Halogen, Carbon, Phosphorus, Or Nitrogen Containing Patents (Class 252/521.5)
  • Publication number: 20130143119
    Abstract: An anode active material for a lithium rechargeable battery, the anode active material including: a base material which is alloyable with lithium and a metal nitride disposed on the base material.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 6, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventor: Samsung Elecronics Co., Ltd
  • Patent number: 8450707
    Abstract: A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: May 28, 2013
    Assignee: Jefferson Science Associates, LLC
    Inventors: Paul Daniel Brindza, Bert Clayton Metzger
  • Publication number: 20130130095
    Abstract: A stabilized electrode comprising a metal oxide or lithium-metal-oxide electrode material is formed by contacting a surface of the electrode material, prior to cell assembly, with an aqueous or a non-aqueous acid solution having a pH greater than 4 but less than 7 and containing a stabilizing salt, to etch the surface of the electrode material and introduce stabilizing anions and cations from the salt into said surface. The structure of the bulk of the electrode material remains unchanged during the acid treatment. The stabilizing salt comprises fluoride and at least one cationic material selected from the group consisting of ammonium, phosphorus, titanium, silicon, zirconium, aluminum, and boron.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Applicant: UCHICAGO ARGONNE, LLC
    Inventor: UChicago Argonne, LLC
  • Publication number: 20130115515
    Abstract: Provided herein is an electrode active material comprising a lithium metal oxide and an overcharge protection additive having an operating voltage higher than the operating voltage of the lithium metal oxide.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 9, 2013
    Applicant: JOHNSON CONTROLS TECHNOLOGY LLC
    Inventor: JOHNSON CONTROLS TECHNOLOGY LLC
  • Publication number: 20130115455
    Abstract: The present invention provides seeded rod (SR) nanostructure systems including an elongated structure embedded with a seed structure being a core/shell structure or a single-material rod element. The SR systems disclosed herein are suitable for use in a variety of electronic and optical devices.
    Type: Application
    Filed: September 15, 2011
    Publication date: May 9, 2013
    Applicant: YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIV. OF JERUSALEM LTD.
    Inventors: Uri Banin, Adiel Zimran, Itai Lieberman, Amit Sitt
  • Publication number: 20130092886
    Abstract: A method of making a colloidal solution of high confinement semiconductor nanocrystals includes: forming a first solution by combining a solvent, growth ligands, and at most one semiconductor precursor; heating the first solution to the nucleation temperature; and adding to the first solution, a second solution having a solvent, growth ligands, and at least one additional and different precursor than that in the first solution to form a crude solution of nanocrystals having a compact homogenous semiconductor region. The method further includes: waiting 0.5 to 20 seconds and adding to the crude solution a third solution having a solvent, growth ligands, and at least one additional and different precursor than those in the first and second solutions; and lowering the growth temperature to enable the formation of a gradient alloy region around the compact homogenous semiconductor region, resulting in the formation of a colloidal solution of high confinement semiconductor nanocrystals.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 18, 2013
    Inventors: Keith Brian Kahen, Matthew Holland, Sudeep Pallikkara Kuttiatoor
  • Publication number: 20130071754
    Abstract: A main object of the present invention is to provide an electrode body which can obtain a high capacity secondary battery. The invention provides an electrode body having an active material composed of a metal oxide and a conductive auxiliary agent obtained by causing a partial deficiency to an oxygen atom in the metal oxide and introducing a nitrogen atom into the metal oxide, whereby the above object can be achieved.
    Type: Application
    Filed: April 30, 2010
    Publication date: March 21, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hidenori Miki, Hideki Oki
  • Publication number: 20130048924
    Abstract: The described invention provides compositions related to an electronically insulating amorphous or nanocrystalline mixed ionic conductor composition comprising a metal fluoride composite to which an electrical potential is applied to form 1) a negative electrode, and 2) a positive electrode, wherein the negative electrode and positive electrode are formed in situ.
