By Mechanically Introducing Gas Into Material Patents (Class 264/50)
  • Patent number: 10442909
    Abstract: A constituent for producing a shock-absorbing composite material comprises 50-80 wt % primary matrix including vinyl acetate; ethylene/vinyl acetate copolymer; 10-40 wt % secondary matrix including polyethylene; styrene-butadiene rubber; a thermoplastic elastomer; and 1-20 wt % additive. A shock-absorbing composite material which contains the constituent and a production method thereof are further introduced. The shock-absorbing composite material is applicable to sports equipment (say, shoe pads, clubs and rackets), medical care (say, care-oriented clothes for the elderly, the sick, the injured, and the handicapped), and applications related to impact protection (say, helmets and bumpers.) The shock-absorbing composite material is applied to defense industry.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: October 15, 2019
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Teh-Long Lai, Chin-Wei Chun, Shyh-Chi Wu, Yung-Hsien Liu
  • Patent number: 10308781
    Abstract: A foamable aqueous composition can be used to form foamed, opacifying elements. These compositions have: (a) 0.5 to 20 weight % of porous particles having a continuous polymeric phase and discrete pores dispersed therein. The porous particles have a mode particle size of 2 to 50 ?m; (b) at least 20 weight % of a binder material; (c) 0.1 to 30 weight % of additives including dispersants, plasticizers, inorganic or organic pigments and dyes, thickeners, flame retardants, biocides, fungicides, optical brighteners, tinting colorants, metal flakes, and inorganic or organic fillers; (d) water; and (e) at least 0.001 weight % of an opacifying colorant different from (c). The foamable aqueous composition is suitably aerated, disposed on a porous substrate, dried, and crushed on the porous substrate. The method can be used to provide such elements with one or more dry foamed layers.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: June 4, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Mary Christine Brick, Mridula Nair, Kimberly S. Lindner, Peter G. Bessey
  • Patent number: 10269470
    Abstract: A cable core includes: an internal conductor; a foamed dielectric that includes a fluororesin and is formed on the internal conductor by extrusion molding; and a skin layer that covers the foamed dielectric, and is configured such that a foaming rate of the foamed dielectric is 80% or more, an average foamed cell diameter of the foamed dielectric is 10 ?m or less, and a standard deviation of a foamed cell diameter of the foamed dielectric is 2.5 or less.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: April 23, 2019
    Assignee: JUNKOSHA INC.
    Inventor: Takeshi Nakajima
  • Patent number: 10232549
    Abstract: Sound damping structures and methods for additively manufacturing composite structures having sound damping properties. In some embodiments, sound damping structures may be manufactured according to methods that may include selecting a desired sound damping geometry, inputting a three-dimensional computer-aided design model of the geometry into an additive manufacturing machine, and additively manufacturing a three-dimensional sound damping structure corresponding to the computer-aided design model.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: March 19, 2019
    Assignee: The Boeing Company
    Inventors: Michael William Hayes, Nathanial C. Cuddy
  • Patent number: 10201920
    Abstract: The present invention provides an apparatus for forming a polymer, comprising: a chamber having a predetermined pressure and storing a molten polymer resin; a foaming agent injection portion connected to the chamber and supplying a foaming agent, which is supplied from the outside, into the chamber by forming a pressure equal to or higher than the pressure inside the chamber; and a polymer backflow prevention portion provided at the foaming agent injection portion, and through which the supplied foaming agent passes so as to increase a contact surface area with the polymer resin, thereby preventing the backflow of the polymer resin.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: February 12, 2019
    Assignee: LG HAUSYS, LTD.
