Filaments Patents (Class 264/29.2)
  • Patent number: 10525641
    Abstract: Apparatuses for forming a composite structure are configured to provide a tension at least partially along at least one ply of material as the at least one ply of material is supplied from a material feed assembly to a tool.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: January 7, 2020
    Assignee: Northrop Grumman Innovation Systems, Inc.
    Inventors: Vernon M. Benson, Jason K. Slack, Todd A. Rosevear, James L. Harvey, Mark Roman, Timothy S. Olschewski
  • Patent number: 10422054
    Abstract: A method of producing doped carbon fibers, doped systems to prepare graphene-fiber hybrid structures, or doped carbon nanostructures, includes forming doped polymer precursors and decomposing at least a portion of the polymeric precursors to form carbon fibers. The decomposition may be accomplished by treating the doped polymer precursors with acid vapor from an aqueous acid solution at a temperature of less than 250° C.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: September 24, 2019
    Assignee: Board of Regents of the University of Texas System
    Inventors: Karen Lozano, Lee Daniel Cremar, Maria del Rocio Nava Lara, Mandana Akia
  • Patent number: 10388967
    Abstract: A porous carbon catalyst exhibiting excellent catalytic activity and a method of producing the same, and an electrode and a battery. The porous carbon catalyst is obtained through carbonization of an organic polymer porous body having a skeleton containing a metal in an inside thereof. The porous carbon catalyst may have a skeleton containing the metal in an inside thereof, and the skeleton may be a particle aggregate-like skeleton. The method of producing a porous carbon catalyst includes carbonizing an organic polymer porous body having a skeleton containing a metal in an inside thereof.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: August 20, 2019
    Assignee: NISSHINBO HOLDINGS INC.
    Inventors: Yasuo Imashiro, Yuji Kubota, Akiko Taira
  • Patent number: 10350878
    Abstract: A system for additively manufacturing a composite part comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a thermosetting-resin component. The thermosetting-resin component comprises a first part and a second part. The non-resin component comprises a first element and a second element. The system further comprises a first resin-part applicator, configured to apply the first part to the first element, and a second resin-part applicator, configured to apply the second part to the second element. The system also comprises a feed mechanism, configured to pull the first element through the first resin-part applicator, to pull the second element through the second resin-part applicator, and to push the continuous flexible line out of the delivery guide.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: July 16, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraòn Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10260171
    Abstract: The present invention relates to a method for the continuous production of low thermal conductivity endless filament yarns with a compact, homogeneous structural morphology. The presently disclosed methods utilize safe and recyclable ionic liquids to produce carbon fiber precursors from cellulose. The fibers are produced by the carbonization of cellulose carbon fiber precursors. The precursor fiber filaments have an increased tear resistance with simultaneously sufficient elongation, a round or crenulated cross-section, and homogeneous fiber morphology. The filament yarns exhibit performance characteristics similar to those produced from traditional viscose rayon. The resulting fibers are especially suited for aerospace applications in composite materials used at the limits of high temperatures, for instance in structures found in rocket nozzles or atmospheric reentry heat shields on spacecraft.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: April 16, 2019
    Assignee: The Board of Trustees of the University of Alabama, For and on behalf of The University of Alabama in Huntsville
    Inventor: William Felix Kaukler
  • Patent number: 10246798
    Abstract: There is provided a method of making a fiber having improved resistance to microfracture formation at a fiber-matrix interface. The method includes mixing a plurality of nanostructures and one or more first polymers in a first solvent to form an inner-volume portion mixture, mixing one or more second polymers in a second solvent to form an outer-volume portion mixture, spinning the inner-volume portion mixture and the outer-volume portion mixture to form a precursor fiber, heating the precursor fiber to oxidize the precursor fiber and to change a molecular-bond structure of the precursor fiber, and obtaining a fiber. The fiber has an inner-volume portion with a first outer diameter, the nanostructures, and with the one or more first polymers, and has an outer-volume portion with a second outer diameter and the one or more second polymers, the outer-volume portion being in contact with and completely encompassing the inner-volume portion.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: April 2, 2019
    Assignee: The Boeing Company
    Inventor: Thomas Karl Tsotsis
  • Patent number: 10066342
    Abstract: According to an aspect, the present embodiments may be associated with a wet-laid, nonwoven material including high temperature refractory fibers and thermoplastic fibers formed into the nonwoven material using a wet-laid process. In an embodiment, a fluoropolymer is included in the nonwoven material. In an embodiment, the refractory fibers are at least partially cleaned of shot and latex binder or binder fiber is eliminated or at least substantially reduced.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: September 4, 2018
    Assignee: Lydall, Inc.
