Radiation Controlling Means Patents (Class 250/505.1)
  • Patent number: 10994852
    Abstract: An embodiment of the present invention provides a blocking door that is pivotally disposed on a fixed nacelle of a tiltrotor aircraft for pivoting between a stowed position when a proprotor pylon is in the substantially horizontal position and a protective blocking position in front of the proprotor pylon when the proprotor pylon is positioned in the non-horizontal position. In other aspects, there is provided a blocking door and a method of reducing infrared and/or radar signatures of rotorcraft with a rotatable proprotor.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: May 4, 2021
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Steven R. Ivans, Terry L. Gibson
  • Patent number: 10987523
    Abstract: In certain embodiments novel sparse orthogonal collimators (SOCs) for use in radiotherapy are provided. In certain embodiments the SOCs comprise 2 layer 4 bank orthogonal collimators with 2-8 leaves in each of the 4 banks. Instead of using the limited heuristic approach to create jaw-only IMRT, a novel fluence map optimization method is provided based on wavelet decomposition and this method is used for IMRT. An algorithm to simplify the fluence maps with minimal and predictable dose quality compromise is also provided.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: April 27, 2021
    Assignee: The Regents of the University of California
    Inventors: Ke Sheng, Dan Nguyen, Dan Ruan
  • Patent number: 10991540
    Abstract: An x-ray window can include an adhesive layer sandwiched between and providing a hermetic seal between a thin film and a housing. The adhesive layer can include liquid crystal polymer. The liquid crystal polymer can be opaque, gas-tight, made of low atomic number elements, able to withstand high temperature, low outgassing, low leakage, able to relieve stress in the x-ray window thin film, capable of bonding to many different materials, or combinations thereof.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: April 27, 2021
    Assignee: Moxtek, Inc.
    Inventors: Jared Sommer, Jonathan Abbott
  • Patent number: 10987069
    Abstract: An N-M tomography system comprising: a carrier for the subject of an examination procedure; a plurality of detector heads; a carrier for the detector heads; and a detector positioning arrangement operable to position the detector heads during performance of a scan without interference or collision between adjacent detector heads to establish a variable bore size and configuration for the examination. Additionally, collimated detectors providing variable spatial resolution for SPECT imaging and which can also be used for PET imaging, whereby one set of detectors can be selectably used for either modality, or for both simultaneously.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: April 27, 2021
    Assignee: Spectrum Dynamics Medical Limited
    Inventors: Nathaniel Roth, Yoel Zilberstein, Shlomo Ben-Haim, Benny Rousso
  • Patent number: 10945687
    Abstract: A transparent radiation shield, attachable to a patient support platform, and movable to shield a physician from imaging radiation, includes a transparent computer display that is controllable to provide a data overlay on the shield pertaining to patient data and/or x-ray images.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: March 16, 2021
    Assignee: Egg Medical, Inc.
    Inventors: Robert F. Wilson, John P. Gainor, James Montague, Uma S. Valeti
  • Patent number: 10908103
    Abstract: The present invention relates to an X-ray fluorescence, XRF, spectrometer, for measuring X-ray fluorescence emitted by a target, wherein the XRF spectrometer comprises an X-ray tube with an anode to emit a divergent X-ray beam, a capillary lens that is configured to focus the divergent X-ray beam on the target, an aperture system that is positioned between the anode of the X-ray tube and the capillary lens and comprises at least one pinhole, and a detector that is configured for detecting X-ray fluorescence radiation emitted by the target, wherein the at least one pinhole is configured for being inserted into the divergent X-ray beam and for reducing a beam cross section of the divergent X-ray beam between the anode and the capillary lens. The present invention further relates to an aperture system for a spectrometer, to the use of an aperture system for adjusting the focal depth of a spectrometer and to a method for adjusting the focal depth of as spectrometer.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: February 2, 2021
    Assignee: BRUKER NANO GMBH
    Inventors: Ulrich Waldschläger, Roald Alberto Tagle Berdan
  • Patent number: 10874361
    Abstract: Aspects of the invention are directed to systems and methods for generating spectral computed tomography data for spectral X-ray image reconstruction using of pixelated k-edge apertures. A method is provided for generating a spectral computed tomography. The method includes the steps of generating a plurality of X-ray beams; encoding the plurality of X-ray beams by transmitting the plurality of beams through a pixelated K-edge coded aperture structure; detecting the encoded plurality of X-ray beams; and reconstructing a spectral CT image from the encoded plurality of X-ray beams.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: December 29, 2020
    Assignee: University Of Delaware
    Inventors: Angela Cuadros, Gonzalo Arce
  • Patent number: 10790068
    Abstract: A device for protection of a body from radiation includes at least one flexible garment. Each section of the flexible garment is configured to shield a region of a surface of the body. Each section complementarily attenuates self-shielding by internal structure between the region and an interior region of the body such that radiation at the interior region is attenuated to a predefined attenuation level.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: September 29, 2020
    Assignee: STEMRAD LTD.
