By Impinging Plural Liquid Masses Patents (Class 264/11)
  • Patent number: 7972543
    Abstract: An object of the present invention is to provide a process for producing microspheres that are solid microparticles or liquid microparticles for use as an emulsion employed in the food industry, production of medicine and cosmetic etc. or an emulsion for DDS (drug delivery system). The object is attained by a process for producing a microsphere including: separating a disperse phase from a continuous phase by a substrate 1 having a through-hole 7; and extruding the disperse phase into the continuous phase through the through-hole 7, in which the substrate having the through-hole 7 with a width of 0.5 to 500 ?m, a depth of 10 ?m to 6000 ?m and a ratio of the width to the depth of the through-hole 7 of 1 to 1/30 is a metal substrate.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: July 5, 2011
    Assignees: National Agriculture and Food Research Organization, Kuraray Co., Ltd.
    Inventors: Mitsutoshi Nakajima, Taiji Nishi, Seiichi Kanai, Takenori Kitani, Motohiro Fukuda
  • Publication number: 20110158901
    Abstract: Water-dispersible chitosan-based nanoparticles comprising a cross-linked chitosan polymer are provided. The chitosan-based nanoparticles advantageously have a particle size of about 100 nm or less and may include an imaging agent, a target-specific ligand, and/or a biologically active compound bonded to the chitosan polymer.
    Type: Application
    Filed: December 29, 2010
    Publication date: June 30, 2011
    Inventor: Swadeshmukul Santra
  • Patent number: 7968020
    Abstract: Systems and methods for pelletizing hot asphaltenes are provided. Asphaltenic hydrocarbons can be dispersed to provide two or more asphaltenic particles. The asphaltenic hydrocarbons can be at a temperature of from about 175° C. to about 430° C. The asphaltenic particles can be contacted with a film of cooling medium. The film can have a thickness of from about 1 mm to about 500 mm. At least a portion of the asphaltenic particles can be solidified by transferring heat from the asphaltenic particles to the cooling medium to provide solid asphaltenic particles. The solid asphaltenic particles can be separated from at least a portion of the cooling medium.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: June 28, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventors: Gary L. Behelfer, Maury Schlossman
  • Publication number: 20110101553
    Abstract: A method and a device for continuously preparing microspheres, and a collection unit thereof are provided. The collection unit for collecting microspheres in the solution comprises a tank and a first plate. The first plate is removably disposed in the tank. The first plate, when lay across the tank, has its two ends came in contact with the sidewall of the tank so as to divide the tank into a first chamber and a second chamber. The tank has an outlet located in the second chamber. After the solution with microspheres are input to the first chamber of the tank, the microspheres are deposited around the first plate, and the solution is caused to pass through or over the first plate to the second chamber and output from the outlet.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 5, 2011
    Applicant: TAIWAN BIOTECH CO., LTD.
    Inventors: Shou-Min HUANG, Chun-Wei Liu, Kuo-Hua Yang
  • Publication number: 20110081643
    Abstract: In a method and system for forming concentrated volumes of microbeads, a polymer solution and/or suspension includes a polymer dissolved and/or dispersed in a medium. Streams of a focusing fluid and of the polymer solution and/or suspension flow towards a fluid bath, and into intersection with one another, so &s to focus the polymer solution and/or suspension. The polymer solution and/or suspension stream forms microbeads in the fluid bath. Some of the focusing fluid is drawn from the fluid bath, so as to concentrate the microbeads in die fluid bath. The system includes a flow focusing apparatus and a liquid-containing cell. The focusing apparatus includes polymer and focusing nozzles. The cell contains the fluid bath and has an outlet port, through which the focusing fluid is drawn from the fluid bath.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 7, 2011
    Inventors: Sebastian Fournier-Bidoz, Warren Che Wor Chan
  • Patent number: 7901606
    Abstract: The present invention provides a method of producing porous structures, particles or matrixes, which may be comprised of one or a plurality of components, an apparatus for carrying out the method and particles formed in accordance with the method. The method is particularly suitable for producing porous composite or pure particles for pharmaceutical applications. In accordance with the method, a composite comprising a material such as a pharmaceutical, a biodegradable polymers and/or a biological agent is formed. The composite must further comprise a material that is soluble in supercritical fluid. Extraction of the supercritical fluid soluble material produces porous structures, which may be in the form of particles or matrixes.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 8, 2011
    Assignee: Ferro Corporation
    Inventors: Pratibhash Chattopadhyay, Boris Y. Shekunov, Jeffrey S. Seitzinger
  • Publication number: 20110017415
    Abstract: A process for manufacturing fiberboard by preparing a fiber slurry mixture including containing cellulose fibers and water then atomizing a liquid bituminous material, such as asphalt. The liquid bituminous material is atomized by mixing it with a pressurized gas, such as compressed air, forming a mist comprising droplets of bituminous material having a diameter between 20 microns and 50 microns. A water spray solidifies the bituminous material droplets thereby forming bituminous particles which fall into the fiber slurry within the spray chamber. From there the slurry is sheared, dewatered, and dried, forming a finished fiberboard.
