Pore Forming In Situ (e.g., Foaming, Etc.) Patents (Class 264/41)
  • Patent number: 12237534
    Abstract: A separator for a lead acid battery is a porous membrane having a positive electrode face and a negative electrode face. A plurality of longitudinally extending ribs, a plurality of protrusions or a nonwoven material may be disposed upon the positive electrode face. A plurality of transversely extending ribs are disposed upon the negative electrode face. The transverse ribs disposed upon the negative electrode face are preferably juxtaposed to a negative electrode of the lead acid battery, when the separator is placed within that battery.
    Type: Grant
    Filed: March 11, 2024
    Date of Patent: February 25, 2025
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, J. Kevin Whear
  • Patent number: 12220850
    Abstract: An object is to manufacture molded bodies having a small variation among products even if the mixture amount of a metal powder is increased when molding is performed by directly introducing not only a metal powder but also a powdered resin into an injection molding machine. In a metal powder mixed resin molded body manufacturing method for manufacturing a molded body by kneading a molding material including a metal powder, a thermoplastic resin powder, and an additive agent, molding is performed by an injection molding machine in which a molding screw is arranged.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: February 11, 2025
    Assignee: Daiichi Seikosha Co., Ltd.
    Inventor: Yasuhiko Ishida
  • Patent number: 12208180
    Abstract: Described herein are tissue grafts derived from the placental tissue that are reinforced with at least one biocompatible mesh. The tissue grafts possess good adhesion to biological tissues and are useful in wound healing applications. Also described herein are methods for making and using the tissue grafts.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: January 28, 2025
    Assignee: MiMedx Group, Inc.
    Inventors: Thomas J. Koob, Robert Tofe, Elizabeth Chen
  • Patent number: 12188732
    Abstract: This disclosure describes single and multi-layer woven meshes designed to enable sucking flow condensation and capillary-driven liquid film boiling, respectively, for instance, in use in heat spreaders. In some instances, the single-layer woven meshes can include a nanostructure coating and a hydrophobic coating, while the multi-layer meshes can include a microcavity coating and optionally a hydrophilic coating.
    Type: Grant
    Filed: January 2, 2024
    Date of Patent: January 7, 2025
    Assignee: The Regents of the University of Colorado
    Inventors: Ronggui Yang, Rongfu Wen, Shanshan Xu, Yung-Cheng Lee
  • Patent number: 12180326
    Abstract: Described herein is a polyurethane foam produced in a “one shot process” that has low density, is semi-hard, and displays a high rebound value all while providing superior split tear performance. The polyurethane foam can be used in a “one shot process” to produce a shoe sole, a mid-sole or an insole for a shoe. The shoe sole may be used for forming an outer sole of a sandal type shoe, a midsole of an athletic type shoe, or an insole for insertion into any type of shoe.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: December 31, 2024
    Assignee: BASF SE
    Inventors: Cai An Wang, Chang Xi Li, Ren Zheng Zhang
  • Patent number: 12129432
    Abstract: A functionalized molybdenum disulfide nanosheet and its preparation method and application, where the preparation method includes steps below: mixing a solvent, 1 part by weight of lipoic acid and 5-10 parts by weight of a first compound for 2-4 h to obtain a mixture; adding 0.05-0.1 parts by weight of 1-hydroxybenzotriazole into the mixture, mixing for 24-48 h, and drying to obtain an intermediate product; performing ultrasonic treatment or heat treatment on a raw material-solution system to obtain a functionalized molybdenum disulfide nanosheet, where the raw material-solution system includes 5-10 parts by weight of the molybdenum disulfide nanosheet, 1 part by weight of the intermediate product and saline water, the first compound contains an ethylene oxide group and an alkylamine chain, the number of carbon atoms in the alkylamine chain is 12-18, and the number of the ethylene oxide group is 2-15.