    Type: Application
    Filed: November 9, 2010
    Publication date: February 28, 2013
    Inventors: Glenn G. Amatucci, Anna Halajko, Fadwa Badway
  • Patent number: 8357315
    Abstract: A cathode active material, a cathode including the cathode active material, and a lithium battery including the cathode. A lithium manganese phosphate cathode active material having an olivine structure represented by LixMn1-y-zM?yM?zPO4, where 0.6?x?1.0, 0<y?0.2, 0<z?0.1, M? is at least one metal selected from the group consisting of Mg, Fe, Co, Ni, Ca, Cu and Zn, and M? is at least one metal selected from the group consisting of Zr and Mo.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: January 22, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-won Lee
  • Publication number: 20130011656
    Abstract: This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 10, 2013
    Applicant: YALE UNIVERSITY
    Inventors: Yu Zhang, Qian Sun, Jung Han
  • Publication number: 20120305935
    Abstract: There is provided an apparatus for producing metal chloride gas, comprising: a source vessel configured to store a metal source; a gas supply port configured to supply chlorine-containing gas into the source vessel; a gas exhaust port configured to discharge metal chloride-containing gas containing metal chloride gas produced by a reaction between the chlorine-containing gas and the metal source, to outside of the source vessel; and a partition plate configured to form a gas passage continued to the gas exhaust port from the gas supply port by dividing a space in an upper part of the metal source in the source vessel, wherein the gas passage is formed in one route from the gas supply port to the gas exhaust port, with a horizontal passage width of the gas passage set to 5 cm or less, with bent portions provided on the gas passage.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 6, 2012
    Applicant: HITACHI CABLE, LTD.
    Inventor: Hajime FUJIKURA
  • Publication number: 20120270109
    Abstract: Amorphous or partially amorphous nanoscale ion storage materials are provided. For example, lithium transition metal phosphate storage compounds are nanoscale and amorphous or partially amorphous in an as-prepared state, or become amorphous or partially amorphous upon electrochemical intercalation or de-intercalation by lithium. These nanoscale ion storage materials are useful for producing devices such as high energy and high power storage batteries.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 25, 2012
    Applicant: A123 SYSTEMS, INC.
    Inventors: Yet-Ming CHIANG, Anthony E. PULLEN, Nonglak MEETHONG
  • Publication number: 20120267580
    Abstract: Provided herein are electroactive agglomerated particles, which comprise nanoparticles of a first electroactive material and nanoparticles of a second electroactive materials, and processes of preparation thereof.
    Type: Application
    Filed: May 13, 2012
    Publication date: October 25, 2012
    Applicant: AMERICAN LITHIUM ENERGY CORP.
    Inventors: Jiang Fan, Robert M. Spotnitz
  • Patent number: 8293144
    Abstract: A composition containing fine silver particles which have a uniform particle size, can form a fine drawing pattern, and have a small environmental impact, a method for producing that composition, a method for producing fine silver particles, and a paste having fine silver particles are provided. The fine silver particles are produced by carrying out a fluid preparation step of preparing a reduction fluid, a silver reaction step, and a filtration/washing step. The reaction step is carried out by adding an aqueous silver nitrate fluid to a reduction fluid whose temperature has been increased to a range between 40 and 800° C. The aqueous silver nitrate fluid is added at a stretch. The composition containing fine silver particles is produced by dispersing the composition containing the fine silver particles in a polar fluid.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: October 23, 2012
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yutaka Hisaeda, Toshihiko Ueyama
  • Publication number: 20120248387
    Abstract: The method according to the present invention includes a first step of supplying the Group V source gas at a flow rate B1 (0<B1) and supplying the gas containing magnesium at a flow rate C1 (0<C1) while supplying the Group III source gas at a flow rate A1 (0?A1); and a second step of supplying a Group V source gas at a flow rate B2 (0<B2) and supplying a gas containing magnesium at a flow rate C2 (0<C2) while supplying a Group III source gas at a flow rate A2 (0<A2). The first step and the second step are repeated a plurality of times to form a p-AlxGa1-xN (0?x<1) layer, and the flow rate A1 is a flow rate which allows no p-AlxGa1-xN layer to grow and satisfies A1?0.5A2.
