Synthetic Resin Patents (Class 252/62.54)
  • Patent number: 11189405
    Abstract: According to an embodiment, a composite permanent magnet includes a matrix of magnetically hard phase grains having an average grain size of 10 nm to 50 ?m; and magnetically soft phase grains embedded within the matrix, and having an average grain size of at least 50 nm, each grain having an elongated shape with an aspect ratio of at least 2:1. According to another embodiment, a composite permanent magnet includes a matrix of magnetically hard phase grains having an average grain size of 10 nm to 50 ?m; and magnetically soft phase grains embedded within the matrix, and having an average grain width of at least 50 nm, an average grain height of 20 to 500 nm, and an aspect ratio of at least 2:1. According to yet another embodiment, a method of forming a composite permanent magnet is also provided.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: November 30, 2021
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Chuanbing Rong, Michael W. Degner, Feng Liang
  • Patent number: 11183213
    Abstract: The present disclosure provides a tape-shaped magnetic recording medium, including: a base; and a magnetic layer that is provided on the base and contains a magnetic powder, in which an average particle volume V of the magnetic powder is 2,000 nm3 or less, an average thickness of the magnetic recording medium is 5.3 ?m or less, a thermal stability KuV/kBT of the magnetic recording medium is 60 or more, and a ratio Hrp/Hc1 of a residual coercive force Hrp of the magnetic recording medium measured using a pulsed magnetic field to a coercive force Hc1 of the magnetic recording medium in a perpendicular direction is 2.10 or less.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: November 23, 2021
    Assignee: Sony Corporation
    Inventors: Takashi Kataguchi, Natsuki Ichise, Takeshi Takahashi
  • Patent number: 11170919
    Abstract: The invention involves producing discontinuous, flake-shaped particles of a soft magnetic material, coating the flake-shaped particles with an electrically insulating coating, and consolidating the coated flaked-shaped particles to form a soft magnetic bulk shape. The consolidated bulk shape can comprise a layer or a simple or complex 3D magnet part shape, which has a consolidated layered microstructure that includes laminated soft magnetic regions that are substantially encapsulated by an electrical insulating layer to increase the resistivity of soft magnetic material, especially when used in silicon iron magnet parts.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: November 9, 2021
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Jun Cui, Gaoyuang Ouyang, Brandt Jensen, Kevin W. Dennis, Baozhi Cui
  • Patent number: 11158339
    Abstract: A product, according to one approach, includes a recording layer. The recording layer includes encapsulated nanoparticles each comprising a magnetic nanoparticle encapsulated by an encapsulating layer. A polymeric binder binds the encapsulated nanoparticles. A product, according to another approach, includes a recording layer. The recording layer includes encapsulated nanoparticles each comprising a magnetic nanoparticle encapsulated by an encapsulating layer, and a polymeric binder binding the encapsulated nanoparticles. An average diameter of the magnetic nanoparticles is in a range of 2 nanometers to 20 nanometers. An average thickness of the recording layer is less than 0.2 microns.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: October 26, 2021
    Assignee: International Business Machines Corporation
    Inventor: Richard Bradshaw
  • Patent number: 11158337
    Abstract: A tape cartridge, according to one approach, includes a housing, and a magnetic recording tape at least partially stored in the housing. The magnetic recording tape including a recording layer having encapsulated nanoparticles each comprising a magnetic nanoparticle encapsulated by an encapsulating layer, and a polymeric binder binding the encapsulated nanoparticles. A tape cartridge, according to another approach, includes a housing, and a magnetic recording tape at least partially stored in the housing. The magnetic recording tape include an underlayer having encapsulated nanoparticles each comprising a magnetic nanoparticle encapsulated by an aromatic polymer, and a polymeric binder binding the encapsulated nanoparticles.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: October 26, 2021
    Assignee: International Business Machines Corporation
    Inventor: Richard Bradshaw
  • Patent number: 11158340
    Abstract: In one general approach, a product includes an underlayer of a magnetic recording medium. The underlayer has encapsulated nanoparticles each comprising a magnetic nanoparticle encapsulated by an aromatic polymer, and a polymeric binder binding the encapsulated nanoparticles. A magnetic recording layer is formed above the underlayer. In another general approach, a product includes an electrically conductive underlayer of a magnetic recording medium. The underlayer has encapsulated nanoparticles each comprising a magnetic nanoparticle encapsulated by an aromatic polymer, and a polymeric binder binding the encapsulated nanoparticles. A magnetic recording layer is formed above the underlayer. The magnetic nanoparticles have an average magnetic field strength of less than 200 Oersted (Oe). An average concentration of the encapsulated nanoparticles in the underlayer is at least 35 vol %.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: October 26, 2021