    Type: Grant
    Filed: September 25, 2023
    Date of Patent: October 29, 2024
    Assignee: China University of Petroleum-Beijing
    Inventors: Jirui Hou, Infant Raj, Yuchen Wen, Zhuo Lu, Lixiao Xiao
  • Patent number: 12048899
    Abstract: This invention discloses a hollow fiber membrane and its preparation method and application, belonging to the field of membrane separation. The preparation method adopts a spinning device with a triple-orifice spinneret, including the casting solution, bore fluid and outer solution. The bore fluid, casting solution and outer solution are respectively co-extruded from the inner, middle and outer orifice of the spinneret, respectively, to form the nascent membrane. The nascent membrane is immersed in external coagulation bath to form a hollow fiber membrane. The outer solution and bore fluid are weakly-polar non-solvents of membrane-forming material and are water soluble. Based on the characteristics of the bore fluid and the outer solution, on the one hand, the mass exchange rate between solvents and non-solvents can be slowed down, the formation of dense skin is effectively avoided, and the surface porosity of the membrane is improved.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: July 30, 2024
    Assignee: BEIJING UNIVERSITY OF TECHNOLOGY
    Inventors: Yuelian Peng, Songchen Xie, Yue Li
  • Patent number: 12023633
    Abstract: Membranes, methods of making the membranes, and methods of using the membranes are described herein. The membranes can comprise a support layer, and a selective polymer layer disposed on the support layer. In some cases, the support layer can comprise a gas permeable polymer and hydrophilic additive dispersed within the gas permeable polymer. In some cases, the selective polymer layer can comprise a selective polymer matrix and carbon nanotubes dispersed within the selective polymer matrix. The membranes can exhibit selective permeability to gases. As such, the membranes can be for the selective removal of carbon dioxide and/or hydrogen sulfide from hydrogen and/or nitrogen.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: July 2, 2024
    Assignee: Ohio State Innovation Foundation
    Inventors: W. S. Winston Ho, Dongzhu Wu, Yang Han
  • Patent number: 11957058
    Abstract: A method of transducing electrical energy to sound is disclosed which includes providing a transducer, the transducer includes lead zirconate titanate (PZT) particles mixed with graphene nanoplatelets (GNPs) in a flexible substrate aligned in a first direction, forming a transducer subsystem, a first conductive protective electrode having a width and a length configured to provide a first electrical connectivity to an external circuit, and a second conductive protective electrode having the width and the length and configured to provide a second electrical connectivity to the external circuit, wherein the transducer subsystem is sandwiched between the first and second conductive protective electrodes, and providing an external circuit configured to provide an electrical signal to the first and second conductive protective electrodes to thereby transduce the electrical signal to sound.
    Type: Grant
    Filed: February 18, 2023
    Date of Patent: April 9, 2024
    Assignee: Purdue Research Foundation
    Inventors: Mukerrem Cakmak, Armen Yildirim, Rahim Rahimi
  • Patent number: 11912488
    Abstract: A multilayer moisture barrier film includes a first outer layer, a second outer layer, and at least one desiccant-containing inner layer between the first and second outer layers. The inner layer can have cavities with which the desiccant particles are in communication.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: February 27, 2024
    Assignee: General Mills, Inc.
    Inventors: Randal J Monforton, Mychal Barrett Brosch, Adam C Feigum, Ramin Heydarpour, Kenneth Lin, George A Tuszkiewicz
  • Patent number: 11898807
    Abstract: This disclosure describes single and multi-layer woven meshes designed to enable sucking flow condensation and capillary-driven liquid film boiling, respectively, for instance, in use in heat spreaders. The single-layer woven meshes can include a nanostructure coating and a hydrophobic coating, while the multi-layer meshes can include a microcavity coating and optionally a hydrophilic coating.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: February 13, 2024
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Ronggui Yang, Rongfu Wen, Shanshan Xu, Yung-Cheng Lee
  • Patent number: 11851641
    Abstract: A method for producing a cell culture plate for human organoid generation using 3D printing is proposed. The method includes the steps of: (a) feeding filament-shaped biodegradable polymer materials, which are not toxic to the human body, and a compatibilizer for improving interfacial adhesion between the polymer materials, into a 3D printer; and (b) producing a cell culture plate using the 3D printer. The cell culture plate is produced by feeding biodegradable polymer materials, which is a blended combination of PLA and PCL, and an appropriate compatibilizer, into a 3D printer. The produced cell culture plate is not toxic to the human body, can culture cells in a desired shape, and has excellent biocompatibility so that it can be applied directly in vivo without detaching cells from the plate.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: December 26, 2023
    Assignees: HANBIO CO., LTD.