    Type: Application
    Filed: December 10, 2010
    Publication date: October 4, 2012
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Yoshikazu Ooshika, Tetsuya Matsuura
  • Publication number: 20120244354
    Abstract: A niobium suboxide powder comprising niobium suboxide particles having a bulk nitrogen content of between 500 to 20,000 ppm. The nitrogen is distributed in the bulk of the powder particles. The nitrogen at least partly is present in the form of at least one of Nb2N crystals or niobium oxynitride crystals.
    Type: Application
    Filed: May 9, 2012
    Publication date: September 27, 2012
    Applicant: H.C. STARCK GMBH
    Inventors: CHRISTOPH SCHNITTER, Holger Brumm, Christine Rawohl, Colin McCracken
  • Patent number: 8252207
    Abstract: To provide an ink for inkjet recording containing water, water-soluble organic solvent, water-dispersible resin, fluorochemical surfactant or derivative thereof, and coloring agent containing pigment, wherein the ink has a surface tension of 20-35 mN/m and viscosity of 5 mPa·s or more at 25° C., total amount of the water-dispersible resin and the coloring agent in the ink is 5-40% by mass, and mass ratio A/B of the water-dispersible resin A to the coloring agent B is 0.5-4, wherein the ink is applied for a recording medium for inkjet recording containing a support containing cellulose pulp, and one or more barrier layers disposed on at least one face of the support, and wherein the barrier layer contains 30% by mass or more of inorganic pigment having refractive index of 1.5 or more, excluding aluminum hydrate, and 10% by mass or less of an inorganic pigment having a refractive index of less than 1.5.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: August 28, 2012
    Assignee: Ricoh Company, Ltd.
    Inventors: Michihiko Namba, Akihiko Matsuyama, Naoya Morohoshi, Tohru Ohshima, Masayuki Koyano, Akihiko Gotoh, Kiyofumi Nagai
  • Patent number: 8241530
    Abstract: There is provided an electron conductive and corrosion-resistant material 3 containing titanium (Ti), boron (B) and nitrogen (N) in an atomic ratio satisfying 0.05?[Ti]?0.40, 0.20?[B]?0.40, and 0.35?[N]?0.55 (provided that [Ti]+[B]+[N]=1). Further, there is provided a method of manufacturing an electron conductive and corrosion-resistant material 3, wherein boron nitride powder adheres to the surface of a substrate 2 of which at least the surface is made of titanium or a titanium alloy, and is then heated. Furthermore, there is provided a method of manufacturing an electron conductive and corrosion-resistant material 3, wherein the surface of a substrate 2 of which at least the surface is made of titanium or a titanium alloy is borided and then heated. In addition, there is provided a method of manufacturing an electron conductive and corrosion-resistant material 3, wherein a TiB2 layer formed of TiB2 particles is formed by spraying TiB2 powder onto a metal substrate 2 and then nitriding the TiB2 layer.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: August 14, 2012
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Horie, Gaku Kitahara, Nobuaki Suzuki, Hiroyuki Mori, Ken-ichi Suzuki, Isamu Ueda, Kazuaki Nishino
  • Patent number: 8221656
    Abstract: A secondary battery capable of improving the cycle characteristics and the storage characteristics is provided. The secondary battery includes a cathode, an anode, and an electrolytic solution. The anode contains an anode active material containing a material that is capable of inserting and extracting an electrode reactant and has at least one of metal elements and metalloid elements. Further, the electrolytic solution contains a solvent containing a sulfone compound having a structure in which —S(?O)2—S—C(?O)— bond is introduced to a benzene skeleton.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 17, 2012
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Hiroyuki Yamaguchi, Tadahiko Kubota
  • Publication number: 20120175567
    Abstract: In some embodiments, a nanocrystal described herein comprises a semiconductor material MX, wherein M is a group II or a group III element and X is a group V or a group VI element to provide a II/VI compound or a III/V compound, the nanocrystal having lateral dimensions and a vertical dimension having the shortest axis, wherein surfaces of the nanocrystal normal or substantially normal to the axis of the vertical dimension comprise a layer of M ions passivated by a counter ion chemical species.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 12, 2012
    Applicant: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Zheng Li
  • Publication number: 20120168696
    Abstract: The present disclosure relates to a method for making an electrode composite material. In the method, a trivalent aluminum source, a doped element source, and electrode active material particles are provided. The trivalent aluminum source and the doped element source are dissolved in a solvent to form a solution having trivalent aluminum ions and doped ions. The electrode active material particles are mixed with the solution having the trivalent aluminum ions and doped ions to form a mixture. A phosphate radical containing solution is added to the mixture to react with the trivalent aluminum ions and doped ions, thereby forming a number of electrode composite material particles. The electrode composite material particles are heated.