    Inventors: Casey James Lasell, Jeff Daval Miller
  • Patent number: 9920456
    Abstract: A carbon-fiber-precursor acryl fiber bundle, including a polyacrylonitrile-based copolymer that contains from 95 to 99 mol % of an acrylonitrile unit and from 1 to 5 mol % of a hydroxyalkyl (meth)acrylate unit, where the fiber bundle has a single-fiber fineness of from 1.5 dtex to 5.0 dtex and a roundness of from 0.75 to 0.9 in a cross-section shape perpendicular to a fiber axis of the single fiber; the roundness being determined with equation (1): roundness=4?S/L2, where S is a cross-sectional area of the single fiber and L is a circumferential length of the single fiber, and S and L are obtained by observing, under an SEM, the cross-section of the single fiber perpendicular to the fiber axis of the single fiber and analyzing the obtained image.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: March 20, 2018
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yuusuke Shinmen, Norifumi Hirota, Takeshi Nii
  • Patent number: 9890480
    Abstract: Poly-(caffeyl alcohol) (PCFA), also known as C-lignin, is a promising new source of both carbon fibers and pure carbon. PCFA can be used to produce carbon fibers by direct electrospinning, without blending with another polymer to reduce breakage. Analyses have shown that the carbon obtained from PCFA is superior to that obtained from other lignins. The fibers formed from PCFA are smoother, have a narrower diameter distribution, and show very low defects. The PCFA can be obtained by extraction from plant seed coats. Examples of these plants include the vanilla orchid, Vanilla planifolia, and Jatropha curcas. The fibers may be formed through electrospinning, although other methods for forming the fibers, such as extrusion with a carrier polymer, could be used. The fibers may then be carbonized to increase the carbon yield.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: February 13, 2018
    Assignee: UNIVERSITY OF NORTH TEXAS
    Inventors: Richard Dixon, Nandika D'Souza, Fang Chen, Mangesh Nar
  • Patent number: 9828700
    Abstract: Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: November 28, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Amit Kumar Naskar, Marcus Andrew Hunt, Tomonori Saito
  • Patent number: 9738994
    Abstract: A carbon-fiber-precursor acrylic fiber bundle which can smoothly pass through a flame-resistance impartation step and a carbonization step. The carbon-fiber-precursor acrylic fiber bundle has a high-density part as a portion thereof, wherein the high-density part satisfies the following requirements (A) and (B). Requirement A: The high-density part has a maximum fiber density ?max of 1.33 g/cm3 or higher. Requirement B: The portion extending between an intermediate-density point and a maximum-density-region arrival point has an increase in fiber density of 1.3×10?2 g/cm3 or less per 10 mm of the fiber bundle length.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: August 22, 2017
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Tadanobu Ikeda, Tadao Samejima, Youji Hatanaka, Tetsu Yasunami
  • Patent number: 9725829
    Abstract: Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400° C. and less than 2200° C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400° C. or 500° C. and less than or up to 1000° C., 1100° C., or 1200° C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200° C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 8, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Amit K. Naskar, Soydan Ozcan, Claude C. Eberle, Mohamed Gabr Abdallah, Gail Mackiewicz Ludtka, Gerard Michael Ludtka, Felix Leonard Paulauskas, John Daniel Kennedy Rivard
  • Patent number: 9728809
    Abstract: A nonaqueous electrolyte battery includes a positive electrode, a negative electrode and a nonaqueous electrolyte. The negative electrode contains a titanium-containing oxide. The nonaqueous electrolyte contains a compound having a functional group represented by the formula (1) below and a sultone having an unsaturated hydrocarbon group. [Chem.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: August 8, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroki Inagaki, Yumi Fujita, Norio Takami
  • Patent number: 9593210
    Abstract: Methods of producing low-halogen-containing polysilazane resins, which are used to make silicon carbide fibers and ceramic coatings, provide processes for removing halogens, including chlorine, from precursor polysilazane resins.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: March 14, 2017
    Assignee: General Electric Company
    Inventors: Slawomir Rubinsztajn, Eric James Pressman, Ryan Christopher Mills, Peter Kennedy Davis
  • Patent number: 9551098
    Abstract: A nonwoven material is composed of a nonwoven batt of a plurality of bundles formed of carbon fibers. At least some of the bundles have a curved progression that includes a curved vertex area of a first curvature between the bundle ends and at least one bundle end area of a second curvature extending from said one bundle end to the vertex. The first curvature is greater than the second curvature, in particular it is greater by at least 50%.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: January 24, 2017
    Assignee: SGL Automotive Carbon Fibers GmbH & Co. KG
    Inventors: Birgit Reiter, Martin Danzer, Gerald Ortlepp
  • Patent number: 9510977
    Abstract: A wound dressing for covering a wound is formed of at least one absorbing member and a plurality of elongated activated carbon fibers. The at least one absorbing member is made of a foamed polymeric material and includes a plurality of pores. The activated carbon fibers are distributed in the at least one absorbing member and partially protrude into the pores. Each of the activated carbon fibers has a diameter of 2-15 ?m and a length of 40-1500 ?m. In light of the above, the tissue fluid leaking from the wound can be absorbed by the absorbing member to prevent the wound from soakage and the activated carbon fibers inside the absorbing member can emit far-infrared rays to promote the blood circulation around the wound for quickening healing of the wound.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: December 6, 2016
    Assignee: BIO-MEDICAL CARBON TECHNOLOGY CO., LTD.