    Inventors: Dawitt Kang, Hyunchul Kang, Jungin Yoon, Chaeyeon Kim, Jeongwon Rho
  • Patent number: 11843126
    Abstract: A battery separator has performance enhancing additives or coatings, fillers with increased friability, increased ionic diffusion, decreased tortuosity, increased wettability, reduced oil content, reduced thickness, decreased electrical resistance, and/or increased porosity. The separator in a battery reduces the water loss, lowers acid stratification, lowers the voltage drop, and/or increases the CCA.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: December 12, 2023
    Assignee: Daramic, LLC
    Inventors: Mohammed Naiha, Jörg Deiters, Ahila Krishnamoorthy, Eric H. Miller, J. Kevin Whear, Robert W. Saffel, Naoto Miyake, Kanak Kuwelkar
  • Patent number: 11833763
    Abstract: Improved battery separators, base films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of making and/or using such separators, films or membranes, batteries, cells, devices, systems, vehicles, and/or methods of enhancing battery or cell charge rates, charge capacity, and/or discharge rates, and/or methods of improving batteries, systems including such batteries, vehicles including such batteries and/or systems, and/or the like; biaxially oriented porous membranes, composites including biaxially oriented porous membranes, biaxially oriented microporous membranes, biaxially oriented macroporous membranes, battery separators with improved charge capacities and the related methods and methods of manufacture, methods of use, and the like; flat sheet membranes, liquid retention media; dry process separators; biaxially stretched separators; dry process biaxially stretched separators having a thickness range between about 5 ?m and 50 ?m, preferably between about 10 ?m and 25 ?m, having imp
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: December 5, 2023
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Gerald P. Rumierz, Karl F. Humiston, Charles E. Haire, Tyrone S. Fields, Michael A. Braswell, Ronald A. Proctor, Ronnie E. Smith
  • Patent number: 11779690
    Abstract: Hollow fiber membranes in an oxygenator for an extracorporeal blood circulator are coated with an antithrombotic polymeric material. The porous hollow fiber membranes for gas exchange have outer surfaces, inner surfaces forming lumens, opening portions through which the outer surfaces communicate with the inner surfaces in a housing. A blood flow path is outside of the hollow fiber membrane bundle in the housing, between a blood inlet port and a blood outlet port. The coating is obtained by filling the blood flow path with a colloidal solution containing an antithrombotic polymeric compound, and moving the colloid solution between the blood inlet port and the blood outlet port for a time that coats a predetermined amount of antithrombotic polymeric compound on the outer surfaces of the hollow fiber membranes. Other surfaces within the oxygenator contacting the blood flow likewise receive the coating.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: October 10, 2023
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Takayuki Kido, Takao Anzai
  • Patent number: 11717594
    Abstract: An antibacterial medical biomaterial includes an acellular small intestinal submucosal matrix material, an antibacterial gel layer located on a surface of the acellular small intestinal submucosal matrix material, and an absorbable fiber layer located on a surface of the antibacterial gel layer. Sulfadiazine silver is on the surface of the acellular small intestinal submucosal matrix material and/or within the acellular small intestinal submucosal matrix material. An absorbable fiber layer to which the sulfadiazine silver is attached, wherein the content of sulfadiazine silver in the absorbable fiber is 1 wt. %˜2 wt. %. The medical biomaterial is usable as an external medicine for treating wound infections relayed by burns or wounds, and for reducing the incidence of infection by using a conventional central venous catheter with a sulfadiazine silver antibacterial coating, so that the medical biomaterial loaded with sulfadiazine silver also has antibacterial activity consistent with sulfadiazine silver.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: August 8, 2023
    Assignee: B. J. ZH. F. PANTHER MEDICAL EQUIPMENT CO., LTD.