    Type: Application
    Filed: April 29, 2011
    Publication date: July 5, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: XIAN-KUN HUANG, XIANG-MING HE, CHANG-YIN JIANG, DAN WANG, JIAN GAO, JIAN-JUN LI
  • Publication number: 20120164796
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of making a liquid or gel suspension of diodes comprises: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing the plurality of diodes, the first solvent and the viscosity modifier to form the liquid or gel suspension of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20120134914
    Abstract: Disclosed is a cathode active material and a method to produce the same at low cost. The cathode powder comprises modified LiCoO2, and possibly a second phase which is LiM?O2 where M? is Mn, Ni, Co with a stoichiometric ratio Ni:Mn?1. The modified LiCoO2 is Ni and Mn bearing and has regions of low and high manganese content, where regions with high manganese content are located in islands on the surface. The cathode material has high cycling stability, a very high rate performance and good high temperature storage properties.
    Type: Application
    Filed: December 1, 2011
    Publication date: May 31, 2012
    Inventors: Jens Martin Paulsen, Hyunjoo JE, Maxime Blangero
  • Patent number: 8187507
    Abstract: A method for producing a GaN crystal capable of achieving at least one of the prevention of nucleation and the growth of a high-quality non-polar surface is provided. The production method of the present invention is a method for producing a GaN crystal in a melt containing at least an alkali metal and gallium, including an adjustment step of adjusting the carbon content of the melt, and a reaction step of causing the gallium and nitrogen to react with each other. According to the production method of the present invention, nucleation can be prevented, and as shown in FIG. 4, a non-polar surface can be grown.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: May 29, 2012
    Assignee: Osaka University
    Inventors: Yusuke Mori, Takatomo Sasaki, Fumio Kawamura, Masashi Yoshimura, Minoru Kawahara, Yasuo Kitaoka, Masanori Morishita
  • Publication number: 20120119162
    Abstract: The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics, and/or inorganic oxides. A coated fullerene interconnect device where at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
    Type: Application
    Filed: October 11, 2011
    Publication date: May 17, 2012
    Applicants: NATCORE TECHNOLOGY INC., WILLIAM MARSH RICE UNIVERSITY
    Inventors: Andrew R. Barron, Dennis J. Flood, Elizabeth Whitsitt
  • Publication number: 20120104325
    Abstract: Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.
    Type: Application
    Filed: April 23, 2010
    Publication date: May 3, 2012
    Applicant: THE UNIVERSITY OF CHICAGO
    Inventors: Dmitri V. Talapin, Maksym V. Kovalenko, Jong-Soo Lee, Chengyang Jiang
  • Publication number: 20120107491
    Abstract: Thin films containing a transparent conducting oxide and a high permittivity material are disclosed. Exemplary thin films may exhibit increased transmission in the visible-to-near infrared (vis-NIR) spectrum without a decrease in electrical conductivity compared to the thin film without the high permittivity material. Methods for making thin films having enhanced optical properties without substantially decreased electrical quality are also disclosed.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 3, 2012
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Xiaonan Li, James Burst, Timothy A. Gessert
  • Publication number: 20120091404
    Abstract: The inventors demonstrate herein that various Zintl compounds can be useful as thermoelectric materials for a variety of applications. Specifically, the utility of Ca3AlSb3, Ca5Al2Sb6, Ca5In2Sb6, Ca5Ga2Sb6, is described herein. Carrier concentration control via doping has also been demonstrated, resulting in considerably improved thermoelectric performance in the various systems described herein.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 19, 2012
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: G. Jeffrey Snyder, Eric Toberer, Alex Zevalkink
  • Publication number: 20120049137
    Abstract: A method of producing an n-type group III nitride single crystal includes putting raw materials that include at least a substance including a group III element, an alkali metal, and boron oxide into a reaction vessel; melting the boron oxide by heating the reaction vessel to a melting point of the boron oxide; forming a mixed melt which includes the group III element, the alkali metal, and the boron oxide, in the reaction vessel by heating the reaction vessel to a crystal growth temperature of a group III nitride; dissolving nitrogen into the mixed melt by bringing a nitrogen-containing gas into contact with the mixed melt; and growing an n-type group III nitride single crystal, which is doped with oxygen as a donor, from the group III element, the nitrogen, and oxygen in the boron oxide that are dissolved in the mixed melt.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 1, 2012
    Applicant: RICOH COMPANY, LTD.
