alexander Knoll, Johannes Beck
  • Patent number: 7494090
    Abstract: The present invention provides a MKV interceptor including multiple kill vehicles with autonomous management capability and kinematic reach to prosecute a large threat extent. Each KV can self-manage its own KV deployment and target engagement for a determined target volume assigned by a designated master KV. At least one KV is master capable of managing the post-separation of all of the KVs without requiring updates to the mission plan post-separation. The autonomous capability and increased kinematic reach provides for a more efficient use of boosters and more effective engagement of the threat.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: February 24, 2009
    Assignee: Raytheon Company
    Inventors: Michael A. Leal, Todd L. Baker, Kent P. Pflibsen
  • Patent number: 7494089
    Abstract: By sharing tasks between the CV and the KVs, the MKV interceptor provides a cost-effective missile defense system capable of intercepting and killing multiple targets. The placement of the acquisition and discrimination sensor and control sensor on the CV to provide target acquisition and discrimination and mid-course guidance for all the KVs avoids the weight and complexity issues associated with trying to “miniaturize” unitary interceptors. The placement of a short-band imaging sensor on each KV overcomes the latency, resolution and bandwidth problems associated with command guidance systems and allows each KV to precisely select a desirable aimpoint and maintain track on that aimpoint to impact.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: February 24, 2009
    Assignee: Raytheon Company
    Inventors: Darin S Williams, Kent P. Pflibsen, Thomas M. Crawford
  • Patent number: 7339537
    Abstract: Disclosed are antenna embodiments and air vehicles so equipped that include a first antenna component, and a second antenna component, separated by a free space gap, where the antenna embodiments are adapted to capacitively couple the first antenna component and the second antenna component across one or more portions of the free space gap and where the first antenna component member has a degree or axis of rotation, relative to the second antenna component.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: March 4, 2008
    Assignee: Alliant Techsystems Inc.
    Inventor: Harold Kregg Hunsberger
  • Patent number: 7140574
    Abstract: Systems and methods for contiguously and accurately updating target object information during an entire target engagement period are provided. The target tracking system includes a database for storing starfield information, an optical beam source configured to illuminate one or more optical beam pulses, first and second camera systems, and a processor. The processor instructs the first camera system to track the object based on recordation of the tracked object, instructs the second camera system to stabilize the tracking image based on the instructions sent to the first camera system, and determines inertial reference information of the tracked object based on the stabilized image and starfield information associated with the stabilized image.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: November 28, 2006
    Assignee: The Boeing Company
    Inventors: Richard L. Brunson, James D. Dillow, James E. Negro
  • Patent number: 7032857
    Abstract: A projectile navigation system operable within an extremely high G-shock loading environment during the launch phase may include a set of Kalman filters configured to repeatedly calculate a navigational solution by solving a set of non-linear equations of motions of the projectile utilizing a current parameter vector, position, velocity, and attitude of the projectile. The system may include a suite of solid state sensors to calibrate the Kalman filter equations. If desired, the system may also include a satellite based positioning-determining (SBPD) attitude determination system configured to update the state of the host projectile by making real time attitude measurements of the projectile, and a parameter estimator configured to estimate and update a parameter vector of the host projectile. An external guidance and control processor may be used to generate guidance and control signals, enabling real time navigation of the host projectile.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: April 25, 2006
    Inventor: Cuong Tu Hua
  • Patent number: 7007888
    Abstract: Systems and methods for contiguously and accurately updating target object information during an entire target engagement period are provided. The target tracking system includes a database for storing starfield information, an optical beam source configured to illuminate one or more optical beam pulses, first and second camera systems, and a processor. The processor instructs the first camera system to track the object based on recordation of the tracked object, instructs the second camera system to stabilize the tracking image based on the instructions sent to the first camera system, and determines inertial reference information of the tracked object based on the stabilized image and starfield information associated with the stabilized image.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: March 7, 2006
    Assignee: The Boeing Company
    Inventors: Richard L. Brunson, James D. Dillow, James E. Negro
  • Patent number: 6925410
    Abstract: A device network to process signals has target devices, selecting devices that are movable relative to the target devices, and controllers. The controllers are in communication with the target devices and the selecting devices. Each of the selecting devices has a position sensor and an orientation sensor to provide spatial and angular co-ordinates of position and orientation when pointing to a target device and upon receiving a user input. Each of the selecting devices also has a signal processor to generate a control signal having the position and orientation data. This control signal is then transmitted by a transmitter, via a radio frequency channel, to a controller. Upon receiving the control signal, the controller determines whether, for example, a target device has been selected by a selecting device by comparison of the orientation data with a derived orientation based on the position data and the known position of the target devices.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: August 2, 2005
    Assignee: International Business Machines Corporation
    Inventor: Ajith Kumar Narayanan
  • Patent number: 6863244
    Abstract: A method, apparatus, article of manufacture, and a memory structure for compensating for optical sensor data corrupted by angular acceleration is disclosed. The method comprises the steps of determining an angular acceleration of the optical sensor and modifying the optical sensor data according to the determined angular acceleration of the optical sensor. The apparatus comprises a sensor for determining an angular acceleration of the optical sensor and a navigation system for modifying the optical sensor data according to the determined angular acceleration of the optical sensor.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: March 8, 2005
    Assignee: The Boeing Company
    Inventors: Richard A. Fowell, Salma I. Saeed, Rongsheng Li, Yeong-Wei Wu
  • Patent number: 6324475
    Abstract: The invention concerns the identification of stars. It consists in selecting “detected stars” among the sensed stars; coupling the detected stars; selecting all or part of the doublets of the catalogue which are most likely to have been present in the visual field of the sensor, the likely doublets and their stars constituting a set D; pairing stars of D with detected stars; and supplying all or part of the paired couples of stars to a processing system. The method is characterized in that it comprises at least the consolidating classification of the set D stars and at least a step using this classification for reducing the number of stars to be paired and/or for carrying out the pairing, and/or for selecting the paired couples. The invention is applicable in particular for determining the attitude of an aircraft or submarine.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: November 27, 2001
    Assignee: Centre National d'Etudes Spatiales
    Inventor: Serge Potteck