    Inventors: Byung Joo Jeon, Eung Kee Lee, Chul June Choi, Myeong Hee Kim, Ji Mun Kim, Seung Wook Ji
  • Patent number: 10184037
    Abstract: Rigid foam insulating products and processes for making such insulation products are disclosed. The foam products are formed from a polymer, a blowing agent, and nano-graphite. The nano-graphite has a size in at least one dimension less than about 100 nm and, in exemplary embodiments may be an intercalated, expanded nano-graphite. In addition, the nano-graphite may include a plurality of nanosheets having a thickness between about 10 to about 100 nanometers. The nano-graphite acts as a process additive to improve the physical properties of the foam product, such as thermal insulation and compressive strength. In addition, the nano-graphite in the foam controls cell morphology and acts as a nucleating agent in the foaming process. Further, the nano-graphite exhibits overall compound effects on foam properties including improved insulating value (increased R-value) for a given thickness and density and improved ultraviolet (UV) stability.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: January 22, 2019
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Raymond Breindel, Roland Loh, Joseph P. Rynd, Yadolah Delaviz, Mark E. Polasky
  • Patent number: 10029401
    Abstract: The invention disclosed herein relates to relates to foamed thermoplastic material objects and articles of manufacture having an internal layered cellular structure, as well as to methods of making the same. In one embodiment, the invention is directed to a multi-layer foamed polymeric article of manufacture, comprising: a non-laminated multi-layer thermoplastic material sheet, wherein the multi-layer thermoplastic material sheet has first and second discrete outer layers sandwiching a plurality of discrete inner foamed layers, and wherein the two outer layers and plurality discrete inner foamed layers are integral with one another. The thermoplastic material may be a semi-crystalline polymer such as, for example, PET (polyethylene terephthalate), PEEK (polyetheretherketone), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PMMA (polymethyl methacrylate), PLA (polylactide), polyhydroxy acid (PHA), thermoplastic urethane (TPU), or blends thereof.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 24, 2018
    Assignees: Dart Container Corporation, The University of Washington
    Inventors: Krishna Nadella, Gregory Branch, Vipin Kumar, Michael Waggoner
  • Patent number: 10005218
    Abstract: The invention relates to a process for production of expanded pellets from a polymer melt comprising a blowing agent, said process comprising the steps of: a) pressing the polymer melt comprising a blowing agent through a perforated disk controlled to a temperature between 150° C. and 280° C. and into a pelletizing chamber, b) using a cutting device to comminute the polymer melt pressed through the temperature-controlled perforated disk into individual expanding pellets, c) discharging the pellets from the pelletizing chamber using a liquid stream, wherein the blowing agent comprises CO2 or N2 or a combination of CO2 and N2 and the pelletizing chamber is traversed by a stream of liquid which is controlled to a temperature between 10° C. and 60° C. and the pressure of which is from 0.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: June 26, 2018
    Assignee: BASF SE
    Inventors: Hans Rudolph, Rainer Klostermann, Torben Kaminsky, Bernd Lohaus, Jürgen Ahlers, Bernhard Schmied, Peter Gutmann, Klaus Hahn, Frank Prissok, Elke Marten, Christian Däschlein
  • Patent number: 9963569
    Abstract: A method for providing a foamed, opacifying element includes providing a foamable aqueous composition, aerating it to a foam density of 0.1-0.5 g/cm3, applying the foamed aqueous composition to a porous substrate, drying, and densifying the dried layer. Such foamable aqueous compositions have 0.05-15 weight % of porous particles; at least 20 weight % of a binder; at least 0.0001 weight % of additives (including a surfactant); water; and at least 0.001 weight % of an opacifying colorant. Each porous particle includes a continuous polymeric phase and discrete pores; a mode particle size of 2-50 ?m; and a porosity of 20-70 volume %. The continuous polymeric phase Tg is >80° C. and has a polymer viscosity of 80-500 centipoises at an ethyl acetate shear rate of 100 sec?1 at a concentration of 20 weight % at 25° C.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: May 8, 2018
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Mridula Nair, Mary Christine Brick, Peter G. Bessey
  • Patent number: 9957365
    Abstract: A formulation includes a polymeric material, a nucleating agent, and a surface active agent. The formulation can be used to form an insulated container.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: May 1, 2018
    Assignee: Berry Plastics Corporation
    Inventors: David Dezhou Sun, John B Euler, Chris K Leser, Charles T Wallace
  • Patent number: 9750843
    Abstract: The present invention relates to a haemostatic material comprising a carrier layer and a material for wound contact comprising at least one haemostat in particulate, granular, powder, flake or short fibrous form. Such a haemostatic material is useful, for example, in reducing or stopping bleeding of a physiological target site in a person or animal, and can also be used to stem bleeding during medical procedures.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: September 5, 2017
    Assignee: MEDTRADE PRODUCTS LIMITED
    Inventors: Craig Hardy, Andrew Darby, Guy Eason
  • Patent number: 9650486
    Abstract: The present invention provides polyolefin resin particles that are capable of producing expanded polyolefin resin beads having a favorable fine cell structure, expanded polyolefin resin beads that suffer less volume shrinkage under a high temperature environment and are excellent in recovery property on repeated compression, and a method for producing the expanded beads. The polyolefin resin particles of the present invention have a peak temperature (T1) of a melting peak on first heating in a DSC curve obtained by heating the resin particles from 20° C. to 200° C. at a heating rate of 10° C./min that is higher by 1.5° C. or more than a peak temperature (T2) of a melting peak on second heating in a DSC curve obtained by, subsequent to the first heating, cooling the resin particles from 200° C. to 20° C. at a cooling rate of 10° C./min, and then heating the resin particles from 20° C. to 200° C. at a heating rate of 10° C./min.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: May 16, 2017
    Assignee: JSP Corporation
    Inventor: Hidehiro Sasaki
  • Patent number: 9567412
    Abstract: This invention relates to the field of thermal insulation. In particular, the invention describes superinsulation articles having a desired porosity, reduced pore size and cost-effective methods for manufacturing such articles. In one aspect of the present invention, the article may comprise a material system with at least about 20% porosity. In a further aspect of the invention, an article may comprise greater than about 25% of nanopores having a pore size no greater than about 1500 nanometers in its shortest axis.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: February 14, 2017
    Assignee: Industrial Science & Technology Network, Inc.