    Type: Application
    Filed: September 14, 2010
    Publication date: January 27, 2011
    Applicant: W.R. MEADOWS, INC.
    Inventor: Tariq Mahmood Malik
  • Patent number: 7815772
    Abstract: A process for manufacturing fiberboard by preparing a fiber slurry mixture including containing cellulose fibers and water then atomizing a liquid bituminous material, such as asphalt. The liquid bituminous material is atomized by mixing it with a pressurized gas, such as compressed air, forming a mist comprising droplets of bituminous material having a diameter between 20 microns and 50 microns. A water spray solidifies the bituminous material droplets thereby forming bituminous particles which fall into the fiber slurry within the spray chamber. From there the slurry is sheared, dewatered, and dried, forming a finished fiberboard.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: October 19, 2010
    Assignee: W. R. Meadows Inc.
    Inventor: Tariq Mahmood Malik
  • Patent number: 7780757
    Abstract: The present invention provides a method and apparatus for producing fine particles. According to the production method, a molten material 1 which has been formed by melting a raw material to be formed into fine particles is supplied in the form of droplets 1a or a jet flow to a liquid coolant 3, and a vapor film formed so as to cover the molten material supplied to the liquid coolant 3 is forcedly broken to promote vapor explosion, thereby forming and cooling fine particles for solidification. The production method and apparatus can readily produce fine particles from a raw material having a high melting point, and can relatively readily produce submicron fine particles—such particles are difficult to produce by mean of the previously developed technique. The method and apparatus can produce amorphous fine particles, or polycrystalline fine particles having a target particle size by regulating conditions for fine particle formation and for cooling-solidification.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: August 24, 2010
    Assignee: Central Research Institute of Electric Power Industry
    Inventor: Masahiro Furuya
  • Patent number: 7754777
    Abstract: The invention relates to a method for obtaining micro- and nanodisperse systems. In particular, it relates to a method that allows said systems, such as liposomes, emulsions and suspensions, to be obtained with a size of less than 50 ?m, and preferably less than 1 ?m, and with improved stability properties over time, which includes the stages of a) Dissolving or suspending a compound C in a fluid A, to obtain a mixture AC, in the form of a solution or dispersion; b) Thermostatising said mixture AC to a temperature of between ?50° C. and 200° C.; c) Adding a fluid B to mixture AC until a pressure P is obtained; and it is characterised in that in said stage (c) formation of the solution AB occurs and because it includes, d) Reducing the pressure of solution AB to a pressure lower than or equal to 100 bars, and then e) Adding a fluid E, in which fluid A is miscible and in which compound C is partially or totally insoluble at atmospheric pressure, with said fluid E acting as a crystallisation interruption agent.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: July 13, 2010
    Assignee: Sociedad Espanola De Carburos Metalicos, S.A.
    Inventors: Nora Ventosa, Jaume Veciana, Santiago Sala, Mary Cano
  • Patent number: 7740775
    Abstract: A process for preparing particles of a substance comprising contacting a first formulation including a first substance with a first solvent stream and a second solvent stream, thereby causing formation of particles of the first substance, wherein both the first and second solvent streams are in a non-supercritical state, and subjecting the resultant mixture to a separation process which causes separation of the first substance from the first and second solvent streams.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: June 22, 2010
    Assignee: Glaxo Group Limited
    Inventors: Mazin Nicola, Neale Gray
  • Publication number: 20100144670
    Abstract: A process for producing particles of a substance is described wherein a solution of the substance in a solvent is delivered in at least one shot into a supercritical fluid. The supercritical fluid is a non-solvent for the substance and is miscible with the solvent. Particles of the substance distributed in a mixture of the solvent and the supercritical fluid are formed.