    Inventors: Oren Milstein, Gideon Waterman, Meytal Baron, Ethan Shiloh, Jonathan Roth, Tamar Nix
  • Patent number: 10770196
    Abstract: A radiation treatment delivery system, includes a linear accelerator (LINAC) and a multileaf collimator (MLC), coupled with the distal end of the LINAC, wherein the MLC has two banks of leaves, organized into a plurality of opposing leaf pairs. The system further includes a processing device, operatively coupled to the LINAC and the MLC, to control the plurality of leaf pairs of the MLC such that for each of a plurality of radiation beam delivery positional sections corresponds to a range of radiation beam positions over a discrete time interval, wherein each leaf pair of the plurality of opposing leaf pairs is open to a fixed opening for a fraction of time in the discrete time interval and closed for the remaining fraction of time in the discrete time interval, while a radiation beam of the radiation treatment system is active.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: September 8, 2020
    Assignee: ACCURAY INCORPORATED
    Inventors: Eric Schnarr, Hari Gopalakrishnan, Jari Toivanen, Matthew Orton
  • Patent number: 10757799
    Abstract: A magnet device that includes upper and lower disk-shaped return yokes, a pair of upper magnetic pole and lower magnetic pole respectively fixed to a disk-shaped surface of the upper return yoke and a disk-shaped surface of the lower return yoke, in which a space to circulate and accelerate an ion beam is formed between the upper magnetic pole and the lower magnetic pole. The upper magnetic pole and the lower magnetic pole have a plurality of concave and convex parts along a track along which the ion beam circulates, are plane-symmetrical with respect to a horizontal symmetry plane formed by the track along which an ion beam circulates, and are plane-symmetrical to one of the vertical planes vertical to the horizontal symmetry plane. Also, the magnetic pole intervals between the concave parts of the upper magnetic pole and the lower magnetic pole are different from each other.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: August 25, 2020
    Assignee: HITACHI, LTD.
    Inventors: Chishin Hori, Takamichi Aoki
  • Patent number: 10754295
    Abstract: A device for producing a subwavelength hologram. The device comprises a metasurface layer attached to a substrate. The metasurface layer includes an array of plasmonic antennas that simultaneously encode both wavelength and phase information of light directed through the array to produce a hologram. The wavelength is determined by the size of the antennas, and the phase is determined by the orientation of the antennas.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: August 25, 2020
    Assignee: Purdue Research Foundation
    Inventors: Amr Shaltout, Sajid Choudhury, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir M. Shalaev
  • Patent number: 10729920
    Abstract: A method for quantifying radiation beam conformity includes: obtaining first information regarding a prescribed aperture; obtaining second information regarding an actual aperture defined by components of a collimator; and determining, using a processing unit, a metric based on the first information regarding the prescribed aperture and the second information regarding the actual aperture, wherein the metric indicates an amount of over-exposed aperture area, an amount of under-exposed aperture area, or both, and wherein the processing unit comprises one or more input for receiving the first and second information, and comprises a metric determination module configured to determine the metric based on the first information and the second information.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: August 4, 2020
    Assignee: Varian Medical Systems International AG
    Inventors: Matthias Oster, Andres Graf
  • Patent number: 10722732
    Abstract: A multi level multileaf collimator employs leaves with leaf tips having a non-square shape in a beam's eye view to improve beam shaping effect and penumbra performance. The multi level multileaf collimator includes a first multileaf collimator in a first level comprising beam blocking leaves longitudinally movable in a first direction, and a second multileaf collimator in a second level comprising beam blocking leaves longitudinally movable in a second direction. The first direction may be generally parallel with the second direction and the leaves of the first multileaf collimator may laterally offset the leaves of the second multileaf collimator. The beam blocking leaves of the first multileaf collimator may comprise an end portion having a non-square shape in a beam's eye view.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: July 28, 2020
    Assignee: Varian Medical Systems, Inc.
