Apertured Devices Mounted On One Or More Rods Passed Through Apertures (epo) Patents (Class 257/E25.017)
  • Patent number: 9029860
    Abstract: A structure includes a silicon substrate, a plurality of silicon rods on the silicon substrate, a silicon layer on the plurality of silicon rods, and a GaN substrate on the silicon layer.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: May 12, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Xianyu Wenxu, Yeon-hee Kim, Chang-youl Moon, Yong-young Park
  • Patent number: 8853682
    Abstract: Self-aligning fabrication methods for forming memory access devices comprising a doped chalcogenide material. The methods may be used for forming three-dimensionally stacked cross point memory arrays. The method includes forming an insulating material over a first conductive electrode, patterning the insulating material to form vias that expose portions of the first conductive electrode, forming a memory access device within the vias of the insulating material and forming a memory element over the memory access device, wherein data stored in the memory element is accessible via the memory access device. The memory access device is formed of a doped chalcogenide material and formed using a self-aligned fabrication method.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: October 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Neil Greeley, Gurtej Sandhu, John Smythe, Bhaskar Srinivasan
  • Patent number: 8742596
    Abstract: Disclosed herein is a semiconductor device including: a first laminate having a wiring layer formed on a substrate; a second laminate having a wiring layer formed on a substrate, a principal surface of the second laminate being bonded to a principal surface of the first laminate; a functional element disposed in at least one of the first laminate and the second laminate; and an air gap penetrating an interface between the first laminate and the second laminate, the air gap being disposed on an outside of a circuit formation region including the functional element in at least one of the first laminate and the second laminate as viewed from a direction perpendicular to the principal surfaces of the first laminate and the second laminate.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: June 3, 2014
    Assignee: Sony Corporation
    Inventor: Takaaki Hirano
  • Patent number: 8587127
    Abstract: A semiconductor structure includes a dielectric layer disposed over a substrate. A metallic line is disposed in the dielectric layer. A through-silicon-via (TSV) structure continuously extends through the dielectric layer and the substrate. A surface of the metallic line is substantially leveled with a surface of the TSV structure.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: November 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Chih Chiou, Tsang-Jiuh Wu, Ku-Feng Yang, Hsin-Yu Chen
  • Patent number: 8446000
    Abstract: A package process includes following steps. A circuit mother board comprising a plurality of circuit boards is disposed on a carrier. Semiconductor devices are provided, wherein each of the semiconductor devices has a top surface and a bottom surface opposite thereto. Each of the semiconductor devices has conductive vias each having a first end surface and a second end surface exposed by the bottom surface of the semiconductor device. The semiconductor devices are connected to the corresponding circuit boards through their conductive vias with their bottom surface facing the circuit mother board. An insulating paste is formed between each of the semiconductor devices and its corresponding circuit board. A protection layer is formed on the circuit mother board to cover the semiconductor devices. Then, the protection layer and the semiconductor devices are thinned to expose the first end surface of each of the conductive vias.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 21, 2013
    Inventors: Chi-Chih Shen, Jen-Chuan Chen, Tommy Pan, Hui-Shan Chang, Chia-Lin Hung
  • Patent number: 8415661
    Abstract: Self-aligning fabrication methods for forming memory access devices comprising a doped chalcogenide material. The methods may be used for forming three-dimensionally stacked cross point memory arrays. The method includes forming an insulating material over a first conductive electrode, patterning the insulating material to form vias that expose portions of the first conductive electrode, forming a memory access device within the vias of the insulating material and forming a memory element over the memory access device, wherein data stored in the memory element is accessible via the memory access device. The memory access device is formed of a doped chalcogenide material and formed using a self-aligned fabrication method.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: April 9, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Neil Greeley, Bhaskar Srinivasan, Gurtej Sandhu, John Smythe
  • Patent number: 8399297
    Abstract: Methods of forming pre-encapsulated frames comprise flowing a dielectric encapsulation material around at least one conductive trace. A cavity configured to receive at least one semiconductor device at least partially in the cavity is formed in the encapsulation material. A first connection area of the at least one trace is exposed within the cavity. At least another connection area of the at least one trace is exposed laterally adjacent to the cavity. The dielectric encapsulation material is hardened to form a pre-encapsulated frame.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 19, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Tay Wuu Yean, Wang Ai-Chie
  • Patent number: 8344516
    Abstract: A silicon chip includes a silicon substrate, a plurality of pads, and a plurality of through vias to connect back-end-of-line wiring to the plurality of pads. The silicon substrate includes a layer of active devices and the back-end-of-line wiring connected to the active devices.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventor: Timothy J. Chainer
  • Publication number: 20120119383
    Abstract: Microelectronic packages are fabricated by stacking integrated circuits upon one another. Each integrated circuit includes a semiconductor layer having microelectronic devices and a wiring layer on the semiconductor layer having wiring that selectively interconnects the microelectronic devices. After stacking, a via is formed that extends through at least two of the integrated circuits that are stacked upon one another. Then, the via is filled with conductive material that selectively electrically contacts the wiring. Related microelectronic packages are also described.