    Inventor: Arthur J. Yang
  • Patent number: 9533432
    Abstract: A plastication unit for an injection molding machine, combining a heated plastication barrel with an entrance port and an exit port on opposing ends of the barrel; a hopper positioned to deliver ingredients to be compounded for injection molding to the entrance port of the barrel; and a helical plastication screw rotatably carried within the barrel and running the length of the barrel between the entrance and exit ports, which is operable to rotate and transmit the ingredients along the length of the barrel; wherein the plastication screw has at least one axial fluted extensional mixing element segment and the ingredients include at least one polymer for injection molding. Methods for injection molding with the plastication unit of the present invention and articles formed by the inventive methods are also disclosed.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: January 3, 2017
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Thomas Nosker, Jennifer Lynch, Keith Luker
  • Patent number: 9375866
    Abstract: A foamed article is made by infusing the article of thermoplastic elastomer with a supercritical fluid, then removing the article from the supercritical fluid and either (i) immersing the article in a heated fluid or (ii) irradiating the article with infrared or microwave radiation.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 28, 2016
    Assignee: NIKE, Inc.
    Inventors: Richard L. Watkins, Hossein Baghdadi, Charles Edwards, Yihua Chang
  • Patent number: 9243104
    Abstract: Pellets, beads, particles, or other pieces of a thermoplastic elastomer having a maximum size in at least one dimension of 10 mm or less (collectively, “pellets”) are infused with a supercritical fluid in a pressurized container, then rapidly depressurized and heated either by immersion in a heated fluid or with infrared or microwave radiation to foam the pellets The pellets are prepared with at least two different densities. Pellets with different densities, thermoplastic elastomer compositions, or foam response rates are placed in different areas of a mold. The mold is filled with pellets, then the pellets are molded into a part. The part has areas of different density as a result of the placement of pellets of different density.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 26, 2016
    Assignee: NIKE, Inc.
    Inventors: Richard L. Watkins, Hossein Baghdadi, Charles Edwards, Yihua Chang
  • Patent number: 9186955
    Abstract: An object of the invention is to provide a blow-molded foam which has homogeneous foamed cells in size, is light in weight, and is excellent in surface smoothness, and a process for producing the same. The invention is directed to a blow-molded foam 1 having a wall portion formed in such a manner that a thermoplastic resin containing a foaming agent mixed therewith is subjected to blow molding. Herein, the wall portion has a closed cell structure in which a plurality of foamed cells are contained. The wall portion has an expansion ratio of not less than 2.0 times. The wall portion has an outer face having a center-line average surface roughness Ra of less than 9.0 ?m. The foamed cell has a cell diameter having a standard deviation of less than 40 ?m in a thickness direction of the wall portion.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: November 17, 2015
    Assignee: KYORAKU CO., LTD.
    Inventors: Masaaki Onodera, Takehiko Sumi, Teruo Tamada, Yu Igarashi, Yoshinori Ohno
  • Patent number: 9186634
    Abstract: A kneading apparatus for a thermoplastic resin, includes: a plasticizing cylinder which has a high pressure kneading zone and a pressure reduction zone; a screw in the plasticizing cylinder; a downstream side seal mechanism which shuts off communication between the high pressure kneading zone and the pressure reduction zone; and a pressure reduction zone pressure adjusting mechanism which is connected to the pressure reduction zone and which controls a pressure of the pressure reduction zone so that the pressure is not less than an atmospheric pressure and the pressure is not more than a maximum pressure of the high pressure kneading zone that is achieved when kneading a molten resin with a pressurized fluid, when the downstream side seal mechanism shuts off the communication between the high pressure kneading zone and the pressure reduction zone.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: November 17, 2015
    Assignee: HITACHI MAXELL, LTD.