    Inventors: Tse-Hao Ko, Jui-Hsiang Lin, Pei-Hsun Chou, Yen-Ju Su
  • Patent number: 9463979
    Abstract: The purpose of the present invention is to provide a manufacturing device and a manufacturing method that use carbon fiber reinforced plastic (CFRP) as a source material for the efficient, low-cost manufacture of recycled carbon fibers exhibiting excellent ease of handling. A device for manufacturing recycled carbon fibers is provided with: a dry distillation-carbonization furnace (101) having a box-shaped main body (105), a dry distillation-carbonization chamber (102) which accommodates CFRP (40), a combustion chamber (103) equipped with a burner (104), and a heating chamber (115) formed in the space between the main body (105) and the dry distillation-carbonization chamber (102); and a continuous furnace (26) that continuously heats the CFRP (25) after dry distillation and removes a portion of the fixed carbon.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: October 11, 2016
    Assignee: Carbon Fiber Recycle Industry Ltd.
    Inventors: Hidehito Itazu, Hajime Kanki
  • Patent number: 9446955
    Abstract: Disclosed is a method of producing a continuous lignin fiber from softwood and/or hardwood alkali lignin. The lignin fiber can be further treated to obtain structural carbon fiber.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: September 20, 2016
    Assignee: INNVENTIA AB
    Inventors: Elisabeth Sjholm, Goran Gellerstedt, Rickard Drougge, Ida Norberg, Ylva Nordstrom
  • Patent number: 9434617
    Abstract: Disclosed are carbon nanotubes and a method for manufacturing the same. Advantageously, the method provides a high yield of potato or sphere-shaped non-bundled carbon nanotubes having a bulk density of 80 to 250 kg/m3, an ellipticity of 0.9 to 1.0 and a particle diameter distribution (Dcnt) of 0.5 to 1.0 using a two-component carbon nanotube catalyst comprising a catalyst component and an active component.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: September 6, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Kyung Yeon Kang, Jin Do Kim, Sung Jin Kim, Jae Keun Yoon
  • Patent number: 9428850
    Abstract: Processes for producing carbon fiber, the filament thereof and pre-oxidized fiber are provided. In one embodiment, the gel spinning of polyacrylonitrile filament is achieved by using small-molecule gelling agent, and the carbon fiber obtained thereby is increased by 15% to 40% in tensile strength and by 20% to 35% in toughness. In another embodiment, the melt spinning process of polyacrylonitrile is conducted by using imidazole type ion liquid as plasticizer, the process reduces environment pollution, is suitable for industrial production and the fiber produced thereby is improved in its strength. In yet another embodiment, polyacrylonitrile pre-oxidized fiber is produced by melt spinning, so low cost and controllable pre-oxidization of polyacrylonitrile can be achieved. In a further embodiment, high strength carbon fiber is manufactured by using polymer thickening agent.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: August 30, 2016
    Assignee: DONGHUA UNIVERSITY
    Inventors: Muhuo Yu, Huaiping Rong, Keqing Han, Zhaohua Wang, Yiwei Zhang, Qinli Dong
  • Patent number: 9379385
    Abstract: (Problem) A porous carbon material having excellent graphite crystallinity, good carrier mobility and proper porosity, a porous carbon material having edges of carbon hexagonal planes located on outer surfaces of particle and structure, and flaky graphite being similar to graphene are produced. (Means to Solve) By subjecting a carbon material, in which a closed-pore-ratio and an amount of remaining hydrogen in the material are set to be within a proper range, to hot isostatic pressing treatment, a vapor phase growth reaction of graphite is generated in closed pores as nuclei using hydrogen and hydrocarbon generated from the carbon material, thereby producing a large amount of targeted porous carbon material at low cost. Flaky graphite being similar to graphene is produced by applying physical impact to the obtained porous carbon material or by generating a graphite intercalation compound using the porous carbon material as a host and then quickly heating the compound.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: June 28, 2016
    Assignee: INCUBATION ALLIANCE, INC.