    Type: Application
    Filed: January 26, 2012
    Publication date: May 17, 2012
    Inventors: Pil-kyu Kang, Jung-Ho Kim, Jong-Wook Lee, Seung-woo Choi, Dae-Lok Bae
  • Patent number: 8174126
    Abstract: A stacked multi-chip comprises a base layer, a first chip, a first stacked chip and at least one second stacked chip. The base layer comprises a mounting panel and a redistributed layer. The redistributed layer is mounted on the mounting panel. The first chip comprises an electrically non-conductive layer and a connective layer. The electrically non-conductive layer comprises a TSV channel. The connective layer abuts the redistributed layer. The first stacked chip is mounted on the first chip and comprises an electrically non-conductive layer and a connective layer. The electrically non-conductive layer comprises a TSV channel that is connected to the TSV channel of the first chip. The second stacked chip is mounted on the first stacked chip and comprises an electrically non-conductive layer and a connective layer. The electrically non-conductive layer comprises a TSV channel. The connective layer is connected to the connective layer of the first stacked chip.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: May 8, 2012
    Assignee: National Tsing Hua University
    Inventors: Ting-Ting Hwang, Hsien-Te Chen
  • Patent number: 8164171
    Abstract: System-in packages, or multichip modules, are described which can include multi-layer chips in a multi-layer polymer structure, on-chip metal bumps on the multi-layer chips, intra-chip metal bumps in the multi-layer polymer structure, and patterned metal layers in the multi-layer polymer structure. The multi-layer chips in the multi-layer polymer structure can be connected to each other or to an external circuit through the on-chip metal bumps, the intra-chip metal bumps and the patterned metal layers. The system-in packages can be connected to external circuits through solder bumps, meal bumps or wirebonded wires.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: April 24, 2012
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Patent number: 8124456
    Abstract: Semiconductor device assemblies include elements such as electronic components and substrates secured together by a fastener that includes an elongated portion extending continuously through an aperture in two or more such elements. Computer systems include such semiconductor device assemblies. Fasteners for securing together such elements include an elongated portion, a first end piece, and a second end piece. Methods of securing together a plurality of semiconductor devices include inserting an elongated portion of a fastener through an aperture in a first semiconductor device and an aperture in at least one additional semiconductor device. Circuit boards include a plurality of apertures disposed in an array corresponding to an array of apertures in a semiconductor device assembly. Each aperture is sized and configured to receive a fastener for maintaining an assembled relationship between the semiconductor device assembly and the circuit board.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: February 28, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Thomas H. Kinsley
  • Patent number: 8110910
    Abstract: A stack package includes a first semiconductor chip possessing a first size and one or more second semiconductor chips possessing a second size greater than the first size. The first semiconductor chip has a first surface on which bonding pads are disposed, a second surface which faces away from the first surface, and first through-electrodes which pass through the first surface and the second surface. The one or more second semiconductor chips are stacked on the second surface of the first semiconductor chip and have second through-electrodes which are electrically connected to the first through-electrodes. A molding part abuts one or more side surfaces of the first semiconductor chip such that a total size including the first size and a size of the molding part is equal to or greater than the second size.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: February 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jong Hoon Kim
  • Patent number: 8067840
    Abstract: The power amplifier module comprises a laminate substrate comprising thermal vias and terminals, as well as a platform device with an interconnection substrate of a semiconductor material. This substrate is provided with electrical interconnects at a first side, and having been mounted on the laminate substrate with an opposite second side. Electrically conducting connections extend from the first to the second side through the substrate. A power amplifier device is attached to the second side of the substrate. One of the electrically conducting connection through the interconnection substrate is a grounding path for the power amplifier, while a thermal path is provided by the semiconductor material. There is an optimum thickness for the interconnection substrate, at which both a proper grounding and a acceptable thermal dissipation is effected.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: November 29, 2011
    Assignee: NXP B.V.