    Inventor: Hirokazu Iwata
  • Publication number: 20120032165
    Abstract: Provided are an aqueous solution composition for fluorine doped metal oxide semiconductor, a method for manufacturing a fluorine doped metal oxide semiconductor using the same, and a thin film transistor including the same. The aqueous solution composition for fluorine doped metal oxide semiconductor includes: a fluorine compound precursor made of one or two or more selected from the group consisting of a metal compound containing fluorine and an organic material containing fluorine; and an aqueous solution containing water or catalyst. The method for manufacturing a fluorine doped metal oxide semiconductor, includes: preparing an aqueous solution composition for fluorine doped metal oxide semiconductor, coating a substrate with the aqueous solution composition; and performing heat treatment on the coated substrate to form the fluorine doped metal oxide semiconductor.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 9, 2012
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Byeong-Soo BAE, Jun-Hyuck JEON
  • Patent number: 8105508
    Abstract: The present invention relates to crystalline nanometric olivine-type LiFe1-xMnxPO4 powder with 0<x<1, with small particle size and narrow particle size distribution. The fine particle size is believed to account for excellent high-drain properties, while minimizing the need for conductive additives. The narrow distribution facilitates the electrode manufacturing process and ensures a homogeneous current distribution within the battery.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: January 31, 2012
    Assignees: Umicore, Centre National de la Recherche Scientifique
    Inventors: Stéphane Levasseur, Michèle Van Thournout, Pierre Gibot, Christian Masquelier
  • Publication number: 20110311453
    Abstract: An alloyed semiconductor quantum dot comprising an alloy of at least two semiconductors, wherein the quantum dot has a homogeneous composition and is characterized by a band gap energy that is non-linearly related to the molar ratio of the at least two semiconductors; a series of alloyed semiconductor quantum dots related thereto; a concentration-gradient quantum dot comprising an alloy of a first semiconductor and a second semiconductor, wherein the concentration of the first semiconductor gradually increases from the core of the quantum dot to the surface of the quantum dot and the concentration of the second semiconductor gradually decreases from the core of the quantum dot to the surface of the quantum dot; a series of concentration-gradient quantum dots related thereto; in vitro and in vivo methods of use; and methods of producing the alloyed semiconductor and concentration-gradient quantum dots and the series of quantum dots related thereto.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 22, 2011
    Applicant: Indiana University Research and Technology Corporation
    Inventors: Shuming Nie, Robert E. Bailey
  • Publication number: 20110303292
    Abstract: There is provided a new light-absorbing material and a photoelectric conversion element using the same, which are capable of improving conversion efficiency of a solar cell. The light-absorbing material in the present invention is made up of a GaN-based compound semiconductor with part of Ga replaced by a 3d transition metal, and has one or more impurity bands, and whose light absorption coefficient over an overall wavelength region of not longer than 1500 nm and not shorter than 300 nm is not lower than 1000 cm?1.