    Inventors: Kazuo Muramatsu, Masahiro Toyoda
  • Patent number: 9267080
    Abstract: Provided is a carbonization furnace in which disordering of fiber bundles does not occur and there is no lack of uniformity throughout the entire furnace interior, even in the supply of heated inert gas. A carbonization furnace for manufacturing carbon fiber bundles, the furnace being provided with a heat treatment chamber, an inlet sealed chamber and an outlet sealed chamber, a gas spray nozzle, and a conveyance path, wherein: the gas spray nozzle (4) has a double tube structure obtained from a hollow cylindrical inner tube (8) and a hollow cylindrical outer tube (7), and is disposed in a direction that is horizontal and is orthogonal to the fiber bundle conveyance direction; in the outer tube, multiple gas-spraying holes (7a) are disposed across the width of the conveyance path in the longitudinal direction of the outer tube, and the area of the gas-spraying holes of the outer tube is 0.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: February 23, 2016
    Assignee: MITSUBISHI RAYON CO., LTD.
    Inventors: Yusuke Oka, Nobuyuki Yamamoto, Akito Hatayama
  • Patent number: 9228276
    Abstract: Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95° C.; and carbonizing the resulting product by heating it to a temperature of 500-3000° C.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: January 5, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Bryan E. Barton, Zenon Lysenko, Mark T. Bernius, Eric J. Hukkanen
  • Patent number: 9045347
    Abstract: A novel polycrystalline stoichiometric fine SiC fiber substantially free of impurities is produced using a novel pre-ceramic polymer. The pre-ceramic polymer is prepared by reacting a mixture of chlorodisilane, boron trichloride, and a vinyl chlorodisilane with an excess of hexamethyldisilazane to form the pre-ceramic polymer resin, which may then be melt-spun, cured, pyrolyzed and heat-treated to obtain the finished SiC fiber. The manufacturing process for the production of the fine SiC ceramic fiber allows for flexibility with respect to cross-linking, in that low-cost thermal treatments may replace more complex methods, while obtaining fibers with improved materials properties as compared to currently available SiC fibers.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: June 2, 2015
    Assignee: General Electric Company
    Inventors: Edward J. A. Pope, Christopher L. Hill, Carl N. Brabham, Jerry M. King, Bernard T. Morkunas
  • Publication number: 20150128827
    Abstract: A preparation method for a flame-retardant and corrosion-resistant fiber bamboo substrate comprises the following steps of: 1) cutting raw bamboo into bamboo filaments; 2) flame-retardant treatment: soaking the bamboo filaments prepared in Step 1) in aqueous solution of a flame retardant; 3) drying: drying the flame-retardant treated bamboo filaments at 55° C. to 65° C.; 4) carbonized pyrolysis: feeding the dried bamboo filaments into a carbonized pyrolysis kiln; and 5) sequentially gumming, post-gumming drying, pressing, curing, maintaining and splitting to obtain a bamboo substrate.