    Assignee: International Business Machines Corporation
    Inventor: Richard Bradshaw
  • Patent number: 11152027
    Abstract: A product, according to one approach, includes an underlayer and a magnetic recording layer formed above the underlayer. The underlayer includes first encapsulated nanoparticles each comprising a first magnetic nanoparticle encapsulated by a first aromatic polymer, and a first polymeric binder binding the first encapsulated nanoparticles. The recording layer includes second encapsulated nanoparticles each comprising a second magnetic nanoparticle encapsulated by an encapsulating layer, and a second polymeric binder binding the second encapsulated nanoparticles.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: October 19, 2021
    Assignee: International Business Machines Corporation
    Inventor: Richard Bradshaw
  • Patent number: 11103922
    Abstract: A method for producing a Fe—Co alloy powder suitable for an antenna includes steps, wherein when introducing an oxidizing agent into an aqueous solution containing Fe ions and Co ions to generate crystal nuclei and cause precipitation and growth of a precursor having Fe and Co as components, Co in an amount corresponding to 40% or more of the total amount of Co used for the precipitation reaction is added to the aqueous solution at a time after the start of the crystal nuclei generation and before the end of the precipitation reaction to obtain the precursor. Then, a dried product of the precursor is reduced to obtain a Fe—Co alloy powder. This Fe—Co alloy powder has a mean particle size of 100 nm or less, a coercive force Hc of 52.0 to 78.0 kA/m, and a saturation magnetization ss of 160 Am2/kg or higher.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: August 31, 2021
    Assignee: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Masahiro Gotoh, Takayuki Yoshida
  • Patent number: 11087906
    Abstract: A magnetic material having dual properties and a manufacturing method thereof are disclosed. The magnetic material having dual properties consists of: 5% to 88% of a permanent magnetic material, 5% to 88% of a soft magnetic material, 6% to 16% of a binder, and 1% to 10% of an auxiliary agent. The magnetic material having dual properties manufactured by mixing two phases without microscopic intergranular exchange coupling interaction has unexpected effects: the range of a magnetically attracted object is expanded to include a magnet having dual properties; the range of a magnetically attractive object is expanded to include a magnet having dual properties; the minimum value of the magnetic attraction force is increased, the magnetic attraction force is more uniform, and it is smoother to move and rotate an object. The effect obtained by two layers of the soft magnet and the permanent magnet can be realized by a single layer structure of the magnet having dual properties.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: August 10, 2021
    Assignee: GUANGZHOU NEWLIFE NEW MATERIAL CO., LTD
    Inventors: Xiaoming Wang, Huayi Zhao, Longzhang Wu, Chunsheng Guo, Zhiying Wang
  • Patent number: 11072537
    Abstract: Ferrite powder of the present invention is ferrite powder detectable with a metal detector, comprising: soft ferrite particles containing Mn of 3.5 mass % or more and 20.0 mass % or less and Fe of 50.0 mass % or more and 70.0 mass % or less. It is preferable that a volume average particle diameter of the particles constituting the ferrite powder is 0.1 ?m or more and 100 ?m or less. It is preferable that magnetization by a VSM measurement when magnetic field of 5 K·1000/4?A/m is applied is 85 A·m2/kg or more and 98 A·m2/kg or less.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: July 27, 2021
    Assignee: Powdertech Co., Ltd.
    Inventors: Koji Aga, Tetsuya Igarashi
  • Patent number: 11062843
    Abstract: A method for producing a sintered R-T-B based magnet includes the steps of: providing a sintered R1-T-B based magnet work (where R1 is a rare-earth element; T is Fe, or Fe and Co); providing a powder of an alloy in which a rare-earth element R2 accounts for 40 mass % or more of the entire alloy, the rare-earth element R2 always including Dy and/or Tb; subjecting the powder to a heat treatment to obtain a diffusion source; and heating the sintered R1-T-B based magnet work with the diffusion source to allow the at least one of Dy and Tb contained in the diffusion source to diffuse from the surface into the interior of the sintered R1-T-B based magnet work. The alloy powder is a powder produced by atomization.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: July 13, 2021
    Assignee: HITACHI METALS, LTD.