    Inventors: HsinLu Hsu, Ross Hannibal, Steven W. Prince, Janne Nord
  • Patent number: 10714227
    Abstract: A shutter for controlling radiation exposure includes a rotatable member. The rotatable member is rotatable between an open position and a closed position. The rotatable member includes a passageway, wherein the passageway is positioned to receive radiation in the open position and is not positioned to receive radiation in the closed position. In the closed position, the rotatable member may substantially block or absorb the radiation. The passageway may collimate the radiation into a beam of radiation. The rotatable member may include a plurality of passageways positioned to receive radiation in the open position. The rotatable member may be rotatable between a plurality of open positions, each open position corresponding to at least one passageway. The open positions may align the source of radiation with different passageways in the rotatable member to form a different beam shape, a different number of beams, a different beam direction, or combinations thereof.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: July 14, 2020
    Assignees: GEORGETOWN RAIL EQUIPMENT COMPANY, UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INCORPORATED
    Inventors: Charles Wayne Aaron, Shuang Cui, Michael John Liesenfelt, Paul Daniel Ridgeway, James Edward Baciak, Jeb Everett Belcher
  • Patent number: 10675111
    Abstract: Invasive cardiology and radiology are widespread procedures that involve the use of X-ray radiations for imaging. During these procedures, the operators are exposed to a variable dose of radiation. It is shown that these professionals are among the most exposed to ionizing radiations. New studies have shown that brain cancers can be linked to these exposures. As these exposures are harmful to health, maximum protection is required to protect the patient and the staff. The current invention provides an improved protective shield to fully protect the staff in cardiologic, angiologic, and radiologic procedures. The present invention relates to a modified surgical drape that include a layer that absorbs the X-rays scattered from the patient's body during invasive angiology procedures.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: June 9, 2020
    Inventors: Jean-Jacques Francois Goy, Doris Luana Goy, Christophe Jean-Michel Augereau
  • Patent number: 10675487
    Abstract: An example particle therapy system may include: a synchrocyclotron to produce a particle beam; a scanner to move the particle beam in one or more dimensions relative to an irradiation target; and an energy degrader that is between the scanner and the irradiation target. The energy degrader may include multiple plates that are movable relative to a path of the particle beam, with the multiple plates each being controllable to move while in the path of the particle beam and during movement of the particle beam. An aperture may be between the energy degrader and the irradiation target. The aperture being may be to trim the particle beam prior to the particle beam reaching the irradiation target.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: June 9, 2020
    Assignee: Mevion Medical Systems, Inc.
    Inventors: Gerrit Townsend Zwart, Mark R. Jones, James Cooley, Adam Molzahn
  • Patent number: 10638984
    Abstract: The present invention relates to an X-ray collimator capable of adjusting a field of view during X-ray imaging and an X-ray imaging apparatus using the same, the apparatus including an X-ray light source configured to emit X-rays, an X-ray detector configured to detect the X-rays, and a collimator configured to provide an opening to determine an FOV of the X-rays between the X-ray light source and the X-ray detector, wherein the opening is configured such that at least one of a first edge at an entrance side facing the X-ray light source, and a second edge at an exit side facing the X-ray detector is formed in a curved shape.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: May 5, 2020
    Assignees: VATECH Co., Ltd., VATECH EWOO Holdings Co., Ltd.
    Inventor: Sung Il Choi
  • Patent number: 10627354
    Abstract: This substitution site measuring equipment using an electron beam analyzes, with high precision, the structure of a substitution site in a micrometer- to nanometer-order region, by reducing or vanishing the X-ray intensity of diffraction X-rays generated in a specimen. The substitution site measuring equipment measures a substitution site in a crystal by detecting, by means of an X-ray detector, X-rays generated from a specimen upon irradiation of the specimen with an electron beam.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: April 21, 2020
    Assignee: Hitachi, Ltd.