    Inventors: Atsushi Yusa, Satoshi Yamamoto, Tetsuya Ano, Hironori Ota
  • Publication number: 20150140315
    Abstract: A resin foam having excellent dustproofness not only at ordinary temperatures but also particularly at high temperatures as well as having excellent flexibility. The resin foam has a thickness recovery ratio at high temperatures as defined below of not less than 25%, an average cell diameter of 10 to 200 ?m, and a maximum cell diameter of not more than 300 ?m, wherein the thickness recovery ratio at high temperatures is defined as follows: a resin foam in a sheet form is compressed, in an atmosphere of 80° C., for 22 hours in a thickness direction so as to have a thickness of 20% of the initial thickness; then, the compression state is released in an atmosphere of 23° C.; and a ratio of a thickness 24 hours after the release of the compression state to the initial thickness is defined as the thickness recovery ratio at high temperatures.
    Type: Application
    Filed: May 21, 2013
    Publication date: May 21, 2015
    Applicant: NITTO DENKO CORPORATION
    Inventors: Kazumichi Kato, Makoto Saitou, Kiyoaki Kodama
  • Publication number: 20150128528
    Abstract: An apparatus and method for multi-stage printing teaches a 3D printer in combination with one or more additional dispensing nozzles. One or more additional dispensing nozzles are combined with the 3D for filling cavities with other compounds such as foam, sterilizing parts by spraying printed mold with disinfectant or antibacterial treatments, and embedding parts or other materials such as paper, fiberglass, or carbon fiber within the printing layers for additional strength and changing mold properties of a final product. In other embodiments, the apparatus of the present invention can be used in combination with a robotic packaging mechanism for bagging sterilized parts for shipment.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 14, 2015
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Patent number: 8980147
    Abstract: A kneading apparatus for a thermoplastic resin, includes: a plasticizing cylinder which has a high pressure kneading zone and a pressure reduction zone; a screw in the plasticizing cylinder; a downstream side seal mechanism which shuts off communication between the high pressure kneading zone and the pressure reduction zone; and a pressure reduction zone pressure adjusting mechanism which is connected to the pressure reduction zone and which controls a pressure of the pressure reduction zone so that the pressure is not less than an atmospheric pressure and the pressure is not more than a maximum pressure of the high pressure kneading zone that is achieved when kneading a molten resin with a pressurized fluid, when the downstream side seal mechanism shuts off the communication between the high pressure kneading zone and the pressure reduction zone.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: March 17, 2015
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Atsushi Yusa, Satoshi Yamamoto, Tetsuya Ano, Hironori Ota
  • Publication number: 20150054190
    Abstract: A method for manufacturing sustainable products with a blown, foam structure, wherein a mass comprising at least natural polymers such as starch is passed under pressure into a mould cavity (4) or through a mould die, and the mass is heated in the mould in a manner such as to stabilize the foamed structure to form the product, wherein the method comprises prefoaming of the mass prior to injection in the mould. Preferably, the prefoamed mass is kept under pressure until insertion in the mould. The invention further relates to an apparatus to be used in said method.
    Type: Application
    Filed: March 11, 2013
    Publication date: February 26, 2015
    Inventors: Jan Wietze Huisman, Nynke Margaretha Zandstra, Johan Hendrik Adolf Arentsen, Hugo Mark Geerts
  • Publication number: 20150042005
    Abstract: A method for infusing gas into a thermoplastic material includes positioning a sheet of a thermoplastic material into a vertical or substantially vertical position; positioning a sheet of a gas-permeable material into a vertical or substantially vertical position; and winding together the positioned sheet of thermoplastic material sheet and the positioned sheet of gas-permeable material to form a roll of the thermoplastic material interleaved with the gas-permeable material, the interleaved roll having a longitudinal axis oriented in a vertical or substantially vertical position. The method also includes exposing the interleaved roll to an atmosphere of a gas pressurized to infuse the thermoplastic material with the gas, while the longitudinal axis of the interleaved roll is oriented in a vertical or substantially vertical position; and then unwinding the gas-infused interleaved roll, while the longitudinal axis of the interleaved roll remains in a vertical or substantially vertical position.