    Inventor: Futoshi Kuniyoshi
  • Patent number: 11038408
    Abstract: To prevent the creation of unnecessary resin from the resin used for fixing the magnet, a device for manufacturing a magnet embedded core including a magnet embedded in resin filling a magnet insertion hole (104) extending axially in a motor core comprises a resin charging device (80) configured to charge the resin (114) in solid form into the magnet insertion hole (104), a magnet insertion device (90) configured to insert the magnet (110) into the magnet insertion hole (104), and a heating device (70) configured to heat the motor core (101) to melt the resin (114) in solid form received in the magnet insertion hole (104).
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: June 15, 2021
    Assignee: Kuroda Precision Industries Ltd.
    Inventor: Osamu Fukuyama
  • Patent number: 11019758
    Abstract: Disclosed is an electromagnetic shielding film, comprising a release film layer, an insulation layer, a black insulation shielding layer, a metal layer, a conductive paste layer and a protective film layer which are sequentially connected. The conductive paste layer further comprises an electromagnetic wave absorbent. The electromagnetic wave absorbent is a mixture of one or more of carbon nanotubes, graphene and ferrite.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: May 25, 2021
    Assignee: HENAN GUOAN ELECTRONIC MATERIAL CO., LTD.
    Inventors: Qingchen Cui, Guofa Li, Wenjuan Song
  • Patent number: 10996564
    Abstract: An EUV photoresist composition includes paramagnetic particles that are adapted to block EUV radiation. The magnetic manipulation of the paramagnetic particles within a deposited layer of EUV photoresist can beneficially impact focus control and the achievable line width roughness during subsequent photolithographic processing. A spin-coating apparatus for dispensing the EUV photoresist composition onto a substrate includes a plurality of concentric electromagnets located beneath the substrate that influence the distribution of the paramagnetic particles in the photoresist layer.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: May 4, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Robert Finlay, Erik Robert Hosler, Sheldon Meyers, Scott Kenny
  • Patent number: 10984948
    Abstract: A method for forming an inductor device. The method comprises forming a trench within a central core region of a conductive coil formed within a dielectric material. The method further comprises forming a composite region within the trench. The composite region including a polymer matrix having a plurality of particles with magnetic properties dispersed therein with the central core region to reduce eddy current loss and increase energy storage.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: April 20, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chandrasekharan Kothandaraman, Eugene J. O'Sullivan, Naigang Wang
  • Patent number: 10981326
    Abstract: A three-dimensional printed structure can include a photocurable resin, a sinterable material, and a plurality of elongated particles. The elongated particles are distributed within the printed structure. The elongated particles are shaped and distributed to promote porosity control (e.g., improved densification) within the structure.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: April 20, 2021
    Assignee: Tethon Incorporated
    Inventors: Gregory C. Pugh, Karen A. Linder
  • Patent number: 10975923
    Abstract: Disclosed is a plastic composite including a magnetic alloy material in an amount of about 20% by volume or greater on the basis of the total volume of the plastic composite. Accordingly, weight of the clutch may be reduced by about 0.4 kg and weight of the pulley can be reduced by about 0.4 kg with the result that overall weight may be reduced by about 0.8 kg.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: April 13, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Hee-Sam Kang, Tae-Ho Jeong
  • Patent number: 10899636
    Abstract: The present invention includes a method of controlling an oil spill through introduction of a plurality of magnetizable particles into the oil spill in an amount sufficient to form a colloidal mixture. An absorbent is, also introduced into the oil spill to form an absorbent mixture. A magnetic field can be applied to the system to move, manipulate, or otherwise control the absorbent mixture in response to movement of the magnetic field.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: January 26, 2021
    Assignee: Natural Science, LLC
    Inventor: Arden A. Warner
  • Patent number: 10886045
    Abstract: A ferrite sheet includes acicular ferrite powder, and has a uniaxially-oriented magnetic direction. The ferrite sheet is capable of remarkably increasing magnetic permeability and saturation magnetization, and accordingly is capable of remarkably improving the power efficiency of an electronic device by minimizing magnetic field leakage when being applied to a shielding sheet.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: January 5, 2021
    Assignee: EMW CO., LTD.