    Inventor: Qing Liu
  • Patent number: 11679613
    Abstract: A thermally expandable sheet includes: a first thermally expansive layer that is formed on one side of a base and contains a first thermally expandable material and a first binder, the first thermally expansive layer having a first ratio of the first thermally expandable material with respect to the first binder; and a second thermally expansive layer that is formed on the first thermally expansive layer and contains a second thermally expandable material and a second binder, the second thermally expansive layer having a second ratio of the second thermally expandable material with respect to the second binder, wherein the first ratio is lower than the second ratio.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: June 20, 2023
    Assignee: CASIO COMPUTER CO., LTD.
    Inventor: Yoshimune Motoyanagi
  • Patent number: 11597231
    Abstract: A nib for a valve-free free ink writing felt pen including a first end configured to deliver ink to a writing support and second end, opposite the first end, configured to be inserted in a nib receiving part of the valve-free free ink writing felt pen, the first end and the second end defining an axial direction of the nib, the nib including a main body made of porous hydrophilic material and including one or more insert made of porous hydrophobic material, the one or more insert being configured to allow intake of air from the outside of a free ink tank of the valve-free free ink writing felt pen into the free ink tank and avoid ink leakage outside the free ink tank. A valve-free free ink writing felt pen including a nib.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: March 7, 2023
    Assignee: SOCIÉTÉ BIC
    Inventors: Etienne Roudaut, Arnaud Bez
  • Patent number: 11502374
    Abstract: A battery separator has performance enhancing additives or coatings, fillers with increased friability, increased ionic diffusion, decreased tortuosity, increased wettability, reduced oil content, reduced thickness, decreased electrical resistance, and/or increased porosity. The separator in a battery reduces the water loss, lowers acid stratification, lowers the voltage drop, and/or increases the CCA.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: November 15, 2022
    Assignee: Daramic, LLC
    Inventors: Mohammed Naiha, Jörg Deiters, Ahila Krishnamoorthy, Eric H. Miller, J. Kevin Whear, Robert W. Saffel, Naoto Miyake, Kanak Kuwelkar
  • Patent number: 11433359
    Abstract: A method for in situ production of antimicrobial filtration membranes that uses self-assembly of surfactants such as block copolymers as a template. The mesophase structure (for example hexagonal or lamellar) can be determined, and membrane pore size can be controlled in the nanometer range, by changing the block copolymer and the amounts of the components such as the block copolymer, aqueous solution, monomer, crosslinker, and initiator. The monomer phase cures in the template and there is no need for organic solvents and coagulation bath or other post-modification. As-synthesized membranes were found to have pore sizes with a narrow size distribution in the range of 3-4 nm with a molecular weight cutoff of 1500 g/mol and displayed both excellent fouling resistance and high permeance of water, vastly outperforming a conventional NIPS UF membrane. The monomer can comprise a quaternary ammonium group so that the membrane is antibacterial.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: September 6, 2022
    Assignee: Arrowhead Center, Inc.
    Inventors: Sahar Qavi, Reza Foudazi, Aaron Lindsay
  • Patent number: 11428444
    Abstract: A heat transfer system is disclosed in which, an electrocaloric material includes a copolymer of a monomer mixture including (i) vinylidene fluoride, (ii) an addition polymerization monomer selected from tetrafluoroethylene, trifluoroethylene, or a monomer smaller than trifluoroethylene, and (iii) a halogenated addition polymerization monomer different than (ii) that is larger than vinylidene fluoride. The electrocaloric material also includes an additive selected from a nucleating agent having a polar surface charge, electrocalorically active solid particles, or a combination thereof. Electrodes are disposed on opposite surfaces of the electrocaloric material, and an electric power source is configured to provide voltage to the electrodes. The system also includes a first thermal flow path between the electrocaloric material and a heat sink, and a second thermal flow path between the electrocaloric material and a heat source.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: August 30, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Scott Alan Eastman, Joseph V. Mantese, Wei Xie, Subramanyaravi Annapragada, Parmesh Verma, Sergei F. Burlatsky, Wayde R. Schmidt, Treese Hugener-Campbell
  • Patent number: 11279064
    Abstract: Provided are an apparatus and a method for foam injection molding, in which a problem in quality caused by spreading of a minute releasing distance according to conditions of an injection machine is improved by minutely releasing a first moving mold from a fixed mold using a minute releasing member for foaming and minutely releasing a second moving mold from the first moving mold using a minute releasing member for spreading of the injection machine.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: March 22, 2022
    Assignee: SEOYON E-HWACO., LTD.