    Type: Application
    Filed: February 18, 2010
    Publication date: December 15, 2011
    Inventors: Saki Sonoda, Masahiro Yoshimoto
  • Publication number: 20110297202
    Abstract: A thermoelectric material including: a nanostructure; a discontinuous area disposed in the nanostructure, and an uneven portion disposed on the nano structure.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 8, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun-kyung LEE, Byoung-lyong CHOI, Jun-ho LEE, Dong-mok WHANG, Jong-woon LEE
  • Patent number: 8066916
    Abstract: The present invention relates to lithium secondary batteries and more specifically to positive electrode materials operating at potentials greater than 2.8 V vs. Li+/Li in non-aqueous electrochemical cells. In particular, the invention relates to crystalline nanometric olivine-type LiFe1-xMxPO4 powder with M is Co and/or Mn, and 0<x<1, with small particle size and narrow particle size distribution. A direct precipitation process is described, comprising the steps of:—providing a water-based mixture having at a pH between 6 and 10, containing a dipolar aprotic additive, and Li(I), Fe(II), P(V), and Co(II) and/or Mn(II) as precursor components;—heating said water-based mixture to a temperature less than or equal to its boiling point at atmospheric pressure, thereby precipitating crystalline LiFe1-xMxPO4 powder. An extremely fine particle size is obtained of about 80 nm for Mn and 275 nm for Co, both with a narrow distribution.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: November 29, 2011
    Assignees: Umicore, Centre National de la Recherche Scientifique
    Inventors: Stephane Levasseur, Michèle Van Thournout, Pierre Gibot, Christian Masquelier
  • Publication number: 20110272639
    Abstract: The present invention relates to a process for the preparation of compounds of general formula (I) Lia-bM1bQ1-cM2cPd-eM3eOx (l), wherein Q has the oxidation state +2 and M1, M2, M3, a, b, c, d, e and x are: Q: Fe, Mn, Co, Ni, M1: Na, K, Rb and/or Cs, M2: Mg, Al, Ca, Ti, Co, Ni, Cr, V, Fe, Mn, wherein Q and M2 are different from each other, M3: Si, S, F a: 0.8-1.9, b: 0-0.3, c: 0-0.9, d: 0.8-1.9, e: 0-0.5, x: 1.
    Type: Application
    Filed: December 22, 2009
    Publication date: November 10, 2011
    Applicant: BASF SE
    Inventors: Kirill Bramnik, Hartmut Hibst, Jordan Keith Lampert, Simon Schroedle
  • Publication number: 20110212382
    Abstract: Dielectric compositions that include compound of the formula [(M?)1?x(A?)x][(M?)1?y?z,(B?)y(C?)z]O3??(VO)? and protonated dielectric compositions that include a protonated dielectric compound within the formula [(M?)1?x(A?)x](M?)1?y?z(B?)y(C?)z]O3??+h(Vo)?(H*)2h are disclosed. Composite materials that employ one or more of these dielectric compounds together with an electrolyte also are disclosed. Composite material that employs one or more of these dielectric compounds together with an electrochemally active material also are disclosed.
    Type: Application
    Filed: October 7, 2010
    Publication date: September 1, 2011
    Applicants: The Penn State Research Foundation, Recapping, Inc.
    Inventors: Clive A. Randall, Leslie E. Cross, Aram Yang, Niall J. Donnelly, Ramakrishnan Rajagopalan, Amanda Lou Baker
  • Patent number: 8003020
    Abstract: Process for the preparation of a ceramic wherein: 50% to 75% by weight of a compound intended to form a conductive phase, and 25% to 50% by weight of one or more materials allowing the formation of insulating phases composed of silicon nitride and modified silicon oxynitride are mixed in a receptacle containing a liquid after a thermal treatment leading to sintering of the ceramic; this mixture is subjected to grinding, drying and sieving operations; this mixture is pressed; and this mixture is sintered so as to obtain a ceramic with a porosity of between 0 and 30%. The sintering is carried out under a pressure of at least 50 bar of a gas which is inert towards the constituents of the mixture. Ceramic thus obtained and spark plug comprising it.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: August 23, 2011
    Assignee: Meggitt (France)
    Inventors: Aurélien Jankowiak, Philippe Blanchart, Frédéric Trenit
  • Patent number: 7964117
    Abstract: The present invention includes an electrochemical redox active material. The electrochemical redox active material includes a cocrystalline metallic compound having a general formula AxMO4-yXOy.M?O, where A is at least one metallic element selected from a group consisting of alkali metals, M and M? may be identical or different and independently of one another at least one selected from a group consisting of transition metals and semimetals, X is P or As, 0.9?x?1.1, and 0<y<4.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 21, 2011
    Assignee: Advanced Lithium Electrochemistry Co., Ltd.