    Inventors: Won Mo Seong, In Seung Baek
  • Patent number: 10878846
    Abstract: The magnetic tape include a non-magnetic support and a magnetic layer including ferromagnetic powder and a binding agent, in which the magnetic layer has a timing-based servo pattern, an edge shape of the timing-based servo pattern, specified by magnetic force microscopy is a shape in which a difference (L99.9?L0.1) between a value L99.9 of a cumulative distribution function of 99.9% and a value L0.1 of a cumulative distribution function of 0.1% in a position deviation width from an ideal shape of the magnetic tape in a longitudinal direction is 180 nm or less, and an isoelectric point of a surface zeta potential of the magnetic layer is 5.5 or more.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: December 29, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Eiki Ozawa, Atsushi Musha
  • Patent number: 10825590
    Abstract: A soft magnetic material powder includes soft magnetic material particles, the soft magnetic material particles each include a core formed from an Fe-based soft magnetic material and an insulating film covering the surface of the core, and the insulating film contains an inorganic oxide and a water soluble polymer. A magnetic core includes soft magnetic material particles and a binder bonding the soft magnetic material particles to each other, the soft magnetic material particles each include a core containing an Fe-based soft magnetic material and an insulating film covering the surface of the core, and the insulating film contains an inorganic oxide and a water soluble polymer.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: November 3, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yuya Ishida
  • Patent number: 10804031
    Abstract: This invention relates to a magnetic paint composition for application to a substrate. Such substrate can be a wall, partition, building materials, and the like; fabric, web, paper, and the like; or other objects capable of receiving a film-forming composition which would benefit from having a magnetic or magnetizable surface. This invention also relates to fabric, web, paper, and the like substrates coated with a magnetic film-forming composition. Such fabric, web, paper, and the like substrates may be panels of various shapes and sizes and may include an adhesive on a surface of the substrate such that the panel may be removably positioned on a surface. Preferably, the coated panel can be removed and repositioned without damaging the panel or the underlying surface.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: October 13, 2020
    Inventor: Margaret L Rehnberg
  • Patent number: 10698197
    Abstract: Articles comprises iron oxide colloidal nanocrystals arranged within chains, wherein the chains of nanocrystals are embedded within a material used to form the article or a transfer medium used to transfer a color to the article are described. The material or transfer medium includes elastic properties that allow the nanocrystals to display a temporary color determined by the strength of an external force applied to the article, and the material or transfer medium includes memory properties that cause the displayed temporary color to dissipate when the external force is removed, wherein the dissipation of the displayed temporary color is sufficiently slow as to be visually observable by an average observer's unaided eye.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: June 30, 2020
    Assignee: adidas AG
    Inventor: Michel Reginald Pierre Joseph Lussier
  • Patent number: 10685768
    Abstract: A soft magnetic material powder includes soft magnetic material particles, the soft magnetic material particles each include a core formed from an Fe-based soft magnetic material and an insulating film covering the surface of the core, and the insulating film contains an inorganic oxide and a water soluble polymer. A magnetic core includes soft magnetic material particles and a binder bonding the soft magnetic material particles to each other, the soft magnetic material particles each include a core containing an Fe-based soft magnetic material and an insulating film covering the surface of the core, and the insulating film contains an inorganic oxide and a water soluble polymer.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: June 16, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yuya Ishida
  • Patent number: 10661526
    Abstract: Materials and methods is present for manufacturing fiber reinforced parts. A powder material comprising a matrix material of a size particular distribution comprising substantially oriented fiber of a predetermined length distribution and diameter (L/D). A manufactured part that has substantially randomly oriented fiber is provided using an energy delivery system and the powder material.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: May 26, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Brett Ian Lyons, Christopher S. Huskamp
  • Patent number: 10646829
    Abstract: A filtration membrane coating comprising a hydrophilic polymer, a surfactant, and one or more charged compounds, each containing one or more sulfonate functionalities and one or more linkable functionalities selected from the group consisting of amine, monochlorotriazine, and dichlorotriazine. The hydrophilic polymer and surfactant form a thin primer layer which is also superhydrophilic. The primer layer improves flux, and enables improved adhesion of the one or more charged compounds, which form a charged dye layer on top of the primer layer when enhances rejection of charged divalent ions. The coating can be applied while the membrane is packaged in its final form, such as in a spiral wound or other configuration.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: May 12, 2020
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Dennis R. Strauss, Rahul Ganguli, Ten-Luen T. Liao, Vivek Mehrotra, Paulus Henricus Johannes Verbeek, Thomas Krebs
  • Patent number: 10634595