    Type: Application
    Filed: February 28, 2013
    Publication date: February 12, 2015
    Inventor: Krishna Nadella
  • Publication number: 20150025166
    Abstract: A method for manufacturing a plastic dielectric having a plurality of holes and a plastic dielectric manufactured thereby. The method for manufacturing a plastic dielectric includes the steps of: (a) injecting a plastic material into an airtight container; (b) injecting inert gas into the airtight container at pressure of 5 to 9 MPa; (c) maintaining the temperature inside the airtight container at 20 to 50° C.; (d) leaving the airtight container for a predetermined period till an amount of inert gas dissolved in the plastic material becomes 6% wt or more and drawing the plastic material out of the airtight container; and (e) heating the plastic material at temperature of 40 to 110° C.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 22, 2015
    Inventors: Sung Woon CHA, Young Ho KIM
  • Publication number: 20150008609
    Abstract: The invention is a depositing device for depositing flowable food containing gas comprising a pressurized feed N line conveying flowable food containing gas under pressure into the food; piston means operatively connected to the feed line comprising a piston and a chamber; an outlet to deliver food at the atmospheric pressure into moulds. The device comprises a pressure retaining means arranged to retain the product in the chamber at the same pressure as the line pressure and to deliver the product through the outlet as pressure in the chamber increases from the line pressure upon descent of the piston in the chamber.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 8, 2015
    Inventors: Roy B. Nelson, William Walter Coatesworth, John Howard Walker, Jonathan Sutton, Richard Johnson Craggs
  • Publication number: 20150008608
    Abstract: A method and apparatus for injection molding a foamed product. A short shot of formable resin is injected into a cavity (124) defined by respective inner surfaces (134,136) of a plurality of molding plates (120,122) at an amount less than a volume of the cavity (124), the resin comprising a chemical foaming agent. The injected resin is allowed to foam for a predetermined period of time, during which the injected foamable resin foams and expands to substantially fill the cavity (124) and a portion of an outer surface face of the foamable resin contacts the respective inner surfaces (134,136) of the molding plates (120,122). Pressurized gas is injected into the cavity (124) after the predetermined time has elapsed to urge the skinned outer surface of the foamed resin against the inner surfaces (134,136) of the molding plates (120,122).
    Type: Application
    Filed: January 25, 2013
    Publication date: January 8, 2015
    Inventor: Kevin Bradley AINE
  • Patent number: 8926874
    Abstract: The present invention relates to a porous manganese oxide-based lithium absorbent and a method for preparing the same. The method includes the steps of preparing a mixture by mixing a reactant for the synthesis of a lithium-manganese oxide precursor powder with an inorganic binder, molding the mixture, preparing a porous lithium-manganese oxide precursor molded body by heat-treating the molded mixture, and acid-treating the porous lithium-manganese oxide precursor molded body such that lithium ions of the porous lithium-manganese oxide precursor are exchanged with hydrogen ions, wherein pores are formed in the lithium-manganese oxide precursor molded body by gas generated in the heat treatment. The porous manganese oxide-based lithium adsorbent according to the present invention is easy to handle and has many more adsorption reaction sites compared to existing molded adsorbents, thus providing high lithium adsorption efficiency.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 6, 2015
    Assignee: Korea Institute of Geoscience and Mineral Resources (KIGAM)
    Inventors: Kang-Sup Chung, Tae Gong Ryu, Byoung Gyu Kim, Jung Ho Ryu
  • Patent number: 8926876
    Abstract: A method for making a shapeable article from poly(lactic acid) includes treating solid poly(lactic acid) that results in the solid poly(lactic acid) having a crystallinity of at least 20% by weight based on the weight of the solid poly(lactic acid) and a gas concentration of 6% to 16% by weight based on the weight of the solid poly(lactic acid); and heating the solid poly(lactic acid) having said minimum crystallinity and gas concentration to produce a cellular poly(lactic acid) article that is shapeable. The shapeable cellular poly(lactic acid) article is advantageous in that the article can be further shaped by heat and/or pressure (or vacuum), such as via thermoforming, into a variety of useful products.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: January 6, 2015
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Vipin Kumar, Krishna V. Nadella, Stephen Probert
  • Publication number: 20140377523
    Abstract: The present invention generally relates to systems and methods for generating, processing, handling and forming plastic materials into an end product such as, but not limited to, consumables and packaging. The plastic materials are made into preforms or preform sheets, which in turn may be selectively masked to expose desired regions of the same for a saturation process, a heating process, or both. In addition, the various processes may be sufficiently controlled to obtain a desired micro-structure, and in turn obtain desired mechanical, structural, and aesthetic properties in the end product. By way of example, an embodiment of the present invention results in consumable, plastic cups that are lighter weight and more structurally robust less than conventional plastic cups. Further to one or more embodiments of the present invention, various systems for material handling may be utilized to efficiently, timely and cost effectively produce the preforms.