    Type: Application
    Filed: October 5, 2007
    Publication date: June 10, 2010
    Inventors: Neil Russell Foster, Roderick Peng Tze Sih
  • Patent number: 7718099
    Abstract: A fine channel device capable of producing fine particles in an industrial scale, hardening the fine particles immediately after the production and recovering the fine particles from a medium without collapsing the shape of the produced fine particles, a fine particle producing method using the fine channel device and a solvent extraction method using the fine channel, are presented. The fine channel device comprises a fine channel provided with an inlet port and an inlet channel which feed a dispersion phase, an inlet port and an inlet channel which feed a continuous phase, and an outlet channel and an outlet port which discharge fine particles produced by the dispersion phase and the continuous phase, wherein the inlet channel for feeding the dispersion phase and the inlet channel for feeding the continuous phase are joined at an arbitrary angle, and the two inlet channels are connected to the outlet channel at the arbitrary angle.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: May 18, 2010
    Assignee: Tosoh Corporation
    Inventors: Akira Kawai, Koji Kitayama, Toru Futami, Katsuyuki Hara, Tomohiro Ohkawa, Keiichiro Nishizawa, Hideaki Kiriya, Hirotatsu Kusakabe
  • Publication number: 20100109178
    Abstract: Embolization, as well as related particles and methods, are described.
    Type: Application
    Filed: January 5, 2010
    Publication date: May 6, 2010
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Janel Lanphere, Marcia Buiser, Thomas V. Casey, II
  • Patent number: 7666333
    Abstract: Embolization, as well as related particles and methods, are described.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: February 23, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Janel L. Lanphere, Marcia S. Buiser, Thomas V. Casey
  • Patent number: 7632434
    Abstract: Abrasive disk sheet articles having raised islands coated with spherical abrasive agglomerates that can provide both precision flat and smooth workpiece surfaces by high speed lapping are described. These disks also provide high material removal rates and low surface pick-out of soft metallic or non-metallic materials embedded in hard workpieces. A method of producing equal-sized spherical shaped composite abrasive agglomerate beads containing small diamond abrasive particles is described. These beads can be bonded directly on the flat surface of a flexible backing or bonded onto raised island surfaces. Simple and inexpensive apparatus devices and process techniques are described that allow efficient low-volume batch or continuous web manufacturing of precision thickness, large diameter abrasive disk or rectangular sheet abrasive articles.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: December 15, 2009
    Inventor: Wayne O. Duescher
  • Patent number: 7625507
    Abstract: Reduced levels of drug degradation in drug-containing multiparticulates are obtained by an extrusion/melt-congeal process.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: December 1, 2009
    Assignee: Pfizer Inc.
    Inventors: Roderick J. Ray, Leah E. Appel, David D. Newbold, Dwayne T. Friesen, Scott B. McCray, David K. Lyon, James B. West, Marshall D. Crew, Joshua R. Shockey
  • Publication number: 20090233398
    Abstract: Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 17, 2009
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Robert V. Fox, Rene Rodriguez, Joshua Pak
  • Patent number: 7537803
    Abstract: A process, method and/or system for preparing polymer-coated nanoparticles and/or other ultrafine particles utilizing a supercritical fluid, e.g., supercritical carbon dioxide (SC CO2), as an antisolvent that may be added to a solution of a polymer and an organic solvent in which insoluble nanoparticles or the like are suspended. The coating process occurs when the supercritical fluid (e.g., SC CO2) and the nanoparticle-containing suspension are combined to cause the suspended nanoparticles to precipitate as coated nanoparticles. Processing parameters for optimizing and/or enhancing the efficacy and/or efficiency of the coating process, method and/or system and for controlling the coating and/or agglomeration of coated particles are also described. The process, method and/or system has wide ranging applicability, e.g., for coating and/or encapsulation of pharmaceuticals, cosmetics, food products, chemicals, agrochemicals, pesticides, polymers, coatings, catalysts and the like.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: May 26, 2009
    Assignee: New Jersey Institute of Technology
    Inventors: Yulu Wang, Robert Pfeffer, Rajesh Dave
  • Publication number: 20090014902
    Abstract: The invention relates to a method for dissolving cellulose e.g. for the production of regenerated cellulose products such as films, fibres, particles and the like. In said method, the cellulose material is dissolved using an enzymatic treatment, followed by a base treatment. The invention is also directed to a method for producing cellulose particles wherein cellulose dissolved as described above is sprayed or mixed into a regenerating solution for precipitating cellulose particles. Moreover, the invention relates to the use of said cellulose particles produced with this method as a filler and/or coating pigment of paper and board. The invention is also directed to methods for producing and coating paper and board.