    Inventors: Ben-Jie Liaw, Yu-Fang Chen, Wen-Ren Liu, Sheng-Shih Chang
  • Patent number: 7955527
    Abstract: The invention provides a conductivity control agent comprised of a polymeric material containing diphosphonium bis(sulfoarylcarbonyloxy) glycol salts as conductivity control agent. The conductivity control agents can be used with semi-conductive rolls, belts and other biasable members. The inclusion of the conductivity control agent in the polymeric or polyurethane elastomers extends the electrical life of the polymeric biasable member in low humidity environments. Additionally, the resistivity of the elastomeric polymer on the biasable member is controlled to a desirable value by adjusting the conductivity control agent level in the elastomers.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: June 7, 2011
    Assignee: Eastman Kodak Company
    Inventors: M. Cristina B. DeJesus, Charles E. Hewitt, John C. Wilson
  • Patent number: 7955530
    Abstract: Disclosed is an ionic conductor comprising a metal composite oxide characterized by comprising oxygen defects and metal defects in a cryolite lattice. An electrochemical device comprising the ionic conductor is also disclosed. The metal composite oxide has an improved ion conductivity, because formation of an open space within a lattice is ensured by the defects of metal ion sites in the lattice. Therefore, the metal composite oxide is useful for an ionic conductor or an electrochemical device requiring ionic conductivity.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: June 7, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Mi Hyae Park, Eung Je Lee, Yun Ho Roh, Seung Tae Hong
  • Publication number: 20110104571
    Abstract: This invention provides a nano-structured anode composition for a lithium metal cell. The composition comprises: (a) an integrated structure of electrically conductive nanometer-scaled filaments that are interconnected to form a porous network of electron-conducting paths comprising interconnected pores, wherein the nano-filaments have a transverse dimension less than 500 nm; and (b) micron- or nanometer-scaled particles of lithium, a lithium alloy, or a lithium-containing compound wherein at least one of the particles is surface-passivated or stabilized and the weight fraction of these particles is between 1% and 99% based on the total weight of these particles and the integrated structure together. Also provided is a lithium metal cell or battery, or lithium-air cell or battery, comprising such an anode. The battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 7914710
    Abstract: Method for the preparation of inorganic-NP-composite microgels is based on the reversible transfer of microgels between water and an organic solvent such as tetrahydrofuran (THF). The method is used to produce semiconductor nanocrystals, often referred to as quantum dots (QDs) which are well known for their unique optical, electrical, magnetic and catalytic properties, as the inorganic NPs, recognizing that the best quality QDs are synthesized by a high temperature process in organic media, and have their surface covered with hydrophobic ligands (such as trioctylphosphine oxide, TOPO) that render the NPs insoluble in an aqueous solution.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: March 29, 2011
    Inventors: Mitchell Alan Winnik, Lei Shen, Andrij Pich
  • Patent number: 7914707
    Abstract: Disclosed is a compound represented by the following formula 1: wherein, each of R1˜R13 independently represents —H, —F, —Cl, —Br, —I, —OH, —SH, —COOH, —PO3H2, —NH2, —NO2, —O(CH2CH2O)nH (wherein, n is an integer of 1˜5), C1˜C12 alkyl group, C1˜C12 aminoalkyl group, C1˜C12 hydroxyalkyl group, C1˜C12 haloalkyl group, C2˜C12 alkenyl group, C1˜C12 alkoxy group, C1˜C12 alkylamino group, C1˜C12 dialkylamino group, C6˜C18 aryl group, C6˜C18 aminoaryl group, C6˜C18 hydroxyaryl group, C6˜C18 haloaryl group, C7˜C18 benzyl group, C7˜C18 aminobenzyl group, C7˜C18 hydroxybenzyl group, C7˜C18 halobenzyl group, or nitrile group (—CN); and at least one of R4˜R13 is nitrile group (—CN). A non-aqueous electrolyte comprising: (i) a lithium salt, (ii) a solvent, and (iii) a compound represented by formula 1; and a secondary battery comprising the non-aqueous electrolyte are also disclosed.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: March 29, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Yu Sin Kim, Hyeong Jin Kim, Hye Yun Cha, Ho Chun Lee