    Inventors: Yoshihiro Anan, Masanari Koguchi
  • Patent number: 10614053
    Abstract: In some examples, a system comprises a nuclear event detector (NED) to issue a nuclear event status signal, a primary power supply to issue a power status signal, a backup power supply, a non-volatile storage, and a processor coupled to the non-volatile storage and the NED and switchably coupled to the primary and backup power supplies. The processor is to store a state of the processor to the non-volatile storage based on the nuclear event status signal, and the processor is to selectively receive power from either the primary power supply or the backup power supply based on the nuclear event status signal and the power status signal.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: April 7, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Robert Christopher Baumann
  • Patent number: 10610957
    Abstract: This invention effectively prevents charge-up of an unsintered region. A three-dimensional laminating and shaping apparatus includes a linear funnel for recoating the material of a three-dimensional laminated and shaped object onto a shaping surface on which the three-dimensional laminated and shaped object is to be shaped. The three-dimensional laminating and shaping apparatus also includes an electron gun for generating an electron beam. The three-dimensional laminating and shaping apparatus further includes a charge shield for shielding the material recoated on the shaping surface when irradiating the material with the electron beam. In addition, the apparatus includes a vertical driving mechanism for vertically moving the charge shield.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: April 7, 2020
    Assignee: TECHNOLOGY RESEARCH ASSOCIATION FOR FUTURE ADDITIVE MANUFACTURING
    Inventors: Shinichi Kitamura, Nari Tsutagawa
  • Patent number: 10583517
    Abstract: This invention effectively suppresses the generation of scattered electrons such as secondary electrons and backscattered electrons. A three-dimensional laminating and shaping apparatus includes a linear funnel that recoats a material of a three-dimensional laminated and shaped object onto a shaping surface on which the three-dimensional laminated and shaped object is to be shaped. The three-dimensional laminating and shaping apparatus also includes an electron gun that generates an electron beam. The three-dimensional laminating and shaping apparatus further includes an anti-deposition cover made of a metal and formed between the shaping surface and the electron gun. In addition, the three-dimensional laminating and shaping apparatus includes a DC power supply that applies a positive voltage to the anti-deposition cover.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: March 10, 2020
    Assignee: TECHNOLOGY RESEARCH ASSOCIATION FOR FUTURE ADDITIVE MANUFACTURING
    Inventors: Shinichi Kitamura, Hironobu Manabe
  • Patent number: 10583311
    Abstract: Embodiments disclose a radiotherapy apparatus comprising a source of radiation configured to emit a beam of radiation and a collimator structure configured to limit a lateral extent of the beam, the collimator structure including a primary collimator configured to shape the beam, a first collimator comprising a plurality of adjacent elongate leaves, the leaves being extendable into the beam in a first direction transverse to the beam, and a block collimator including an aperture configured to permit the beam to pass through, the block collimator being extendable into the beam in a second direction transverse to the beam and transverse to the first direction. In some embodiments, the aperture may be cone-shaped or a through-hole, which may be empty or filled with a radiotransparent material. In some embodiments, the block collimator may include a plurality of apertures, which may be of varying dimensions.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: March 10, 2020
    Assignee: ELEKTA AB (PUBL)
    Inventor: Per Harald Bergfjord
  • Patent number: 10568591
    Abstract: A radiation shield assembly includes a shield configured to block radiation and a rail assembly configured to position the shield in between the radiation table and a radiation source. The shield is movable between a retracted position and an extended position along a length of the rail assembly. In the extended position, the shield extends along a portion of a radiation table and blocks radiation from the radiation source to the portion of the radiation table. In the retracted position, the shield exposes at least some of the portion of the radiation table to the radiation.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: February 25, 2020
    Assignee: NORAD DESIGNS LLC
    Inventors: John Barry Egolf, Scott Pollak
  • Patent number: 10508889
    Abstract: A method comprising the steps of propagating an infrared laser pulse in air, self-focusing the laser pulse until the laser reaches a critical power density, wherein molecules in the air ionize and simultaneously absorb a plurality of infrared photons resulting in a clamping effect on the intensity of the pulse, wherein the laser pulse defocuses and plasma is created, causing a dynamical competition between the self-focusing of the laser pulse and the defocusing effect due to the created plasma, the laser pulse maintaining a small beam diameter and high peak intensity over large distances, creating a plasma column, repeating the above steps to create a plurality of plasma columns, creating a parallel linear array with the plurality of plasma columns, and using the array to deflect an incident energy.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: December 17, 2019
    Assignee: United States of America as Represented by the Secretary of the Navy
    Inventors: Brittany E. Lynn, Alexandru Hening, Ryan P. Lu
  • Patent number: 10500419
    Abstract: In a method of constructing a head shield for a radiation machine, the angular distribution of radiation propagating from a source and the angular function of thickness of a material in attenuating the radiation to a certain level of its original value are determined. Based on the angular distribution of radiation from the source and the angular function of thickness of the material, the thicknesses of the material at a plurality of angular locations around the source and distances from the source can be calculated for attenuating the radiation to or less than a predetermined threshold value. A shield around the source is constructed based on the calculated thicknesses of the material through iterative steps to ensure a cost-saving, weight-efficient, optimal solution.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: December 10, 2019
    Assignee: Varian Medical Systems, Inc.