    Type: Application
    Filed: July 19, 2013
    Publication date: May 14, 2015
    Applicant: Wuxi Boda Bamboo and Wood Industrial Co., Ltd. (CN)
    Inventor: Guoqiang Sun
  • Publication number: 20150118141
    Abstract: Carbon fibers made by a process using an organogel precursor that includes a nucleophilic filler and polyacrylonitrile; such a process which includes dry-jet wet spinning; and an article made from such carbon fibers.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 30, 2015
    Applicants: NANORIDGE MATERIALS, INCORPORATED
    Inventor: Christopher Allen Dyke
  • Publication number: 20150111449
    Abstract: We report a method of preparation of highly elastic graphene oxide films, and their transformation into graphene oxide fibers and electrically conductive graphene fibers by spinning. Methods typically include: 1) oxidation of graphite to graphene oxide, 2) preparation of graphene oxide slurry with high solid contents and residues of sulfuric acid impurities. 3) preparation of large area films by bar-coating or dropcasting the graphene oxide dispersion and drying at low temperature. 4) spinning the graphene oxide film into a fiber, and 5) thermal or chemical reduction of the graphene oxide fiber into an electrically conductive graphene fiber. The resulting films and fiber have excellent mechanical properties, improved morphology as compared with current graphene oxide fibers, high electrical conductivity upon thermal reduction, and improved field emission properties.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Rodolfo Cruz-Silva, Aaron Morelos, Mauricio Terrones, Ana Laura Elias, Nestor Perea-Lopez, Morinobu Endo
  • Publication number: 20150069666
    Abstract: The present invention relates to carbon nanotube fibers reinforced with a carbon precursor and a method for manufacturing the same. The carbon nanotube fibers reinforced with a carbon precursor according to the present invention are carbonized by the empty space inside the carbon nanotube fibers being filled with a carbon precursor, and therefore, are highly effective in that the mechanical and thermal properties are improved due to effective stress transfer and contact resistance decrease, and these properties are maintained intact even at high temperatures.
    Type: Application
    Filed: April 11, 2013
    Publication date: March 12, 2015
    Inventors: Young Jin Jeong, Jun Young Song, Dong Hwan Cho, Byung Kuk Kim
  • Publication number: 20150053079
    Abstract: A hollow fiber carbon molecular sieve membrane, a process for preparing the hollow fiber carbon molecular sieve membrane, and a process for effecting separation of an olefin from a gaseous mixture that comprises the olefin in admixture with its corresponding paraffin and optionally one or more gaseous components selected from hydrogen, an olefin other than the olefin and a paraffin other than the corresponding paraffin. The process and membrane may also be used to effect separation of the olefin(s) from remaining feedstream components subsequent to an olefin-paraffin separation.
    Type: Application
    Filed: April 29, 2013
    Publication date: February 26, 2015
    Applicants: Dow Global Technologies LLC, Georgia Tech Research Corporation
    Inventors: William J. Koros, Liren Xu, Mark K. Brayden, Marcos V. Martinez, Brien A. Stears
  • Publication number: 20150035183
    Abstract: Processes for producing carbon fibre, the filament thereof and pre-oxidized fibre are provided. In one embodiment, the gel spinning of polyacrylonitrile filament is achieved by using small-molecule gelling agent, and the carbon fibre obtained thereby is increased by 15% to 40% in tensile strength and by 20% to 35% in toughness. In another embodiment, the melt spinning process of polyacrylonitrile is conducted by using imidazole type ion liquid as plasticizer, the process reduces environment pollution, is suitable for industrial production and the fibre produced thereby is improved in its strength. In yet another embodiment, polyacrylonitrile pre-oxidized fibre is produced by melt spinning, so low cost and controllable pre-oxidization of polyacrylonitrile can be achieved. In a further embodiment, high strength carbon fibre is manufactured by using polymer thickening agent.
    Type: Application
    Filed: October 20, 2014
    Publication date: February 5, 2015
    Inventors: Muhuo Yu, Huaiping Rong, Keqing Han, Zhaohua Wang, Yiwei Zhang, Qinli Dong
  • Patent number: 8932513
    Abstract: A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J.Lm; (b) overlaying the nanofibers to produce a nanofibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: January 13, 2015
    Assignee: South Dakota Board of Regents
    Inventors: Hao Fong, Lifeng Zhang, Yong Zhao, Zhengtao Zhu
  • Publication number: 20140353861
    Abstract: A method for producing a stabilized lignin fiber from softwood alkaline lignin by heat treatment in the absence of oxidant is disclosed. The stabilized lignin fiber can be further treated to obtain carbon fiber.