    Inventors: Chi Won Yoon, Dong Suk Kim
  • Patent number: 11241848
    Abstract: A post-processing method of a polymer electrolyte membrane, which anneals and stretches a polymer electrolyte membrane including a hydrocarbon-based copolymer in a vapor atmosphere of a solvent.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: February 8, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Insung Bae, Hyuk Kim, Sunghyun Yun
  • Patent number: 11235364
    Abstract: A method for manufacturing parts is provided. The method includes cold rolling a substrate with work cylinders whose work surface has a roughness Ra2.5 of less than or equal to 3.6 ?m, depositing the metal coating on at least one face of the annealed substrate by electrodeposition to form the metal sheet and deforming the cut metal sheet to form the parts. The outer surface of the metal coating has a waviness Wa0.8 of less than or equal to 0.5 ?m after the deformation step. A part and vehicle are also provided.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: February 1, 2022
    Assignee: ARCELORMITTAL
    Inventor: Hervé Derule
  • Patent number: 11235494
    Abstract: A seal member formed in a line shape having ends is inserted in a seal groove formed on at least one of adjacent side surfaces of segments. A lip portion is provided on a seal upper portion of the member so at least a tip end thereof projects to an outside of the seal groove when the member is inserted in the groove. The seal member is hollow or includes a concave portion on at least a seal bottom portion thereof. When assembling the segments as a single structure, the adjacent side surfaces of the segments are coupled to each other, and the seal member is crushed in a cross sectional direction by the side surface of the other segment to seal between the segments. With this, complication of manufacturing steps can be suppressed or avoided while realizing a satisfactory sealed state between the adjacent segments of a mold.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: February 1, 2022
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventor: Toshikazu Sana
  • Patent number: 11168195
    Abstract: A method for making a composite and/or structured material includes: forming a lattice construction from a plurality of solid particles, the construction being formed so as to have one or more gaps between the particles; invading the lattice construction with a fluid material such that the fluid material at least partially penetrates the gaps; and, solidifying the material which invaded the lattice construction to form a composite material. In one suitable embodiment, the method further includes removing at least a portion of the lattice construction from the composite material thereby forming at the location of the removed portion one or more pores in the solidified material that invaded the construction.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: November 9, 2021
    Assignee: Avery Dennison Corporation
    Inventors: Ali R. Mehrabi, Reza Mehrabi, Frank Chica, Janet Hsiao, Juan M. De Santos Avila
  • Patent number: 11136478
    Abstract: Provided are: an acrylic adhesive sheet having a porous structure including a plurality of pores and having a water vapor transmission rate of 2,000 g/m2·24 h to 3,500 g/m2·24 h at 24° C. and 25% RH, and a porosity of 10% to 60%; and a medical adhesive tape including the same.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: October 5, 2021
    Inventors: Jeong-In Han, Dan-A Kim, Jang-Soon Kim, Seong-Hoon Yue, Tae-Yi Choi, Ji-Yeon Yang
  • Patent number: 11090615
    Abstract: A method of making a polymer membrane, the method including providing a first monomer solution having a first solvent, a second monomer solution having a second solvent, and a substrate having a surface, and including electrospraying the first monomer solution onto the substrate surface and electrospraying the second monomer solution onto the substrate surface to form the polymer membrane on at least a portion of the substrate surface.