    Abstract: A method of measuring fracture strength of a superabsorbent polymer in order to predict a generation amount of fine powder is provided. Effects of many different treatments for increasing strength of the superabsorbent polymer may be evaluated by measuring a force at a time point when single particles having a uniform particle size of the superabsorbent polymer are fractured by pressurizing the particles at a constant rate within a predetermined range.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: April 28, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Daewoong Lee, Sung Hyun Park, Myung Han Lee
  • Patent number: 10573443
    Abstract: Disclosed is a simplified process for producing magnetic polymer particles. The process comprises: (a) providing a composition having a liquid monomer which is radical polymerizable, a radical initiator soluble in the monomer, a steric stabilizer, and a ferrofluid comprising surfactant-coated colloidal magnetic particles in a carrier fluid which is miscible with the monomer; (b) preparing an emulsion from a polar solvent which is immiscible with the monomer, and the composition of step (a); (c) adding seed polymer particles to the emulsion, mixing to form a seeded emulsion, and incubating the seeded emulsion, thereby swelling the seed polymer particles; and (d) activating the radical initiator and polymerizing the monomer in the swollen seed polymer particles; thereby producing the magnetic polymer particles. The process forms monodisperse magnetic particles. The particles are characterized by a uniform distribution of magnetic material, and an absence of magnetite bleeding.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: February 25, 2020
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Christoph Seidel, Jens Christian Bolle, Sandra Recklies
  • Patent number: 10553280
    Abstract: A method of manufacturing a doped polycrystalline ceramic optical device includes mixing a plurality of transition metal complexes and a plurality of rare-earth metal complexes to form a metal salt solution, heating the metal salt solution to form a heated metal salt solution, mixing the heated metal salt solution and an organic precursor to induce a chemical reaction between the heated metal salt solution and the organic precursor to produce a plurality of rare-earth doped crystalline nanoparticles, and sintering the plurality of rare-earth doped nanoparticles to form a doped polycrystalline ceramic optical device having a rare-earth element dopant that is uniformly distributed within a crystal lattice of the doped polycrystalline ceramic optical device.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: February 4, 2020
    Assignee: Corning Incorporated
    Inventors: Jason Allen Brown, Stuart Gray, Thomas Dale Ketcham, Daniel Aloysius Nolan, Wageesha Senaratne, Jun Yang, Haitao Zhang
  • Patent number: 10513586
    Abstract: Provided is a coating agent that can be formed into a surface layer having excellent self-restoring properties and stain-proof properties by applying the coating agent onto a surface of a base material (for example, thermoplastic polyurethane) and curing the resulting material. The coating agent according to the present application contains urethane (meth)acrylate-based resin (a), fluorine-based compound (b) and photopolymerization initiator (d). Urethane (meth)acrylate-based resin (a) has weight average molecular weight (Mw) of 10,000 to 800,000. Fluorine-based compound (b) has at least two polymerizable functional groups. The surface layer formed of the coating agent has excellent self-restoring properties of a scratch, stain-proof properties and stretchability.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: December 24, 2019
    Assignee: JNC CORPORATION
    Inventors: Kyoko Kondo, Kenya Ito, Hiroyuki Iizuka, Aki Kuromatsu
  • Patent number: 10505405
    Abstract: An electric machine is provided having at least one first permanent magnet, at least one second permanent magnet, a first region, the temperature of which is in a first temperature range during operation, and a second region, the temperature of which is in a second temperature range during operation. The at least one second permanent magnet has a higher maximum working temperature than the first permanent magnet, wherein the maximum working temperature is below the temperature at which the magnetic field strength of the permanent magnet irreversibly decreases in dependence on temperature and because of a magnetic field applied externally to the permanent magnet from. The first permanent magnet is arranged in the first region and the second permanent magnet is arranged in the second region.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: December 10, 2019
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Joachim Tachtler, Dieter Ziegltrum
  • Patent number: 10483650
    Abstract: Phased array antennas include a plurality of radiating elements and a plurality of RF lenses that are generally aligned along a first vertical axis. Each radiating element is associated with a respective one of the RF lenses, and each radiating element is tilted with respect to the first vertical axis.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 19, 2019
    Assignee: CommScope Technologies LLC
    Inventors: Martin Zimmerman, Igor Timofeev, Kevin Eldon Linehan
  • Patent number: 10475568
    Abstract: A power management module, provides an inductor including one or more electrical conductors disposed around a ferromagnetic ceramic element including one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.50 mol % throughout the ceramic element.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: November 12, 2019
    Assignee: L. Pierre de Rochemont
    Inventor: L. Pierre de Rochemont
  • Patent number: 10453596
    Abstract: There is provided a ferrite powder for bonded magnets capable of producing ferrite bonded magnets with high BHmax, excellent in MFR when converted to a compound, with high p-iHc, wherein an average particle size of particles obtained by a dry laser diffraction measurement is 5 ?m or less, a specific surface area is 1.90 m2/g or more and less than 3.00 m2/g, a compression density is 3.40 g/cm3 or more and less than 3.73 g/cm3, and a compressed molding has a coercive force of 2800 Oe or more and less than 3250 Oe.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: October 22, 2019
    Assignees: DOWA ELECTRONICS MATERIALS CO., LTD., DOWA F-TEC CO., LTD.