    Type: Application
    Filed: January 21, 2013
    Publication date: December 4, 2014
    Inventors: Elisabeth Sjöholm, Göran Gellerstedt, Rickard Drougge, Ida Norberg
  • Patent number: 8865106
    Abstract: In one embodiment of the disclosure, a composite raw material and a method for forming the same are provided. The method includes sulfonating a polycyclic aromatic compound to form a polycyclic aromatic carbon sulfonate (PCAS); and mixing the polycyclic aromatic carbon sulfonate and a polyacrylonitrile (PAN) to form a composite raw material. In another embodiment of the disclosure, a carbon fiber containing the composite raw material described above and a method for forming the same are provided.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 21, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Tun-Fun Way, Yu-Ting Chen, Jiun-Jy Chen, Hsiao-Chuan Chang
  • Publication number: 20140306364
    Abstract: Method for the preparation of carbon fiber, which comprises: (i) immersing functionalized polyvinyl precursor fiber into a liquid solution having a boiling point of at least 60° C.; (ii) heating the liquid solution to a first temperature of at least 25° C. at which the functionalized precursor fiber engages in an elimination-addition equilibrium while a tension of at least 0.1 MPa is applied to the fiber; (iii) gradually raising the first temperature to a final temperature that is at least 20° C. above the first temperature and up to the boiling point of the liquid solution for sufficient time to convert the functionalized precursor fiber to a pre-carbonized fiber; and (iv) subjecting the pre-carbonized fiber produced according to step (iii) to high temperature carbonization conditions to produce the final carbon fiber. Articles and devices containing the fibers, including woven and non-woven mats or paper forms of the fibers, are also described.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Inventor: UT-Battelle, LLC
  • Patent number: 8845938
    Abstract: A method of manufacturing a polyacrylonitrile fiber includes a spinning process in which a spinning dope including polyacrylonitrile is spun; a first drawing process; a drying process; and a second hot drawing process in this order.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: September 30, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Tomoko Ichikawa, Takashi Ochi, Akira Kishiro, Yasutaka Kato, Takashi Shibata, Masafumi Ise
  • Patent number: 8845950
    Abstract: A method to manufacture a carbon fiber electrode comprises synthesizing polyamic acid (PAA) as a polyimide (PI) precursor from pryomellitic dian hydride (PMDA) and oxydianiline (ODA) as monomers and triethylamine (TEA) as a catalyst, adding dimethylformamide (DMF) to the polyamic acid (PAA) solution to prepare a spinning solution and subjecting the spinning solution to electrostatic spinning at a high voltage to obtain a PAA nanofiber paper, converting the PAA nanofiber paper into a polyimide (PI) nanofiber paper by heating, and converting the polyimide (PI) nanofiber paper into a carbon nanofiber (CNF) paper by heating under an Ar atmosphere. Also, the method to manufacture a polyimide carbon nanofiber electrode and/or a carbon nanotube composite electrode may utilize carbon nanofibers having diameters that are lessened by optimizing electrostatic spinning in order to improve spinnability.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: September 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae Wook Park, Hyong Soo Noh, Hideo Nojima, Thi Xuyen Nguyen, Chul Ho Song, Young Hee Lee
  • Patent number: 8822029
    Abstract: A polyacrylonitrile-based polymer which satisfies at least one of [a] to [d]: [a] Z-average molecular weight (Mz) determined by gel-permeation chromatograph is 800,000 to 6,000,000 and degree of polydispersity (Mz/Mw) (Mw denotes weight average molecular weight) is 3.0 to 10.0; [b] Z+1-average molecular weight (Mz+1) determined by GPC method is 3,000,000 to 10,000,000 and degree of polydispersity (Mz+1/Mw) is 6.0 to 25.0; [c] Mzm determined by gel-permeation chromatograph multi-angle laserlight scattering photometry is 400,000 to 1,000,000 and degree of polydispersity (Mzm/Mwm) is 3.0 to 10.0; and [d] Z-average radius of gyration (Rz) determined by gel-permeation chromatograph multi-angle laserlight scattering photometry is 25 to 45 nm and its ratio to weight average radius of gyration (Rz/Rw) is 1.3 to 2.5.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: September 2, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Fumihiko Tanaka, Makoto Endo, Yuuki Okishima
  • Patent number: 8808609
    Abstract: The present invention has an object of providing the carbon fiber (or the nonwoven fabric configured of the aforementioned carbon fiber) of which the surface area, the graphitization degree, and the fiber diameter are large, high, and small, respectively, and yet of which dispersion is small. The method of producing the carbon fiber nonwoven fabric includes a dispersion liquid preparing step of preparing a dispersion liquid containing resin and pitch, an electrospinning step of producing the nonwoven fabric that is comprised of carbon fiber precursors with electrospinning from the aforementioned dispersion liquid, and a modifying step of modifying the carbon fiber precursors of the nonwoven fabric obtained in the aforementioned electrospinning step into the carbon fiber.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 19, 2014