    Type: Application
    Filed: June 27, 2006
    Publication date: January 15, 2009
    Inventors: Kimmo Koivunen, Petri Silenius, Janne Laine, Tapani Vuorinen
  • Patent number: 7455797
    Abstract: The present invention provides a method of producing particles via a supercritical fluid processing technique, an apparatus for carrying out the method and the particles produced thereby. The method includes: (1) providing: a supercritical fluid; a first solvent that is soluble in the supercritical fluid; a second solvent that is substantially insoluble in the supercritical fluid and is at least partially soluble in or miscible with the first solvent; and a solute that is soluble in the first solvent and is substantially insoluble in the second solvent and the supercritical fluid; (2) contacting the first solvent, the second solvent and the solute together to form a solution; and (3) contacting the solution with the supercritical fluid to extract the first solvent from the solution and precipitate the solute in the form of particles that are suspended in the second solvent.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: November 25, 2008
    Assignee: Ferro Corporation
    Inventors: Boris Y. Shekunov, Pratibhash Chattopadhyay, Jeffrey S. Seitzinger, Robert Huff
  • Publication number: 20080246172
    Abstract: A fine channel device capable of producing fine particles in an industrial scale, hardening the fine particles immediately after the production and recovering the fine particles from a medium without collapsing the shape of the produced fine particles, a fine particle producing method using the fine channel device and a solvent extraction method using the fine channel, are presented. The fine channel device comprises a fine channel provided with an inlet port and an inlet channel which feed a dispersion phase, an inlet port and an inlet channel which feed a continuous phase, and an outlet channel and an outlet port which discharge fine particles produced by the dispersion phase and the continuous phase, wherein the inlet channel for feeding the dispersion phase and the inlet channel for feeding the continuous phase are joined at an arbitrary angle, and the two inlet channels are connected to the outlet channel at the arbitrary angle.
    Type: Application
    Filed: January 30, 2008
    Publication date: October 9, 2008
    Applicant: TOSOH CORPORATION
    Inventors: Akira KAWAI, Koji Kitayama, Toru Futami, Katsuyuki Hara, Tomohiro Ohkawa, Keiichiro Nishizawa, Hideaki Kiriya, Hirotatsu Kusakabe
  • Patent number: 7332111
    Abstract: The present invention provides methods and devices for producing particles with an average diameter less than about 15 ?m using the precipitation with compressed fluid-antisolvent (PCA) process and the carbon-dioxide assisted nebulization with a bubble dryer (CAN-BD) process. In the methods and nozzles of the invention, at least one jet of supercritical or near-supercritical fluid and at least one jet of solution interact to mix the supercritical or near-supercritical fluid and the solution within a chamber. The solution contains at least one solvent and at least one solute. At least one of the jets is a swirling jet. To form particles, the solvent and supercritical or near-supercritical fluid are then injected into a PCA or a CAN-BD process chamber. The degree of mixing depends in part on the power input into the mixing chamber. Power inputs of about 6.5×109 W/m3 enhance the degree of mixing and allow production of nanoscale particles with the PCA process.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: February 19, 2008
    Assignee: The Regents of the University of Colorado
    Inventors: Willy Grothe, Daniel Jarmer, Corinne Lengsfeld, Theodore Randolph
  • Patent number: 7311861
    Abstract: Embolization, as well as related particles and methods, are described.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: December 25, 2007
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Janel Lanphere, Marcia Buiser, Thomas V. Casey, II
  • Patent number: 7297179
    Abstract: A method of producing (1) metal particles or (2) metal fine-particles, which contains: jetting out two solutions of (1) a metal salt solution and a reducing agent solution, or (2) a metal ion-containing solution and a hydroxide ion-containing solution, from respective nozzles to a mixing chamber, to give a mixed reaction solution; and discharging the mixed reaction solution from a discharging port having a diameter smaller than a diameter of the mixing chamber, wherein one of the two solutions is made into straightly-going flow, which is jetted from a nozzle having a diameter smaller than the diameter of the mixing chamber to the mixing chamber, and the other solution is jetted out, as flow substantially orthogonal to the straightly-going flow, to a position before a position where eddy viscosity generated by the straightly-going flow would be maximum.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: November 20, 2007
    Assignee: Fujifilm Corporation
    Inventor: Katsuhisa Ohzeki
  • Patent number: 7105124
    Abstract: A unified arrangement for providing a unique nanofibrous porous media formed as a chemical compound from a water-soluble polymer combined with a cross-linking agent with a balance of water, which chemical compound prevents the polymer from dissolving in water, including a humid environment.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: September 12, 2006
    Assignee: AAF-McQuay, Inc.
    Inventor: Kyung-Ju Choi
  • Patent number: 7101499
    Abstract: Apparatus for producing pellets from hot heavy hydrocarbon or asphaltene, in accordance with the present invention, includes flow means that supplies the hot heavy hydrocarbon or asphaltene through a conduit to its outlet; and pellet producing medium or means that breaks up the liquid stream of the hot asphaltene flowing out of the outlet of the conduit and produces pellets of asphaltene. Furthermore, the apparatus includes a reservoir or container that collects the pellets of heavy hydrocarbon or asphaltene together with some fluid producing a slurry; and transporting means that transports the slurry to the required location. Preferably, the fluid is liquid water. In addition, the pellet producing medium preferably is liquid water.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: September 5, 2006
    Assignee: Ormat Technologies, Inc.