    Inventors: Satoru Tsuboi, Yasunobu Mishima, Keisuke Ayabe, Masayasu Senda
  • Patent number: 10408528
    Abstract: A refrigerator door includes an insulated door panel, a first hinge, and a second hinge used to mount the refrigerator door to a refrigerator body. The door panel includes a refrigerator section, a freezer section, a gasket channel, and a gasket. The freezer section is mounted below the refrigerator section to cover a freezer compartment when the refrigerator door is closed. The gasket channel is formed in the insulated door panel surrounding only the refrigerator section. The gasket is mounted in the gasket channel to seal the refrigerator compartment when the refrigerator door is closed. The first hinge is attached to a top surface of the insulated door panel above the refrigerator section. The second hinge is attached to a bottom surface of the insulated door panel below the freezer section. The freezer section is not surrounded by any gasket mounted to the insulated door panel.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: September 10, 2019
    Assignee: Sub-Zero, Inc.
    Inventors: Randy Wayne Hurlebaus, Alan C. Wood, Philip Francis Hottmann
  • Patent number: 10373746
    Abstract: A ferrite sintered magnet includes a composition expressed by a formula (1) of Ca1-w-xLawAxFezComO19. In the formula (1), “w”, “x”, “z”, and “m” satisfy a formula (2) of 0.30?w?0.50, a formula (3) of 0.08?x?0.20, a formula (4) of 8.55?z?10.00, and a formula (5) of 0.20?m?0.40. In the formula (1), “A” is at least one kind of element selected from a group consisting of Sr and Ba. Cr is further contained at 0.058 mass % to 0.132 mass % in terms of Cr2O3.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: August 6, 2019
    Assignee: TDK CORPORATION
    Inventor: Hiroyuki Morita
  • Patent number: 10340067
    Abstract: The present invention is in the field of fluids and the like comprising magnetic particles, such as ferromagnetic particles, anti-ferromagnetic particles, ferrimagnetic particles, synthetic magnetic particles, paramagnetic particles, superparamagnetic particles, such as magnetic fluids, a method of stabilizing magnetic particles, use of these fluids and functionalized particles. Such fluids have a large variety of applications, such as sealants, as a sensor, in biomedics, etc.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: July 2, 2019
    Inventors: Jaakko Timonen, Tonnis Hooghoudt, Marcel Vilaplana Artigas, Albert Philipse, Carlos Guerrero Sanchez, Josep Casamada Ribot, Vincent Philippi, Rick De Groot
  • Patent number: 10312555
    Abstract: A deformation detecting sensor for a sealed secondary battery of the present invention is used with a unit cell, battery module, or battery pack of the sealed secondary battery and includes: a magnetic resin layer stuck to the unit cell and/or battery module, the resin layer comprising a matrix composed of a resin component and a magnetic filler dispersed in the matrix; and a magnetic sensor attached to the inside or outside wall of a package case so as to be capable to detect a change of a magnetic field caused by the magnetic layer. The present invention can provide a deformation detecting sensor capable to detect bulging of a sealed secondary battery with higher sensitivity and to exhibit stable detection characteristics.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: June 4, 2019
    Assignee: TOYO TIRE CORPORATION
    Inventors: Takeshi Fukuda, Junichi Shigeto
  • Patent number: 10304536
    Abstract: A quantum memory system includes a doped polycrystalline ceramic, a magnetic field generation unit, and one or more pump lasers. The doped polycrystalline ceramic is positioned within a magnetic field of the magnetic field generation unit when the magnetic field generation unit generates the magnetic field, the one or more pump lasers are optically coupled to the doped polycrystalline ceramic, and the doped polycrystalline ceramic is doped with a rare-earth element dopant that is uniformly distributed within a crystal lattice of the doped polycrystalline ceramic.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: May 28, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Jason Allen Brown, Thomas Dale Ketcham, Daniel Aloysius Nolan, Wageesha Senaratne, Jun Yang, Haitao Zhang
  • Patent number: 10266637
    Abstract: Provided are a polyurethane-modified epoxy resin composition having satisfactory operability of processing, such as casting or impregnation, in a composition state, a production method therefor, and a composition thereof. The polyurethane-modified epoxy resin is obtained by modifying a secondary hydroxyl group-containing bisphenol-based epoxy resin (a) having an epoxy equivalent from 150 g/eq to 200 g/eq and a hydroxyl equivalent from 2,000 g/eq to 2,600 g/eq with a polyol compound (b) having an Mn of 200 or more, a polyisocyanate compound (c), and a polyol compound (d) having an Mn of less than 200 serving as a chain extender. The polyurethane-modified epoxy resin uses the epoxy resin (a) in an amount from 20 wt % to 60 wt % with respect to the total amount of the respective components (a), (b), (c), and (d), and contains a polyurethane having the epoxy resin (a) added to both terminals thereof and/or one terminal thereof.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: April 23, 2019