  • Publication number: 20110068321
    Abstract: In various embodiment, a primary particle includes a primary matrix material containing a population of semiconductor nanoparticles, with each primary particle further comprising an additive to enhance the physical, chemical and/or photo-stability of the semiconductor nanoparticles. A method of preparing such particles is described. Composite materials and light-emitting devices incorporating such primary particles are also described.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 24, 2011
    Applicant: NANOCO TECHNOLOGIES LIMITED
    Inventors: Nigel Pickett, Imad Naasani, James Harris
  • Patent number: 7901598
    Abstract: A solid electrolyte and a method of manufacturing the same are provided. The solid electrolyte contains x atomic % of lithium, y atomic % of phosphorus, z atomic % of sulfur, and w atomic % of oxygen, in which the x, the y, the z, and the w satisfy the following expressions (1)-(5): 20?x?45 ??(1) 10?y?20 ??(2) 35?z?60 ??(3) 1?w?10 ??(4) x+y+z+w=100 ??(5), and apexes of X-ray diffraction peaks in an X-ray diffraction pattern obtained by an X-ray diffraction method using a K?-ray of Cu exist at diffraction angles 2? of 16.7°±0.25°, 20.4°±0.25°, 23.8°±0.25°, 25.9°, 0.25°, 29.4°±0.25°, 30.4°±0.25°, 31.7°±0.25°, 33.5°±0.25°, 41.5°±0.25°, 43.7°±0.25°, and 51.2°±0.25°, respectively, in the X-ray diffraction pattern, and a half-width of each of the X-ray diffraction peaks is not larger than 0.5°.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: March 8, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Nobuhiro Ota
  • Patent number: 7883645
    Abstract: The present invention relates to a method for increasing the conversion of group III metal to group III nitride in a fused metal containing group III elements, with the introduction of nitrogen into the fused metal containing group III, at temperatures?1100° C. and at pressures of below 1×108 Pa, wherein a solvent adjunct is added to the fused metal containing group III elements, which is at least one element of the following elements C, Si, Ge, Fe, and/or at least one element of the rare earths, or an alloy or a compound of these elements, in particular their nitrides.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: February 8, 2011
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Jochen Friedrich, Georg Muller, Elke Meissner, Bernhard Birkmann, Stephan Hussy
  • Patent number: 7879264
    Abstract: A compound containing titanium diphosphate TiP2O7 and carbon covering at least part of the surface of the TiP2O7 particles presents properties which make it suitable for use as active material of an electrode for a lithium storage battery. A compound of this kind is prepared more particularly by mixing at least one first precursor containing the titanium element with a +4 oxidation state, a phosphorus-based second precursor and an organic precursor containing the carbon element. The mixture then undergoes heat treatment at a temperature of between 500° C. and 800° C. in an inert atmosphere.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: February 1, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Sebastien Patoux, Carole Bourbon
  • Publication number: 20110020706
    Abstract: The method described allows the selection and/or design of anode and cathode materials by n- or p-doping semiconductor material. Such doped materials are suitable for use in electrodes of lithium ion batteries. As one advantage, the anode and the cathode may be produced using anodes and cathodes that are derived from the same semiconductor material.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 27, 2011
    Applicant: BELENOS CLEAN POWER HOLDING AG
    Inventor: Reinhard Nesper
  • Publication number: 20100310941
    Abstract: The present invention relates to compositions including nano-particles and a nano-structured support matrix, methods of their preparation and applications thereof. The compositions of the present invention are particularly suitable for use as anode material for lithium-ion rechargeable batteries. The nano-structured support matrix can include nanotubes, nanowires, nanorods, and mixtures thereof. The composition can further include a substrate on which the nano-structured support matrix is formed. The substrate can include a current collector material.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 9, 2010
    Inventors: Prashant Nagesh KUMTA, Wei WANG