    Inventors: HsinLu Hsu, Magdalena Constantin, Stuart Scollay
  • Patent number: 10488651
    Abstract: Metasurfaces comprise an array of meta-atoms in a stretchable polymer. The dimensions and shapes of the meta-atoms and the spacing are varied to obtain desired optical properties. Any optical wavefront, for different wavelengths, illumination angles, and polarization states can be designed with proper design of the meta-atoms. As the metasurface is stretched, the distance between the meta-atoms changes, modifying the optical response, while the dimensions of the meta-atoms remains constant.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: November 26, 2019
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Seyedeh Mahsa Kamali, Ehsan Arbabi, Amir Arbabi, Yu Horie, Andrei Faraon
  • Patent number: 10488584
    Abstract: Disclosed embodiments include an energy directing device having one or more energy relay elements configured to direct energy from one or more energy locations through the device. In an embodiment, surfaces of the one or more energy relay elements may form a singular seamless energy surface where a separation between adjacent energy relay element surfaces is less than a minimum perceptible contour. In disclosed embodiments, energy is produced at energy locations having an active energy surface and a mechanical envelope. In an embodiment, the energy directing device is configured to relay energy from the energy locations through the singular seamless energy surface while minimizing separation between energy locations due to their mechanical envelope. In embodiments, the energy relay elements may comprise energy relays utilizing transverse Anderson localization phenomena.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: November 26, 2019
    Assignee: LIGHT FIELD LAB, INC.
    Inventors: Jonathan Sean Karafin, Brendan Elwood Bevensee
  • Patent number: 10441242
    Abstract: An X-ray apparatus includes an X-ray source configured to radiate X-rays, a collimator configured to adjust a radiation field of the X-rays and rotate on an optical axis direction of the X-rays, a ring-shaped first rotation transfer unit centered on an optical axis of the X-rays in the X-ray source, a second rotation transfer unit interlocked with the ring-shaped first rotation transfer unit and configured to rotate as the collimator rotates, a rotation sensor configured to sense an amount of rotation of the second rotation transfer unit, and a detector comprising a receiving surface on which the X-rays radiated from the collimator are incident.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: October 15, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dae-soo Kim, Han-ju Nam, Young-jun Lee, Jin-ho Choi
  • Patent number: 10441231
    Abstract: A system of shields designed to provide substantially greater protection, head to toe, against radiation exposure to health care workers in a hospital room during procedures which require real-time imaging. The shields are placed around the patient and the x-ray table and provide protection even when the x-ray tube is moved to various angles around the patient.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: October 15, 2019
    Assignee: Egg Medical, Inc.
    Inventors: Robert F. Wilson, Uma S. Valeti, John P. Gainor
  • Patent number: 10446364
    Abstract: An embodiment of the invention is a focusing magnet including a coil pair arranged on both sides of a path of a charged particle beam. The coil pair generates an effective magnetic field region in which a magnetic field is oriented in a direction (z-axis) perpendicular to a traveling direction (x-axis) of a charged particle beam.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: October 15, 2019
    Assignee: B DOT MEDICAL INC.
    Inventors: Kota Mizushima, Takuji Furukawa, Eri Takeshita, Yousuke Hara, Naoya Saotome, Yuichi Saraya, Ryohei Tansho
  • Patent number: 10434334
    Abstract: A method for irradiation based on a fluence map includes determining a shield type of each of a plurality of rows of a fluence map. The method also includes determining, for each of the plurality of rows, a movement curve indicating a relationship between an irradiation dose in the each of the plurality of rows and a moving position of a leaf pair corresponding to the each of the plurality of rows. The method further includes determining an initial irradiation dose for each of the movement curves and synchronizing one of the movement curves based on the shield types of the plurality of rows. The method also includes selecting at least one irradiation dose of at least one point on an irradiation dose axis and generating a control point according to the selected irradiation dose.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 8, 2019
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventor: Weiyuan Wang
  • Patent number: 10431418
    Abstract: An embodiment of the invention is a focusing magnet including a coil pair arranged on both sides of a path of a charged particle beam. The coil pair generates an effective magnetic field region in which a magnetic field is oriented in a direction (z-axis) perpendicular to a traveling direction (x-axis) of a charged particle beam.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: October 1, 2019
    Assignee: B DOT MEDICAL INC.