    Assignees: TEC One Co., Ltd., Shinshu University
    Inventors: Takahiro Kitano, Fujio Okino
  • Publication number: 20140219909
    Abstract: Disclosed is a method of producing a continuous lignin fiber from softwood and/or hardwood alkali lignin. The lignin fiber can be further treated to obtain structural carbon fiber.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 7, 2014
    Applicant: INNVENTIA AB
    Inventors: Elisabeth Sjoholm, Goran Gellerstedt, Rickard Drougge, Ida Norberg, Ylva Nordstrom
  • Publication number: 20140175688
    Abstract: Making carbon fiber from asphaltenes obtained through heavy oil upgrading. In more detail, carbon fiber is made from asphaltenes obtained from heavy oil feedstocks undergoing upgrading in a continuous coking reactor.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: Honeywell Federal Manufacturing & Technologies, LLC
    Inventor: Honeywell Federal Manufacturing & Technologies, LLC
  • Publication number: 20140151914
    Abstract: Process for manufacturing carbon fibres, includes a first spinning step of a fibre of PAN precursor and a second oxidation/carbonization step of the fibre and the plant thereof. The spinning and oxidation/carbonization steps are performed directly in line and continuously, and hence without any stocking buffer area of a PAN precursor between the two steps. The spinning step is performed at low speed, so that the output speed from the spinning step, downstream of the stretching operations, is a speed falling within the range of the suitable processing speeds in the subsequent oxidation/carbonization step. Moreover, the spinning step is performed in a modular way on a plurality of spinning modules aligned in one or more rows, each spinning module having a productivity not above 10% of the overall productivity of the spinning step. In any individual spinning module, the fibres downstream of the spinning area follow zig-zag, rectilinear paths.
    Type: Application
    Filed: July 17, 2012
    Publication date: June 5, 2014
    Inventor: Marco Rovellini
  • Publication number: 20140099505
    Abstract: The present invention relates to compositions comprising esterified lignin and poly(lactic acid). In various embodiments, the present invention provides fibers comprising the esterified lignin and poly(lactic acid) blend, carbon fibers made therefrom, and methods of making the fiber and the carbon fibers.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 10, 2014
    Applicant: Iowa State University Research Foundation, Inc.
    Inventors: Mahendra Thunga, Keke Chen, Michael Richard Kessler
  • Patent number: 8673188
    Abstract: A carbon/carbon part and a process for making carbon/carbon parts is provided. The process involves forming steps, carbonization steps and densification steps. The forming steps may include needling fibrous layers to form fibers that extend in three directions. The carbonization steps may include applying pressure to increase the fiber volume ratio of the fibrous preform. The densification steps may include filling the voids of the fibrous preform with a carbon matrix.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: March 18, 2014
    Assignee: Goodrich Corporation
    Inventors: John S. Linck, Chris T. Kirkpatrick
  • Publication number: 20140038034
    Abstract: A method of making an anode includes the steps of providing fibers from a carbonaceous precursor, the carbon fibers having a glass transition temperature Tg. In one aspect the carbonaceous precursor is lignin. The carbonaceous fibers are placed into a layered fiber mat. The fiber mat is fused by heating the fiber mat in the presence of oxygen to above the Tg but no more than 20% above the Tg to fuse fibers together at fiber to fiber contact points and without melting the bulk fiber mat to create a fused fiber mat through oxidative stabilization. The fused fiber mat is carbonized by heating the fused fiber mat to at least 650° C. under an inert atmosphere to create a carbonized fused fiber mat. A battery anode formed from carbonaceous precursor fibers is also disclosed.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 6, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Orlando RIOS, Wyatt Evan TENHAEFF, Claus DANIEL, Nancy Johnston DUDNEY, Alexander JOHS, Grady Alexander NUNNERY, Frederick Stanley BAKER
  • Patent number: 8608992
    Abstract: A method for producing one or more nanofibers includes providing (a) a solution comprising a polymer and a solvent, (b) a nozzle for ejecting the solution, and (c) a stationary collector disposed a distance d apart from the nozzle. A voltage is applied between the nozzle and the stationary collector, and a jet of the solution is ejected from the nozzle toward the stationary collector. An electric field intensity of between about 0.5 and about 2.0 kV/cm is maintained, where the electric field intensity is defined as a ratio of the voltage to the distance d. At least a portion of the solvent from the stream is evaporated, and one or more polymer nanofibers are deposited on the stationary collector as the stream impinges thereupon. Each polymer nanofiber has an average diameter of about 500 nm or less and may serve as a precursor for carbon fiber production.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: December 17, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ioannis Chasiotis, Mohammad Naraghi, Salman N. Arshad