    Type: Grant
    Filed: July 28, 2018
    Date of Patent: August 17, 2021
    Assignee: UNIVERSITY OF CONNECTICUT
    Inventors: Maqsud R. Chowdhury, Jeffrey R. McCutcheon
  • Patent number: 11059205
    Abstract: A method for fabricating nanoporous polymer thin film includes steps as follows. A polymer thin film is provided, wherein a polymer solution including a polymer is coated on a substrate to form the polymer thin film. A swelling and annealing process is provided, wherein the polymer thin film is disposed inside a chamber with a vapor of a first solvent, the polymer thin film is swollen and annealed to form a swollen polymer thin film, and the swollen polymer thin film includes the polymer and the first solvent. A freezing process is provided, wherein the swollen polymer thin film is cooled to a temperature less than or equal to a crystallization temperature of the first solvent to crystallize the first solvent. A first solvent removing process is provided, wherein the first solvent is removed with a second solvent, such that a nanoporous polymer thin film is obtained.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: July 13, 2021
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Rong-Ming Ho, Mohan Raj Krishnan, Suhail Kizhakkeveettil Siddique, Yu-Cheng Chien
  • Patent number: 10946343
    Abstract: The present disclosure relates to improved semipermeable membranes based on acrylonitrile copolymers for use in dialyzers for the extracorporeal treatment of blood in conjunction with hemodialysis, hemofiltration or hemodiafiltration. The present disclosure further relates to methods of producing such membranes.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: March 16, 2021
    Assignee: GAMBRO LUNDIA AB
    Inventor: Benjamin Malard
  • Patent number: 10941279
    Abstract: A breathable film is described having a basis weight from 1 g/m2 to 10 g/m2, a process for producing the breathable film and use of a surface-treated filler material product as filler in the breathable film. Finally, an article is described that includes the breathable film as well as the use of the breathable film in hygienic applications, medical applications, healthcare applications, filtration materials, geotextile products, agricultural applications, horticultural applications, clothing, footwear products, baggage products, household applications, industrial applications, packaging applications, building applications, or construction.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: March 9, 2021
    Assignee: OMYA INTERNATIONAL AG
    Inventors: Martin Brunner, Tazio Fornera, Michael Knerr, Michael Tinkl, Marcus Unger
  • Patent number: 10927594
    Abstract: A vehicle door for a railway vehicle and a railway vehicle includes the vehicle door include a first door skin, a second door skin and a foaming material forming a laminated structure, the foaming material being filled between the first and second door skins, wherein the first door skin has at least one folded edge portion, and the second door skin has a first bent edge portion tightly clamped in the folded edge portion in a position corresponding to each of the folded edge portions. Since during the fixing of the first and second door skins, at least part thereof is realized by a folding and clamping technique, adhesion failure risk between the door skins and a frame body is effectively lowered during use, the reliability of the fixed connection between the two door skins is improved, and the vehicle door weight and the production cost are reduced during manufacture.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: February 23, 2021
    Assignee: IFE-VICTALL Railway Vehicle Door Systems (Qingdao) Co., Ltd.
    Inventors: Duanjun Ma, Changyu Xie, Werner Hoefler
  • Patent number: 10808058
    Abstract: Poly(ethylene tetrafluoroethylene) (ETFE) polymers having an average molecular weight of at least 300,000 g/mol and a melt enthalpy of at least 57 J/g are provided. The ETFE polymer may include at least one additional comonomer. The ETFE polymer is used to form a porous tape or membrane that has a node and fibril structure. A porous ETFE tape may be formed by lubricating the ETFE polymer and subjecting the lubricated polymer to pressure at a temperature below the melting point of the ETFE polymer. Optionally, the ETFE tape may be expanded at a temperature below the melting temperature of the ETFE polymer to form an expanded ETFE membrane. Alternatively, the ETFE polymer may subjected to heat and pressure without the addition of a lubricant to form a dense preform. The dense preform may be subsequently slit in a length direction and stretched to form a dense ETFE fiber.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: October 20, 2020
    Assignee: W. L. Gore & Associates, Inc.