    Type: Application
    Filed: December 3, 2013
    Publication date: December 25, 2014
    Inventor: Mike Waggoner
  • Patent number: 8911656
    Abstract: Methods for manufacturing a composite fan inlet housing are disclosed. The methods include inserting a first piece of composite material and a second piece of composite material into a molding tool, inserting an inflatable bladder between the first piece and the second piece, and pressurizing the inflatable bladder to a curing pressure for a length of time sufficient to allow the first piece and second piece to cure.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: December 16, 2014
    Assignee: Honeywell International Inc.
    Inventors: William H. Doddman, Robert Saunders Murray
  • Patent number: 8908129
    Abstract: In one embodiment, the method for making a polymer article comprises: orienting polymer chains in one direction more than any other direction to form an oriented article, contacting the oriented article with a foaming agent, and foaming the material to form the reflective polymer article comprising planar cell structures having a length “l” and a thickness “t”.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: December 9, 2014
    Assignee: Sabic Global Technologies B.V.
    Inventors: Ravi Sriraman, Chinniah Thiagarajan, Ajay Taraiya
  • Publication number: 20140335295
    Abstract: A foam molded product includes a mixture resin including, as base resins, a polypropylene-based resin with a long-chain branching structure and a weight mixing ratio of 60 to 80%, a styrene-ethylene/butylene-styrene block copolymer with a styrene content of 15 to 40% and a weight mixing ratio of 15 to 35%, and a polyethylene-based resin with a long-chain branching structure, which has a density of not more than 0.930 g/cm3 and a weight mixing ratio of 5 to 25%.
    Type: Application
    Filed: November 9, 2012
    Publication date: November 13, 2014
    Applicant: KYORAKU CO., LTD.
    Inventor: Masaaki Onodera
  • Patent number: 8871122
    Abstract: A method facilitates fabricating a cellular cushion. The method comprises injecting material into a mold in an injection molding process to form a cushion first layer that includes a plurality of hollow cells that extend outward from the base and are each coupled together in flow communication, coupling a second layer to the first layer, and coupling an injection stem in flow communication to the plurality of hollow cells to enable an operating pressure within the cells to be changed.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: October 28, 2014
    Assignee: Star Cushion Products, Inc.
    Inventor: Kevin Gerard Fraser
  • Patent number: 8871823
    Abstract: A first polymer (preferably in granular form) is exposed to a gas at a pressure higher than atmospheric pressure to introduce the gas into the polymer. This occurs at a temperature from the glass transition temperature to the melting temperature when the first polymer is crystalline or semi-crystalline in nature, or at a temperature below the glass transition temperature when the first polymer is amorphous in nature. Optionally, the gas-laden polymer may then be mixed with a second polymer. The polymer is then melted to produce a foamed article.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: October 28, 2014
    Assignee: Zotefoams, PLC
    Inventors: Neil Witten, Paul Jacobs
  • Patent number: 8865037
    Abstract: A method of manufacturing foamed thermoplastic films and trash bags wherein a foaming agent is added to a base thermoplastic resin. The resultant foaming agent/base resin mixture is extruded to form a single-ply foamed thermoplastic film. The film may be formed into bag, such as a trash bag.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: October 21, 2014
    Assignee: VINXI, L.L.C.
    Inventor: John Charles Marrelli
  • Publication number: 20140306367
    Abstract: A manufacturing method of an eco friendly foam package material includes a raw material mixing step for mixing raw materials uniformly and thoroughly to form a mixed raw material, a raw material hybrid-melting step for performing a hybrid-melting process to form a hybrid-melted material, a particle forming step for performing the particle forming process by putting the hybrid-melted material into a pelletizer to form plastic particles, and a foam extrusion step. In the foam extrusion step the plastic particles are melted to become a gelatinous state material, and foamed with non-chemical method. Since the properties of the biodegradable polymer are changed by the decomposition enzyme, and further to mix with bio-cellulose and the industrial starch, such that the eco friendly foam package material with compostability is obtained.
    Type: Application
    Filed: April 11, 2013
    Publication date: October 16, 2014
    Applicant: TRI CAN CO., LTD.
    Inventors: Lucky LEE, Fong-Ru Yang, Sen-Fang Hsieh, Jen-Hao Hsieh
  • Patent number: 8852473
    Abstract: A pin or tube reinforced polymeric foam and a method of manufacture thereof. The reinforcing pins or tubes are incorporated into the polymeric foam during or after fabrication of the reinforced polymer foam and are preferably coated with an adhesive or binder layer prior to fabrication.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: October 7, 2014
    Assignee: Wright Materials Research Co.