    Inventors: Yoram Bronicki, J. Robert Friday, Philip B. Rettger
  • Patent number: 6998051
    Abstract: A method of producing microparticles and nanoparticles of a solute via the extraction of solvent, having the solute dissolved therein, from an emulsion using a supercritical fluid. The solute to be precipitated is dissolved in the solvent to form a solution, and the solution is dispersed in an immiscible or partially miscible liquid to form an emulsion. The particles are produced via the extraction of the solvent from the emulsion using the supercritical fluid. The process can produce an aqueous suspension of particles that are substantially insoluble in water, and the solvents used in the process to form the emulsion initially can be recovered and recycled.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: February 14, 2006
    Assignee: Ferro Corporation
    Inventors: Pratibhash Chattopadhyay, Boris Y. Shekunov, Jeffrey S. Seitzinger, Robert W. Huff
  • Patent number: 6966990
    Abstract: A method for producing composite particles using a supercritical fluid extraction technique on an emulsion. First and second materials (for example; a polymer and a biologically active material) are dissolved or suspended in a preferably solvent to form a solution or dispersion. The solution or dispersion is emulsified in a polar solvent to form an oil-in-water or water-in-oil-in-water emulsion. The emulsion is contacted with a supercritical fluid to extract the solvent. Removal of the solvent by the supercritical fluid from the emulsion supersaturates at least the first material in the solution causing the first material to precipitate out of the solution as composite particles that include both the first and second materials.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: November 22, 2005
    Assignee: Ferro Corporation
    Inventors: Pratibhash Chattopadhyay, Boris Y. Shekunov, Jeffrey S. Seitzinger, Robert W. Huff
  • Patent number: 6946088
    Abstract: The invention relates to a thermosetting coating mass, comprising a carboxyl functional polyester, and/or a carboxyl functional polyacrylate, a ?-hydroxyalkylamide, in which a portion of the hydroxyl groups are chemically blocked and/or fillers and/or heat stabilisers and/or triboadditives and/or further additives, such as, for example, dispersing and degassing agents.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: September 20, 2005
    Assignee: EMS-Chemie AG
    Inventors: Andreas Kaplan, Albert Reich
  • Patent number: 6830714
    Abstract: A process, and a suitable apparatus, for production of particles of a material in which stream of a dispersion of the material in a solvent and a stream of a compressible fluid antisolvent substance are mixed under conditions such that the substance is in compressible fluid antisolvent state. The mixture then flows along a conduit (17) toward an orifice (18), from which it flows into a downstream region in which the compressible fluid antisolvent substance decompresses and the material is isolated in a particulate state. Preferably the antisolvent substance is a supercritical fluid. The process and apparatus can generate a co-formulation of the material with additives which can be introduced in a suitable aqueous or solvent based carrier vehicle.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: December 14, 2004
    Assignee: SmithKline Beecham plc
    Inventors: Petrus Paulus Cornelis Avontuur, David Roy Merrifield, Andrew Robert Souter, Christopher Edmund Valder, John Peter Warr
  • Publication number: 20040164435
    Abstract: Methods for producing granular compositions comprise the steps of preparing a viscous liquid mixture, forming a plurality of ligaments from the viscous liquid mixture, cutting the ligaments with one or more liquid jet streams to form pieces, and drying the pieces to form the granular compositions. Apparatus for producing a granular compositions comprise a viscous liquid composition supply, a ligament forming device in fluid communication with a viscous liquid composition supply, one or more liquid jet nozzles adjacent an outlet of a ligament forming device, and a dryer.
    Type: Application
    Filed: February 19, 2004
    Publication date: August 26, 2004
    Applicant: The Procter & Gamble Company
    Inventor: Aleksey Mikhailovich Pinyayev
  • Patent number: 6751831
    Abstract: A base textile with a camouflage pattern is subjected to hot fluid streams to create flat regions and puckered or wrinkled regions, enhancing the three dimensional characteristics of the resulting material.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: June 22, 2004
    Assignee: Milliken & Company
    Inventors: Howard C. Willauer, J. David Strength, William L. McLeod
  • Patent number: 6682677
    Abstract: Coagulation spinning produces structures such as fibers, ribbons, and yarns of carbon nanotubes. Stabilization, orientation, and shaping of spun materials are achieved by post-spinning processes. Advantages include the elimination of core-sheath effects due to carbonaceous contaminants, increasing mechanical properties, and eliminating dimensional instabilities in liquid electrolytes that previously prohibited the application of these spun materials in electrochemical devices. These advances enable the application of coagulation-spun carbon nanotube fibers, ribbons, and yarns in actuators, supercapacitors, and in devices for electrical energy harvesting.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: January 27, 2004
    Assignee: Honeywell International Inc.