    Inventors: Kota Mizushima, Takuji Furukawa, Eri Takeshita, Yousuke Hara, Naoya Saotome, Yuichi Saraya, Ryohei Tansho
  • Patent number: 10354768
    Abstract: A structure for preventing a scan by a beam is provided. The structure includes a primary material forming the structure. The primary material includes a first mass attenuation coefficient enabling the primary material to be penetrated by the beam. The structure also includes a matrix of dense particles within the primary material. The dense particles include secondary materials different than the primary material. The secondary materials comprise a subsequent mass attenuation coefficient that is greater than the first mass attenuation coefficient of the primary material. The subsequent mass attenuation coefficient enables the dense particles to attenuate the beam to distort the scan.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: July 16, 2019
    Assignee: HAMILTON SUNSTRAND CORPORATION
    Inventors: Eric Karlen, William Louis Wentland
  • Patent number: 10354844
    Abstract: An insulator for a processing apparatus including an upper electrode, a lower electrode and a reaction chamber, the insulator being adapted to be arranged around the upper electrode and the insulator including: a bottom end adapted to face the reaction chamber; and a side wall facing a side wall of the upper electrode, wherein an edge portion of the bottom end of the insulator extends radially inwardly to form a projecting portion such that the projecting portion covers an edge of a bottom surface of the upper electrode and a clearance between the side wall of the upper electrode and the side wall of the insulator.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: July 16, 2019
    Assignee: ASM IP HOLDING B.V.
    Inventors: Hiroshi Kondo, Masaki Hirayama
  • Patent number: 10355512
    Abstract: A rechargeable cell of an implantable medical device is recharged by an external charging unit that includes a transmitting coil configured to emit an electromagnetic field and a near-field focusing plate having a subwavelength structure pattern that focuses the emitted electromagnetic field to a focal pattern. The implantable medical device includes a housing having a window of an electromagnetically transparent material and a receiving coil enclosed by the housing. The receiving coil extends adjacent to and is aligned with the window. The rechargeable cell is enclosed by the housing and is configured to be charged by current induced in the receiving coil when the receiving coil is exposed to the focal pattern. In some examples, the near-field focusing plate is configured to produce the focal pattern to have a size that is less than an outer dimension of the window and a focal length from the near-field focusing plate that at least reaches the window.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: July 16, 2019
    Assignee: Medtronic, Inc.
    Inventors: Can Cinbis, Richard J O'Brien
  • Patent number: 10345459
    Abstract: A radiography apparatus includes: a first radiation detector that includes plural pixels accumulating charge corresponding to emitted radiation; a second radiation detector that is stacked on a side of the first radiation detector opposite to a side on which the radiation is incident and includes plural pixels accumulating charge corresponding to the emitted radiation; a first control unit that performs control for reading the charge accumulated in the pixels of the first radiation detector while the charge is accumulated in the pixels of the first radiation detector and the second radiation detector; and a second control unit that starts control for reading the charge accumulated in the pixels of the second radiation detector while the charge is accumulated in the pixels of the first radiation detector and the second radiation detector at a time different from a time when the first control unit starts the control.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: July 9, 2019
    Assignee: FUJIFILM CORPORATION
    Inventor: Takeshi Kuwabara
  • Patent number: 10315048
    Abstract: The present disclosure provides a radiation method for radiating a fluence map having a zero-fluence region under a movement of MLC (Multi-Leaf Collimator) includes a determining step of determining at least one basic fluence map from the fluence map. The basic fluence map includes a first non-zero fluence region and a second non-fluence region having the zero-fluence region therebetween. The radiation method includes a first radiating step including radiating the first non-zero fluence region, along with moving a first group of leaf pairs and moving a vertical jaw to shade the first group of leaf pairs, and a second radiating step including radiating the second non-zero fluence region, along with moving a second group of leaf pairs and withdrawing the vertical jaw to expose the second group of leaf pairs.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: June 11, 2019
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventor: Weiyuan Wang
  • Patent number: 10285629
    Abstract: A motion monitoring system for healthcare surveillance with visual and audio alerts is provided to monitor patients and actively mitigate the damages due to patient movement. The system documents each event involving patient movement and the surrounding area in various medical setting. The system also has the ability for a specific monitoring of a single location and upon a motion detected, the system outputs an alert signal to trigger external devices, including but not limited to lights and sirens, to notify the healthcare device operator.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: May 14, 2019
    Assignee: SOUND IMAGING, INC.