    Inventors: Jeroen A. Bielen, Marcus H. Van Kleef, Freerk E. Van Straten
  • Patent number: 8058732
    Abstract: Disclosed are semiconductor die structures that enable a die having a vertical power device to be packaged in a wafer-level chip scale package where the current-conducting terminals are present at one surface of the die, and where the device has very low on-state resistance. In an exemplary embodiment, a trench and an aperture are formed in a backside of a die, with the aperture contacting a conductive region at the top surface of the die. A conductive layer and/or a conductive body may be disposed on the trench and aperture to electrically couple the backside current-conducting electrode of the device to the conductive region. Also disclosed are packages and systems using a die with a die structure according to the invention, and methods of making dice with a die structure according to the invention.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: November 15, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Michael D. Gruenhagen, Suku Kim, James J. Murphy, Ihsiu Ho, Eddy Tjhia, Chung-Lin Wu, Mark Larsen, Rohit Dikshit
  • Patent number: 8030780
    Abstract: Semiconductor substrates with unitary vias and via terminals, and associated systems and methods are disclosed. A representative method in accordance with a particular embodiment includes forming a blind via in a semiconductor substrate, applying a protective layer to a sidewall surface of the via, and forming a terminal opening by selectively removing substrate material from an end surface of the via, while protecting from removal substrate material against which the protective coating is applied. The method can further include disposing a conductive material in both the via and the terminal opening to form an electrically conductive terminal that is unitary with conductive material in the via. Substrate material adjacent to the terminal can then be removed to expose the terminal, which can then be connected to a conductive structure external to the substrate.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: October 4, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Kunal R. Parekh
  • Patent number: 8008667
    Abstract: A semiconductor device includes a first semiconductor layer and a first semiconductor element located in the first semiconductor layer. The semiconductor device also includes a second semiconductor layer of a transparent semiconductor material. The second semiconductor layer is disposed on the first semiconductor layer covering the first semiconductor element. The semiconductor device also includes a second semiconductor element located in the second semiconductor layer. The semiconductor device also includes a wire extending within the second semiconductor layer and electrically connecting the first and second semiconductor elements.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: August 30, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hidetoshi Koyama, Yoshitaka Kamo
  • Patent number: 7898095
    Abstract: A method for stacking integrated circuit substrates and the substrates used therein are disclosed. In the method, an integrated circuit substrate having top and bottom surfaces is provided. The substrate is divided vertically into a plurality of layers including an integrated circuit layer having integrated circuit elements constructed therein and a buffer layer adjacent to the bottom surface. An alignment fiducial mark extending from the top surface of the wafer into the substrate to a depth below that of the circuit layer is constructed. The vias are arranged in a pattern that provides a fiducial mark when viewed from the bottom surface of the substrate. The pattern can be chosen such that it is recognized by a commercial stepper/scanner/contact mask aligner when viewed from said backside of said wafer. After the substrate is thinned, the alignment fiducial mark is then used to position a mask used in subsequent processing.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: March 1, 2011
    Assignee: Tezzaron Semiconductor, Inc.
    Inventors: Robert Patti, Sangki Hong, Chockalingam Ramasamy
  • Patent number: 7855444
    Abstract: A mountable integrated circuit package system includes: providing a substrate having an opening provided therein; providing an encapsulated integrated circuit package having an external leadfinger; mounting the encapsulated integrated circuit package by the external leadfinger proximate to the opening in the substrate; and connecting the external leadfinger and the substrate.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: December 21, 2010
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Albelardo Jr. Hadap Advincula, Henry Descalzo Bathan, Lionel Chien Hui Tay
  • Patent number: 7723213
    Abstract: A method for manufacturing a semiconductor chip having through electrodes includes forming, in a semiconductor wafer, a plurality of electrode forming holes for forming through electrodes, superimposing bump forming masks formed with a plurality of bump holes over the front and back surfaces of the semiconductor wafer respectively so that the electrode forming holes and the bump holes are brought into alignment, placing the semiconductor wafer with the bump forming masks superimposed thereon over a stage, embedding conductive paste into the bump holes and the electrode forming holes from the bump forming mask disposed over the surface on the side opposite to the stage, of the semiconductor wafer, detaching the bump forming masks from the semiconductor wafer after the conductive paste has been embedded, and dividing the semiconductor wafer into fractions after the bump forming masks have been detached.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: May 25, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Syunji Ichikawa
  • Patent number: 7663232
    Abstract: Semiconductor device assemblies include elements such as electronic components and substrates secured together by a fastener that includes an elongated portion extending continuously through an aperture in two or more such elements. Computer systems include such semiconductor device assemblies. Fasteners for securing together such elements include an elongated portion, a first end piece, and a second end piece. Methods of securing together a plurality of semiconductor devices include inserting an elongated portion of a fastener through an aperture in a first semiconductor device and an aperture in at least one additional semiconductor device. Circuit boards include a plurality of apertures disposed in an array corresponding to an array of apertures in a semiconductor device assembly. Each aperture is sized and configured to receive a fastener for maintaining an assembled relationship between the semiconductor device assembly and the circuit board.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: February 16, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Thomas H. Kinsley
  • Patent number: 7193307
    Abstract: A power array includes a plurality of FET power assemblies and each FET power assembly has at least one field effect transistor mounted to a ciruit board. The circuit boards are arranged atop each other. A power supply pin extends through the circuit boards and is connected to a power input of each field effect transistor. A power output of each FET power assembly is connected to a power output pin which extends through each of the circuit boards. A heat sink is mounted to the power array beneath the lowest FET power assembly and is thermally connected to the field effect transistors of each FET power assembly. A method of assembling a power array including a plurality of FET power assemblies with at least one field effect transistor.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: March 20, 2007
    Assignee: Ault Incorporated
    Inventors: Michael R. Duggan, Nazario Lopes
  • Patent number: 7061094
    Abstract: A multilayer printed circuit board (PCB) includes a substrate; a ground layer having edges which define a gap portion, the ground layer being provided on a bottom face of the substrate; and at least two signal traces and provided on a top face of the substrate so as to straddle the gap portion and so as to be substantially parallel to each other. The multilayer PCB also includes at least one ground trace provided between the at least two signal traces and on the top face of the substrate so as to straddle the gap portion.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: June 13, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Eiji Takahashi, Takeshi Nakayama