    Inventors: Alex Lobovsky, Jim Matrunich, Mikhail Kozlov, Robert C. Morris, Ray H. Baughman, Anvar A. Zakhidov
  • Patent number: 6576023
    Abstract: A method and an apparatus are provided for efficiently manufacturing microspheres having a uniform particle diameter. The apparatus comprises: case 1 having a lower body 1a and an upper body 1b. A seal ring 3, a first plate 4 which is comprised of a transparent plate such as a glass plate or a plastic plate, an annular spacer 5, an intermediate plate 6 which is comprised of a silicon substrate or the like, an annular spacer 7, a second plate 8 and a seal ring 9 are inserted in this order into a concave portion 2 formed in the lower body 1a. The upper body 1b is superposed thereon. Further, the upper body 1b is attached to the lower body 1a with bolts or the like.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: June 10, 2003
    Assignees: Japan as represented by Director of National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Bio-Oriented Technology Research Advancement Institution
    Inventors: Mitsutoshi Nakajima, Hiroyuki Fujita, Yuji Kikuchi, Isao Kobayashi
  • Publication number: 20030102585
    Abstract: The invention concerns a method for obtaining fibres and strips from colloidal particles, characterised in that it consists in: 1) dispersing said particles in a solvent optionally using a surfactant; 2) injecting the resulting dispersion solution through at least an orifice emerging into a flow of an external solution, preferably, having a higher viscosity than said dispersion, the viscosity levels being measured in the same temperature and pressure conditions, so as to cause said particles to agglomerate into fibres or strips by destabilising the particle dispersions and optionally aligning said particles.
    Type: Application
    Filed: December 9, 2002
    Publication date: June 5, 2003
    Inventors: Philippe Poulin, Brigitte Vigolo, Alain Penicaud, Claude Coulon
  • Publication number: 20030047824
    Abstract: The invention provides a method and apparatus for forming particles of a substance, comprising (a) introducing into a particle formation chamber, the temperature and pressure in which are controlled, a first supercritical fluid (SCF) and a solution or suspension of the substance in a vehicle, (b) simultaneously introducing an impinging flow of a second supercritical fluid (SCF), at an angle to, and directed at, the direction of flow of the first supercritical fluid, so as to increase the amount of kinetic energy transferred to the solution or suspension; and (c) using either or both of the first and the second supercritical fluids to disperse the solution or suspension, and to extract the vehicle from it, substantially simultaneously and substantially immediately on introduction of the fluids into the particle chamber.
    Type: Application
    Filed: August 22, 2002
    Publication date: March 13, 2003
    Applicant: Bradford Particle Design PLC
    Inventors: Mazen Hanna, Peter York
  • Patent number: 6461642
    Abstract: The invention provides a process for preparing essentially crystalline particles containing a substance in solvated form, by dissolving the substance in a first solvent, introducing the solution and a supercritical or subcritical fluid into an apparatus, wherein the fluid contains an anti-solvent and a second solvent, which is water. Preferably, the anti-solvent is carbon dioxide which is totally saturated with the second solvent, which is water. The invention further provides formulations comprising particles produced according to the present process containing one or more pharmacologically active substances and one or more pharmaceu-tically acceptable excipients, use of said formulations in the treatment of an allergic and/or inflammatory condition of the nose or lungs and methods for treatment of such conditions.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: October 8, 2002
    Assignee: AstraZeneca AB
    Inventors: Mikael Bisrat, Saeed Moshashaee, Håkan Nyqvist, Mustafa Demirbüker
  • Patent number: 6458296
    Abstract: The invention relates to a method for capsulating microbial, plant and animal cells or biological and chemical substances, using a nozzle to obtain small, especially spherical particles by vibrating an immobilisation mixture. According to said method, the immobilisation mixture, especially a laminar fluid jet taking the form of an immobilisation mixture, is divided into equal parts by superimposition of an external vibration. In a device especially well suited to carry out this method a metallic counter-element (18) which is mounted down-stream from the nozzle (16) at a distance (a) to, and on the outside of, the nozzle axis (A) is connected to a high-voltage source (30). The counter-element is to be embodied by a metal ring (18) through whose through hole (20) the nozzle axis (A) extends. The metal ring (18) is radially connected to an insulated support (22, 24).