    Inventor: Steven Soderholm
  • Patent number: 10265037
    Abstract: Disclosed is a shielding system for customized shielding of a patient or an operator from X-rays generated across a patient-supporting table. The shielding system includes a foundational block which is mounted via a clamping mechanism on the patient-supporting table. The shielding system has a rail with proximal and distal sections. The proximal section of the rail is twistable within an aperture of the foundational block and is arcuately movable in relation to patient-supporting table. One or more protective curtains are suspended from the rail.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 23, 2019
    Assignee: GLOBAL IMAGING SOLUTIONS COMPANY
    Inventor: Timothy P. Colling
  • Patent number: 10256095
    Abstract: A system and method for performing location specific processing of a workpiece is described. The method includes placing a microelectronic workpiece in a beam processing system, selecting a beam scan size for a beam scan pattern that is smaller than a dimension of the microelectronic workpiece, generating a processing beam, and processing a target region of the microelectronic workpiece by irradiating the processing beam along the beam scan pattern onto the target region within the beam scan size selected for processing the microelectronic workpiece.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: April 9, 2019
    Assignee: TEL Epion Inc.
    Inventors: Soo Doo Chae, Noel Russell, Joshua LaRose, Nicholas Joy, Luis Fernandez, Allen J. Leith, Steven P. Caliendo, Yan Shao, Vincent Lagana-Gizzo
  • Patent number: 10228655
    Abstract: A new optical arrangement that creates high efficiency, high quality Fresnel Incoherent Correlation Holography (FINCH) holograms using transmission liquid crystal GRIN (TLCGRIN) diffractive lenses has been invented. This is in contrast to the universal practice in the field of using a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have 95% transmission efficiency, are analog devices without pixels and are free of many limitations of reflective SLM devices. An additional advantage is that they create an incoherent holographic system that is achromatic over a wide bandwidth. Two spherical beams created by the combination of a glass and a polarization sensitive TLCGRIN lenses interfere and a hologram is recorded by a digital camera. FINCH configurations which increase signal to noise ratios and imaging speed are also described.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: March 12, 2019
    Assignee: Cell Optic, Inc.
    Inventors: Gary Brooker, Nisan Siegel, Joseph Rosen
  • Patent number: 10147511
    Abstract: Linear ribs are formed radially with a center at a through-hole on one face of an X-ray transmissive film (radiolucent film) in an X-ray transmissive window (radiolucent window) to be used for an X-ray detector (radiation detector). The X-ray transmissive window faces a sample. A beam for irradiation to the sample passes through the through-hole, and X-rays (radiation) are radially emitted on a line extending through the through-hole and enter the X-ray transmissive window. Since the linear ribs are formed radially with the center at the through-hole, even X-rays entering at shallow angles with respect to the X-ray transmissive window are transmitted through the X-ray transmissive window at a probability equivalent to X-rays entering at deep angles. More X-rays are transmitted through the X-ray transmissive window, and thus the X-ray detector can detect X-rays with high efficiency.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: December 4, 2018
    Assignee: HORIBA, LTD.
    Inventors: Satoshi Ohashi, Yoshiaki Nakata
  • Patent number: 10143854
    Abstract: The invention comprises a method and apparatus for imaging a tumor of a patient using one or more imaging systems positionable about the tumor and treating the tumor using positively charged particles, such as: (1) using a rotatable gantry support to support and rotate a section of a positively charged particle beam transport line about a rotation axis and a tumor of a patient; (2) using a rotatable and optionally extendable secondary support to support, circumferentially position, and laterally position a primary and optional secondary imaging system about the tumor; (3) image the tumor using the primary and optional secondary imaging system as a function of rotation and/or translation of the secondary support; and (4) treat, optionally concurrently with imaging, the tumor using the positively charged particles as a function of circumferential position of the section of the charged particle beam about the tumor.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: December 4, 2018
    Inventors: Susan L. Michaud, Daniel J. Raymond, W. Davis Lee
  • Patent number: 10124191
    Abstract: The invention relates to a hadron therapy installation that comprises an irradiation unit (1) supported by a rotary support structure, so as to be able to rotate around a target volume (15) centered on the axis of rotation (22), to deliver a treatment beam (17) from different angles on the target volume (15). An imaging device (3, 4) is secured in rotation with the irradiation unit (1) and translatable relative to the irradiation unit (1) between a retracted position at the irradiation unit (1) and a lateral deployed position relative to the target volume (15), such that in its deployed position, the imaging device (3, 4) can rotate around the target volume (15) together with the irradiation unit (1). Such an installation can be used for a cone beam computed tomography method and/or a fluoroscopic imaging method on a patient to be treated in the hadron therapy installation.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: November 13, 2018
    Assignee: Ion Beam Applications S.A.