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Eisuke Yamada, Naoki Yokoyama, Tohru Kunitake
  • Patent number: 10208153
    Abstract: There is provided an adhesive composition comprising (a) a polyisocyanate component comprising (i) monomeric 4,4? methylene diphenyl diisocyanate and (ii) an isocyanate functional prepolymer that is the reaction product of a prepolymer reactant mixture comprising (A) monomeric 4,4? methylene diphenyl diisocyanate, and (B) one or more diol having OH equivalent weight of 225 or less, and (C) one or more triol having OH equivalent weight of 1400 or more, and (b) a polyol component comprising one or more polyol.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 19, 2019
    Assignee: Rohm and Haas Company
    Inventors: Pankaj Vinubhai Shah, Kevin Miyake
  • Patent number: 10173197
    Abstract: The present invention relates to polymer beads comprising a polymeric matrix and having a pitted surface, the polymeric matrix (i) comprising polymerized monomer residues of (a) at least one mono-ethylenically unsaturated monomer, and (b) at least one crosslinking monomer having at least two ethylenically unsaturated groups separated by at least 4 consecutive acyclic atoms, and (ii) having distributed therethrough solid particulate material and polymeric porogen.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: January 8, 2019
    Assignee: IXOM OPERATIONS PTY LTD
    Inventors: Weiguo Zhao, Matthew Roy Raymond
  • Patent number: 10162295
    Abstract: A method for forming a scratchable image includes pressure-fixing a masking pressure toner onto a base image on a substrate to form a masking layer.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 25, 2018
    Assignee: FUJI XEROX CO., LTD.
    Inventors: Yasuo Matsumura, Satoshi Hiraoka, Yasuhiro Uehara
  • Patent number: 10119967
    Abstract: The present invention provides kits and assay methods for the early detection of pathogens, precise identification of the etiologic agent, and improved disease surveillance. More specifically, the present invention discloses an immunoassay leading to the rapid and simultaneous detection of antibodies to a wide range of infectious pathogens in biological fluids of infected patients. This immunoassay involves the covalent and oriented coupling of fusion proteins comprising an AGT enzyme and a viral antigen on an identifiable solid support (e.g. fluorescent microspheres), said support being previously coated with an AGT substrate. This coupling is mediated by the irreversible reaction of the AGT enzyme on its substrate. The thus obtained antigen-coupled microspheres show enhanced capture of specific antibodies as compared to antigen-coupled microspheres produced by standard amine coupling procedures.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: November 6, 2018
    Assignee: Institut Pasteur
    Inventors: Jean-Claude Manuguerra, Jessica Vanhomwegen, Philippe Despres, Sylvie Paulous
  • Patent number: 10096333
    Abstract: An aspect of the present invention relates to a magnetic recording medium, which comprises a nonmagnetic layer comprising nonmagnetic powder and binder on a nonmagnetic support, and a magnetic layer comprising ferromagnetic powder and binder on the nonmagnetic layer, wherein the magnetic layer further comprises carbon black, and a state in which the carbon black is present, as observed in a reflection electron image of a surface of the magnetic layer obtained by a scanning electron microscope, satisfies condition 1 and condition 2 below: condition 1: a number of carbon black particles with a particle size of greater than or equal to 140 nm is greater than or equal to 30 per 1,000 ?m2 of area; and condition 2: a number of carbon black particles with a particle size of greater than or equal to 220 nm is less than or equal to 10 per 1,000 ?m2 of area.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: October 9, 2018
    Assignee: FUJIFILM Corporation
    Inventors: Yoshinori Tamada, Masahide Sato, Kazufumi Omura
  • Patent number: 10074468
    Abstract: Provided is a powder magnetic core for a reactor, whose electromagnetic properties are difficult to change with time, even when applied to a reactor used in a state that the core is exposed without being potted. The powder magnetic core for a reactor consists essentially of a compact composed of an insulation-coated iron-based soft magnetic powder that an insulating film is formed on the surface of an iron-based soft magnetic powder, and which has such a change with time of 500 hours at 180° C. that a ratio of decrease in effective magnetic permeability being 1% or less. In the compact, the content of gapping between two adjacent particles of the insulation-coated iron-based soft magnetic powder is 2 vol % or less.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: September 11, 2018