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: October 1, 2002
    Assignee: Inotech AG
    Inventors: Christoph Heinzen, Raphael Plüss-Wenzinger, Fritz Widmer, Harry Brandenberger
  • Publication number: 20020125590
    Abstract: A production method for producing granulated materials comprises sampling step for sampling at predetermined time intervals diffracted and/or scattered light from growing particles under granulation in a granulation tank as measured particle size distribution data by applying beam light to the growing particles, calculating step for calculating the size of particle from the measured particle size distribution data by applying a specific algorithm, comparison step for comparing the particle size from the measured particle size distribution data with that from the particle size distribution objective data prepared in advance, and correction step for adding change to basic feedback control for granulation process in accordance with the result of the comparison step.
    Type: Application
    Filed: February 22, 2002
    Publication date: September 12, 2002
    Inventors: Yasushi Watanabe, Kiyoshi Morimoto, Satoru Hiruta, Hideyuki Ikeda
  • Patent number: 6440337
    Abstract: The invention provides a method and apparatus for forming particles of a substance, comprising (a) introducing into a particle formation chamber, the temperature and pressure in which are controlled, a first supercritical fluid (SCF) and a solution or suspension of the substance in a vehicle; (b) simultaneously introducing an impinging flow of a second supercritical fluid (SCF), at an angle to, and directed at, the direction of flow of the first supercritical fluid, so as to increase the amount of kinetic energy transferred to the solution or suspension; and (c) using either or both of the first and the second supercritical fluids to disperse the solution or suspension, and to extract the vehicle from it, substantially simultaneously and substantially immediately on introduction of the fluids into the particle chamber.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: August 27, 2002
    Assignee: Inhale Therapeutic Systems, Inc.
    Inventors: Mazen Hanna, Peter York
  • Patent number: 6319434
    Abstract: In a process for granulating and disintegrating molten slags, in particular blast furnace slags, with water, a compressed water jet is directed into the slag and the slag is ejected as the jacket of the compressed water jet. The device for carrying out the process comprises a slag vessel for molten slag including an outlet opening for the molten slag, wherein a lance opens into the axis of the slag outlet opening such that the molten slag is ejected by compressed water or vapor introduced through the lance.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: November 20, 2001
    Assignee: “Holderbank” Financière Glarus AG
    Inventor: Alfred Edlinger
  • Patent number: 6287362
    Abstract: Metal lumps or pebbles are produced by introducing a molten metal stream into a stream of water in a direction which is substantially the same as the direction of the water stream and at a velocity which is substantially the same or slightly less than the velocity of the water stream.
    Type: Grant
    Filed: June 22, 1998
    Date of Patent: September 11, 2001
    Assignee: Mintek
    Inventors: Fiona Catherine Levey, Michael Bernard Cortie, Ian James Barker
  • Patent number: 6248267
    Abstract: The present invention provides fibril system fibers which may be employed in filter applications and in artificial leather applications, and also provides an industrially superior manufacturing method for such fibril system fibers, and a spinning nozzle. The fibril fibers of the present invention include at least one macromolecular polymer having a film forming ability, and they have a structure in which fibrillated fibers having a diameter of 10 micrometers or less branch from main fibers having a width within a range of 0.1 micrometers-500 micrometers, and a length within a range of 10 micrometers-10 cm.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: June 19, 2001
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Yoshihiko Hosako, Teruyuki Yamada, Katsuhiko Shinada, Hideaki Habara, Shigeki Ogawa, Sadatoshi Nagamine, Keiji Hirota, Takashi Kozakura
  • Patent number: 6197230
    Abstract: The present invention relates to a process for the preparation of a mixture of cellulosic fibers and microfibers. Said process comprises: the preparation of a cellulosic solution (C); the extrusion of said solution (C) through the hole or holes of a die (1); the disintegration of said solution (C) when it comes out of said hole or holes by projecting a liquid or gas fluid (F) in a direction making an angle lower than or equal to 75 degrees with the axis of said die (1); said fluid (F) being neutral or appropriate to regenerate or precipitate, only partially, the cellulose; the reception in a cellulose regeneration or precipitation bath, of the dispersion generated at the disintegration step; the recovery of the mixture of fibers and microfibers, more or less bonded, obtained in said bath. Said process provides for the preparation of mixtures rich in microfibers (with a fineness lower than 1 dtex, particularly between 0.5 and 0.3 dtex).