  • Patent number: 8603429
    Abstract: Disclosed is a production system (1) for a carbon fiber thread (Z) by continuously subjecting a carbon fiber thread precursor (X) having a jointed portion (a) connecting respective ends of two carbon fiber thread precursors (X) to heat treatment, which contains an oxidization oven (10) for subjecting the carbon fiber thread precursor (X) to an oxidization treatment, a carbonization furnace (12) for subjecting a thus obtained oxidized fiber thread to a carbonization treatment, a winder (18) for winding the carbon fiber thread (Z) around a winding bobbin, a detection means (24) for detecting the jointed portion (a), a positional information-acquisition means (26) for acquiring positional information of the jointed portion (a), a control means (28) for controlling the winder (18) in such a way that a carbon fiber thread including the jointed portion (a) and a carbon fiber thread not including the jointed portion (a) are separately wound up around different winding bobbins based on the positional information.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: December 10, 2013
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventor: Tadao Samejima
  • Patent number: 8603374
    Abstract: A polymer-bonded fiber agglomerate includes short fibers selected from carbon, ceramic materials, glasses, metals and organic polymers, and a polymeric bonding resin selected from synthetic resins and thermoplastics. The fiber agglomerates have an average length, measured in the fiber direction, of from 3 mm to 50 mm and an average thickness, measured perpendicularly to the fiber direction, of from 0.1 mm to 10 mm. At least 75% of all of the contained fibers have a length which is at least 90% and not more than 110% of the fiber agglomerate average length. A fiber-reinforced composite material having the fiber agglomerate and processes for the production thereof are also provided.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: December 10, 2013
    Assignee: SGL Carbon SE
    Inventors: Peter Domagalski, Alfred Haeusler, Ingrid Kraetschmer, Andreas Kienzle, Dieter Wuestner
  • Publication number: 20130316236
    Abstract: An anode material for a galvanic element, in particular a lithium-ion cell. To improve the current density and thermal stability of galvanic elements, the anode material includes nanofibers made of a metal, a metal alloy, a carbon-metal oxide composite material, a carbon-metal alloy composite material, a conductive polymer, a polymer-metal composite material, a polymer-metal alloy composite material or a combination thereof. The nanofibers may be in the form a nanofiber netting, a nonwoven and/or a network and may be connected to a current conductor.
    Type: Application
    Filed: October 6, 2011
    Publication date: November 28, 2013
    Inventors: Juergen Hackenberg, Benjamin Walther, Ingo Zeitler, Ulrike Mock
  • Publication number: 20130313739
    Abstract: A membrane-forming dope solution for carbon membranes, comprising a polyphenyleneoxide polymer, ammonium nitrate, and a solvent having a boiling point of 100° C. or more and being capable of dissolving these components; the membrane-forming dope solution having a concentration of the polyphenyleneoxide polymer of 20 to 40 wt. %, and a concentration of the ammonium nitrate of 1 to 10 wt. %. The membrane-forming dope solution for carbon membranes is subjected to vacuum defoaming, and then subjected to a spinning step, thereby producing a carbon hollow fiber membrane. The use of the membrane-forming dope solution for carbon membranes can reduce yarn breakage during spinning or the formation of pinhole defects in the resulting polymer hollow fiber membranes.
    Type: Application
    Filed: January 20, 2012
    Publication date: November 28, 2013
    Applicant: NOK Corporation
    Inventors: Yusuke Ikawa, Yutaka Koda, Hirokazu Yamamoto
  • Publication number: 20130309484
    Abstract: The invention provides nanostructure composite porous silicon and carbon materials, and also provides carbon nanofiber arrays having a photonic response in the form of films or particles. Composite materials or carbon nanofiber arrays of the invention are produced by a templating method of the invention, and the resultant nanomaterials have a predetermined photonic response determined by the pattern in the porous silicon template, which is determined by etching conditions for forming the porous silicon. Example nanostructures include rugate filters, single layer structures and double layer structures. In a preferred method of the invention, a carbon precursor is introduced into the pores of a porous silicon film. Carbon is then formed from the carbon precursor.
    Type: Application
    Filed: September 29, 2011
    Publication date: November 21, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OFCALIFORNIA
    Inventors: Michael J. Sailor, Timothy Kelly