    Inventor: Seng Tan
  • Patent number: 8840820
    Abstract: The disclosure relates to foamed binders for wood strand products and methods and systems for producing wood strand products using foamed binders. In some embodiments, the disclosure includes a method for producing a wood strand product from cellulosic particles, the method comprising the steps of foaming a phenol formaldehyde binder to produce a foam, tumbling the cellulosic particles in a rotary blender, applying the foam to the cellulosic particles in the rotary blender, blending the cellulosic particles and the foam so that the foam covers the cellulosic particles, and consolidating the cellulosic particles under heat and pressure.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: September 23, 2014
    Assignee: Weyerhaeuser NR Company
    Inventors: Michael J. Yancey, Travis E. Bjorkman, Jack G. Winterowd
  • Publication number: 20140272072
    Abstract: The present invention comprises a gel-stabilized foam for use in food products. Foam bubbles are stabilized by either a continuous gel coating or a particulate gel coating created under high shear conditions. The foam is viscous and shelf-stable, and can be combined with a viscous food product to lower its caloric density and improve its organoleptic properties.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: Frito-Lay Trading Company, Gmbh
    Inventors: Siva KALIAPPAN, Ian NOBLE, Ian T. NORTON, Sevugan PALANIAPPAN
  • Publication number: 20140252669
    Abstract: A method of fabricating an injection-molded component is provided. The method includes the step of introducing pellets into an injection barrel of an injection molding machine. The pellets include a first supercritical fluid. The pellets are plasticized in the injection barrel and a second supercritical fluid is injected into the plasticized pellets. The second supercritical fluid and the plasticized pellets are mixed to form a mixed material. The mixed material is injected into a mold.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Lih-Sheng Turng, Xiaofei Sun
  • Patent number: 8815133
    Abstract: A method of manufacturing a porous cementitious product, which method comprises: forming a cementitious premix; casting the premix in a desired configuration; generating gas bubbles within the premix; and curing the premix, wherein gas bubbles are generated and/or collapsed at specific locations within the premix in order to produce a porosity profile along a cross-section of the product such that the product comprises a relatively low density core region and higher density outer regions.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: August 26, 2014
    Assignee: HySSIL Pty Ltd.
    Inventors: Swee Liang Mak, Genrietta Shapiro, David James Bell Ritchie, Rodney William Banks, Geoffrey William Quick
  • Patent number: 8801982
    Abstract: A method for producing expandable pellets can include introducing a vinyl aromatic polymer and an expandable agent to a pelletizer (L). The pelletizer (L) can have a die plate having a holes of large diameter. During the start-up of the production of the expandable pellets, pellets can be produced in the pelletizer (L). When the polymer flow rate is in the operating range of the pelletizer (S), the introduction of the vinyl aromatic polymer and the expandable agent can be switched from the pelletizer (L) to the pelletizer (S). The pelletizer (S) can be operated at conditions effective to produce the expandable pellets. The pelletizer (S) can have a die plate having holes of small diameter. The expandable pellets can be recovered from the pelletizer (S), and the pellets can be recovered from the pelletizer (L).
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: August 12, 2014
    Assignee: Total Research & Technology Feluy
    Inventors: Michel Cassart, Francis Couget, Elena Prats
  • Patent number: 8779017
    Abstract: A resin foam having fine foam cells is provided at low cost. A method of producing the foam includes preparing a molten resin composition and continuous extrusion foaming of the molten resin composition. The molten resin composition is prepared by melting a resin mixture of resins (A) and (B) by dissolving a foaming agent into the resin mixture. Resins (A) and (B) respectively have appropriately selected glass transition temperatures and resin (B) particles of appropriate diameter are dispersed in resin (A).
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: July 15, 2014
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Tamio Kawasumi, Haruo Inoue, Michio Eriguchi, Masaki Misumi
  • Publication number: 20140183774
    Abstract: An object of the present invention is to provide a method for producing a pipe, which is capable of reducing the amount of thermoplastic material, without complicating an device for producing a pipe. The present invention provides a method for producing a pipe, comprising a thermoplastic material filling process for filling a die with a thermoplastic material, and a thermoplastic material discharging process for pushing out an unsolidified part of the thermoplastic material in the molding die using pressurized fluid, wherein the thermoplastic material is mixed with a foaming agent, the method further comprises a process for foaming the thermoplastic material filling the molding die, and the thermoplastic material discharging process is a process for pushing out a inner part of the thermoplastic material foamed in the molding die, by using the pressurized fluid prior to solidification of the inner part.