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Takashi Inagaki, Chio Ishihara, Noriyuki Nakayama
  • Patent number: 10066042
    Abstract: Provided is a photocurable resin composition that has a low viscosity and is capable of yielding a high refractive index. Specifically, a urethane (meth)acrylate resin (A) obtained by a reaction of an aromatic diisocyanate compound (a), a polyol compound (b), and a hydroxyl-group-containing (meth)acrylate compound (c) as essential raw material components is used. The urethane (meth)acrylate resin (A) contains a structural moiety (a-1) represented by structural formula (1) below: (where R1 represents a hydrogen atom or a methyl group) and a structural moiety (a-2) represented by structural formula (2) below: (where R1, R2, R3, X1, and X2 each independently represent a hydrogen atom or a methyl group) at a (a-1)/(a-2) molar ratio of 45/55 to 60/40. The polyol compound (b) has an aromatic hydrocarbon skeleton.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: September 4, 2018
    Assignee: DIC Corporation
    Inventors: Shunsuke Yamada, Takeshi Ibe, Nobuo Kobayashi, Yasuko Odani, Masashi Sugiyama
  • Patent number: 10062583
    Abstract: The present disclosure relates to a microelectronics package with an inductive element and a magnetically enhanced mold compound component, and a process for making the same. The disclosed microelectronics package includes a module substrate, a thinned flip-chip die with an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion, the magnetically enhanced mold compound component, and a mold compound component. The thinned flip-chip die is attached to the module substrate and includes a device layer with an inductive element embedded therein. Herein, the inductive element is underlying the first surface portion and not underlying the second surface portion. The magnetically enhanced mold compound component is formed over the first surface portion. The mold compound component is formed over the second surface portion, not over the first surface portion, and surrounding the magnetically enhanced mold compound component.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: August 28, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, George Maxim, Dirk Robert Walter Leipold, Baker Scott
  • Patent number: 10053596
    Abstract: The present invention is directed to a curable film-forming composition comprising: (a) a curing agent comprising reactive isocyanate functional groups; (b) a film-forming compound comprising functional groups reactive with the reactive isocyanate functional groups in (a); (c) a photo-latent catalyst; (d) a beta-diketone having a flash point higher than 60° C. (140° F.); and (e) a beta-diketone having a flash point lower than or equal to 60° C. (140° F.). The invention is further directed to methods of controlling the rate of cure and increasing the wet-edge time of a curable film-forming composition comprising an isocyanate functional curing agent, by adding to the curable film-forming composition a catalyst component comprising: (i) a photo-latent catalyst; (ii) a beta-diketone having a flash point higher than 60° C. (140° F.); and (iii) a beta-diketone having a flash point lower than or equal to 60° C. (140° F.).
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: August 21, 2018
    Assignee: PRC-DeSoto International, Inc.
    Inventors: Guangliang Tang, Mikhail Khudiakov
  • Patent number: 10023536
    Abstract: The disclosure provides nanostructures (e.g., nanospheres and nano-paddlewheels) formed through transition metal-ligand (e.g., Pd(II)-, Ni(II)-, or Fe(II)-ligand of Formula (A)) coordination and junction self-assembly. The disclosure also provides supramolecular complexes that include the nanostructures connected by divalent linkers Y. The provided supramolecular complexes are able to form gels (e.g., hydrogels). The gels are suprametallogels and exhibited excellent mechanical properties without sacrificing self-healing and showed high robustness and storage modulus. The present disclosure further provides compositions (e.g., gels) that include the nanostructures or supramolecular complexes and optionally an agent (e.g., small molecule), where the nanostructures and the nanostructure moieties of the supramolecular complexes may encapsulate and slowly release the agent.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: July 17, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Jeremiah A. Johnson, Niels Holten-Andersen, Scott Charles Grindy, Ken Kawamoto, Aleksandr V. Zhukhovitskiy