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: March 6, 2001
    Assignee: Acordis Fibres (Holdings) Limited
    Inventors: Michel Pierre, Nathalie Brunet, Patrick Navard
  • Patent number: 6177479
    Abstract: In an apparatus for continuously manufacturing microspheres, a dispersed phase (O) is supplied to a chamber 27 for the dispersed phase inside of a bulkhead member 26 via a supply port 23. Thereafter, the dispersed phase enters into a gap 31 between a plate 22 via a supply port 29 in a base 25. The dispersed phase which enters into the gap 31 grows microspheres (particles) having a certain diameter while passing through a microchannel 33 by pressure applied by, for example, a pump, and is mixed with a continuous phase (W), so that microspheres are produced. The thus-produced microspheres float or are suspended in the continuous phase without needing any particular external force in response to their specific gravity, allowing the microspheres to be generated and withdrawn from a withdrawal port 32 at a significantly reduced pressure in comparison to conventional methods and apparatus.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: January 23, 2001
    Assignees: Japan as represented by Director of National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Bio-oriented Technology Research Advancement Institution
    Inventors: Mitsutoshi Nakajima, Yuji Kikuchi, Yoh Sano, Hiroshi Nabetani, Takahiro Kawakatsu, Isao Kobayashi, Hironoshin Takao
  • Patent number: 6165393
    Abstract: The present invention is for providing a production method of a dielectric lens with the excellent productivity, capable of achieving the shape accuracy or density homogeneity of the demanded level, and capable of injection molding of a matching layer without forming a gap with respect to a lens main body. A lens main body is formed by the injection compression molding method, using a composite dielectric material containing a thermoplastic resin as the dielectric material for the lens main body. After forming a matching layer (first surface side matching layer) on either surface of the front or rear surfaces (first surface) side of the lens main body, and injecting a matching layer material, a matching layer (second surface side matching layer) is formed on the other surface of the lens main body (that is, the matching layer is formed by the two operation injection molding method of injecting to one surface side of the lens main body, and then injection to the other surface side).
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: December 26, 2000
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroshi Nonogaki, Keizo Yamamoto, Tatsuhiro Nakamura
  • Patent number: 6144500
    Abstract: A plastic lens which can be positioned correctly during lens mounting. The plastic lens is used as a pickup lens on an optical head for an optical disk and it has a lens portion in the center with an annular rim formed on the periphery. The rim has two opposed surfaces, one of which provides a reference plane to effect positioning for fixing the plastic lens in a lens holder. The rim has a gate portion which remains to project from the periphery after a molten plastic material was injected through the corresponding channel during molding. The gate portion is cut off by a pair of cutting blades which are moved to come closer to each other in a direction substantially parallel to the optical axis of the lens portion. As the result of the cutting operation, a bur occurs at a distal end of the gate portion and it projects in a direction parallel to a plane orthogonal to the optical axis.
    Type: Grant
    Filed: March 3, 1998
    Date of Patent: November 7, 2000
    Assignee: Asahi Kogaku Kogyo Kabushiki Kaisha
    Inventors: Makoto Iwaki, Haruyuki Ohashi
  • Patent number: 6132652
    Abstract: In a method of producing a lightguide plate for surface light source according to the present invention, a plate-shaped metal mold for defining the shape of a part of a cavity of a molding die and particularly, the shape of a light emitting surface of the lightguide plate for surface light source (a concavo-convex shape, a lenticular lens shape, etc.) is provided so as to be replaceable, to form a cavity having a desired shape by the replacement of the plate-shaped metal mold. Resin liquid is injected into the cavity, its resin liquid is solidified, and the resin is then released from the cavity. Consequently, a lightguide plate for surface light source having a desired shape and particularly, having its light emitting surface in a desired shape is produced.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: October 17, 2000
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masahiro Higuchi, Takanari Kusafuka, Yoshiaki Maeno
  • Patent number: 6113817
    Abstract: Efficient and consistent processes for manufacturing moldings, especially ophthalmic lenses such as contact lenses. The processes comprises a series of improvements, including improvements in the areas of conditions for dispensing liquid prepolymer into lens molds, male and female mold mating, reusable molds, mold cleaning, lens separation from molds (demolding), lens handling, and in-line inspection. Cyclic series of processing steps are also disclosed. Additionally, an improved molding tool is disclosed, with the molding tool including a male mold housing and a female mold housing, each of which have disposed therein a plurality of mold halves.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: September 5, 2000
    Assignee: Novartis AG
    Inventors: Peter Herbrechtsmeier, Karl Baur, Roger Biel, John Golby, Roland Hauck, Peter Hagmann, Axel Heinrich, Otto Kretzschmar, Anette Lang, Achim Muller, Thomas Schulz, Bernhard Seiferling, Werner Steffan