    Type: Application
    Filed: July 17, 2012
    Publication date: July 3, 2014
    Applicant: Sanoh Industrial Co., Ltd.
    Inventors: Kazuhiro Ezure, Masao Motonaga, Naoya Mieda
  • Publication number: 20140183775
    Abstract: A foamed plastic container in which the cell diameters vary along a gradient so as not to decrease the content protection performance, in a manner quite different from the foamed cells distributed in the conventional foamed containers. The foamed plastic container has a container wall formed by using a plastic material and in which foamed cells are distributed, the lengths of the foamed cells in the surface direction of the container wall decreasing from the outer surface of the container toward the inner surface thereof.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 3, 2014
    Applicant: TOYO SEIKAN KAISHA, LTD.
    Inventors: Kentarou ICHIKAWA, Nobuhisa KOISO, Norio AKUZAWA
  • Publication number: 20140176390
    Abstract: An antenna and a method of manufacturing the antenna are provided. The antenna may include an antenna surface, a ground plane, and an air layer comprising a porous structure.
    Type: Application
    Filed: October 22, 2013
    Publication date: June 26, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byung Hoon KO, Sang Yun PARK, Youn Ho KIM, Young Jun HONG, Kun Kook PARK, Kun Soo SHIN
  • Publication number: 20140170202
    Abstract: The invention relates to a biologically degradable composite material and to a process for the preparation thereof. The biologically degradable composite material according to the invention is preferably a bone reconstruction material which can be used in the field of regenerative medicine, especially as a temporary bone defect filler for bone regeneration.
    Type: Application
    Filed: May 31, 2012
    Publication date: June 19, 2014
    Applicant: CURASAN AG
    Inventors: Fabian Peters, Wolf-Dietrich Huebner, Christiane Hoffmann, Nikica Andic, Kathleen Hasanovic, Tilo Hniopek
  • Patent number: 8747710
    Abstract: An apparatus for producing a porous body that forms an expandable slurry containing at least inorganic powder, a foaming agent, and a binder into a sheet, causes the expandable slurry sheet to be foamed and baked, and thereby produces the porous body, the apparatus includes: a mixer preparing the expandable slurry by containing inorganic powder, a foaming agent, and a binder; a die-coater that has a discharge opening which discharges the expandable slurry provided from the mixer to an external thereof so as to shape the expandable slurry into a sheet; and a carrier sheet arranged so as to face the discharge opening of the die-coater with a gap interposed therebetween, and feeding the expandable slurry discharged from the discharge opening, wherein a flow path of the expandable slurry from inside the mixer to the discharge opening of the die-coater is hermetically sealed from an outside.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: June 10, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Tetsuji Tsujimoto, Takumi Shibuya, Hiroki Ueno, Sakae Akiyama, Masahiro Wada
  • Publication number: 20140139002
    Abstract: The invention is directed to a method and article made from co-injection molding using gas-assist. The article has an inner material and an outer material. The inner material has a blowing agent uniformly distributed throughout the inner material. The outer material surrounds the inner material. At least one opening is provided in the outer material. The opening extends through the outer material to the inner material providing a pathway which allows out gas generated by the blowing agent in the inner material to escape through the outer material when the article is in a mold and after the article has been removed from the mold. The outer material provides an aesthetically pleasing outer surface and the inner material provides a strong core which is free of large voids, the inner and outer materials combining to form an article with a stable profile and repeatable size.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: KNOLL, INC.
    Inventors: Adam Daniel DESKEVICH, Hendrik Richard VAN HEKKEN, Richard A. WOLFE
  • Publication number: 20140105946
    Abstract: An article that is a porous, dissolvable solid structure that dissolves easily due to the shape, product orientation and/or method of manufacturing the porous, dissolvable solid structure. The process of making the Article involves preparing a pre-mixture, aerating the pre-mixture, dosing the pre-mixture into individual cavities in molds, and drying the pre-mixture to an Article having an open celled foam with a % open cell of from about 80% to about 100%.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Applicant: The Procter & Gamble Company
    Inventors: Robert Wayne Glenn, JR., Eric Paul Granberg, Lynn Kristin Stechschuite, Matthew Steven Ritter, Jason Donald McCarty, Michael Edward Thomas, Todd Ryan Thompson, Jay Ryan Tenkman, Emily Ragland Muszynski, Dale Francis Bittner, Nathan Alan Gill