    Inventors: Alexandre Debatty, Jean-Claude Amélia, Sébastien De Neuter
  • Patent number: 10128014
    Abstract: Methods and devices for controlling movement of a carriage of a multi-leaf collimator are provided. In one aspect, a method includes obtaining a desired position of each of a set of leaves on the carriage in each of a plurality of segments from a field, determining an allowable moving range set of the carriage according to the desired position, the allowable moving range set including a respective allowable moving range of the carriage in each of the segments, determining a respective position of the carriage in each of the segments according to the allowable moving range set, and controlling the movement of the carriage according to the determined positions of the carriage in the segments.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: November 13, 2018
    Assignee: Shenyang Neusoft Medical Systems Co., Ltd.
    Inventors: Xinghu Xu, Meng Chai
  • Patent number: 10128011
    Abstract: The invention relates to a device (3) for supporting packaging for transporting/storing radioactive materials (1) in a horizontal position, the supporting device including a structural base (10) and structures (12) for supporting the packaging, which structures are supported by the base (10) and project upwards therefrom. According to the invention, the device also includes, located at least in part above the structural base (10), a shroud (30) for guiding air for cooling the packaging by natural convection, the shroud (30) defining a recess (32) which is open towards the top and into which a portion of the packaging is intended to be inserted when the packaging (1) is supported in a horizontal position on the device, the shroud (30) including, at the bottom thereof, at least one opening (34) for allowing cooling air into the recess (32).
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: November 13, 2018
    Assignee: TN INTERNATIONAL
    Inventors: Olivier Bardon, Laurent Poque, Ludovic Garnier
  • Patent number: 10085699
    Abstract: Various configurations of shielding materials within shielding layers, such as for use in shielding radiation from implanted radioactive carriers, are discussed herein.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: October 2, 2018
    Assignee: GT Medical Technologies, Inc.
    Inventors: David Brachman, Evan K. Fram, Peter Nakaji
  • Patent number: 9960024
    Abstract: In some implementations described herein, a collimator that is biasable is provided. The ability to bias the collimator allows control of the electric field through which the sputter species pass. In some implementations of the present disclosure a collimator that has a high effective aspect ratio while maintaining a low aspect ratio along the periphery of the collimator of the hexagonal array of the collimator is provided. In some implementations, a collimator with a steep entry edge in the hexagonal array is provided. It has been found that use of a steep entry edge in the collimator reduces deposition overhang and clogging of the cells of the hexagonal array. These various features lead to improve film uniformity and extend the life of the collimator and process kit.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: May 1, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Martin Lee Riker, Fuhong Zhang, Anthony Infante, Zheng Wang
  • Patent number: 9897692
    Abstract: In an electromagnetic cloaking structure, a refractive index distribution has a high refractive index region which is provided around a shielding space and has a maximum value in a plane surrounding the shielding space and in which a refractive index decreases gradually from the centroid of the shielding space along a radial line passing through the plane so as to be close to an average refractive index and a low refractive index region which has a minimum value at two points having the shielding space and the high refractive index region interposed therebetween on a virtual optical axis passing through the shielding space and in which the refractive index increases gradually from the two points in a direction opposite to the high refractive index region on the virtual optical axes, on which the two points are placed, so as to be close to the average refractive index.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: February 20, 2018
    Assignee: FUJIFILM Corporation
    Inventors: Akihiko Ohtsu, Hideki Yasuda
  • Patent number: 9891585
    Abstract: A new optical arrangement that creates high efficiency, high quality Fresnel Incoherent Correlation Holography (FINCH) holograms using transmission liquid crystal GRIN (TLCGRIN) diffractive lenses has been invented. This is in contrast to the universal practice in the field of using a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have 95% transmission efficiency, are analog devices without pixels and are free of many limitations of reflective SLM devices. An additional advantage is that they create an incoherent holographic system that is achromatic over a wide bandwidth. Two spherical beams created by the combination of a glass and a polarization sensitive TLCGRIN lenses interfere and a hologram is recorded by a digital camera. FINCH configurations which increase signal to noise ratios and imaging speed are also described.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: February 13, 2018
    Assignee: CellOptic, Inc.
    Inventor: Gary Brooker