    Inventor: Guy A. Sbriglia
  • Patent number: 10760185
    Abstract: An acrylonitrile-containing fiber includes 100 parts by mass of a polymer including at least 15 parts by mass of acrylonitrile; and 1.0 to 50 parts by mass of a water absorbent resin having a pure water absorption capacity (g/g) with respect to its own weight of at least 10 but less than 100, wherein the fiber is dyeable with a disperse dye.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: September 1, 2020
    Assignee: KANEKA CORPORATION
    Inventors: Takeshi Tanaka, Tomomichi Hashimoto
  • Patent number: 10737423
    Abstract: A mold tool is provided that includes plural mold sub-volumes configured to receive a sealant, a mold channel in fluid communication with the mold sub-volumes, a sealant injection port in fluid communication with the mold channel, vacuum application ports in fluid communication with the mold sub-volumes, and an air control system. The air control system is operably coupled to the mold sub-volumes and the mold channel, and is configured to apply a vacuum to the mold sub-volumes via the vacuum application ports.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: August 11, 2020
    Assignee: The Boeing Company
    Inventor: Chris J. Erickson
  • Patent number: 10730264
    Abstract: Bridge tape comprised of thermally foamable composition, useful for applying coating material through holes in the tape to a substrate beneath the tape, after which the holes can be sealed by heating to cause the foamable composition to foam and expand the foam to seal the holes.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: August 4, 2020
    Assignee: TESA SE
    Inventor: Robert Fallon
  • Patent number: 10483017
    Abstract: A flame retardant resin composition including a base resin including 18 to 85% by mass of a high density polyethylene, 9 to 69% by mass of a low density polyethylene, and 3 to 25% by mass of an acid-modified polyolefin compound, and 25 parts by mass to 110 parts by mass of calcium carbonate particles, more than 1 part by mass to 10 parts by mass of a silicone-based compound, and 2 parts by mass to 20 parts by mass of a fatty acid-containing compound, each on the basis of 100 parts by mass of the base resin.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: November 19, 2019
    Assignee: Fujikura Ltd.
    Inventors: Nao Nishida, Seiichi Taira, Shoichiro Nakamura
  • Patent number: 10471635
    Abstract: For manufacturing composite parts (1) having an inner hollow moulded body (2) with openings (3), which are accessible from outside, the moulded body is introduced into a moulding tool on the mould walls on which a shell layer (11) was applied. The hollow space between the moulded body (2) and the shell layer (11) is filled with a thermally insulating plastic foam (12) which is foamed in the moulding tool and bonds to the moulded body and the shell layer. After removal, a moulded body is provided, which has a qualitatively good surface formed by the shell layer. Such a composite part is preferably used for connecting thermally insulating pipes.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: November 12, 2019
    Assignee: Brugg Rohr AG Holding
    Inventors: Alfred Oeschger, Juergen Kress, Christian Dambowy
  • Patent number: 10464289
    Abstract: A film is mated with a paper to form a space therebetween. The film is made of plastics material. Separation of the paper from the film can provide access to an article stored in the space provided between the paper and the film.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 5, 2019
    Assignee: Berry Plastics Corporation
    Inventors: Eric Johnson, Paul Z Wolak
  • Patent number: 10363215
    Abstract: An improved polymer delivery system is described which provides polymeric microparticle compositions and porous microparticles formed therefrom. Pore size, pore architecture as well as particle size are also controllable. In some embodiments, both the polymeric microparticle compositions and porous microparticles formed therefrom encapsulate at least one substance, such as a biologic substance (one having biologic activity and/or compatible with a biologic system). The encapsulation occurs prior to polymerization. The amount of substance that is encapsulated may be controlled by the described methods. Said methods do not emply organic solvents. As such, the fabrication occurs in a solvent-free system.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: July 30, 2019
    Assignee: THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Elizabeth M. Cosgriff-Hernandez, Robert Scott Moglia
  • Patent number: 10357906
    Abstract: This invention relates to extruded composite materials specifically focusing on the increasing load bearing capacity and the overall strength of composites. Injectable conformable structural core materials are used to replace foam cells inside extruded composite materials thereby increasing the overall load bearing stability and strength. The core materials are tailored to have a desired CTE with respect to the structural materials. The core materials may also incorporate fibers and solid structural fillers for increasing the strength of the composite member. The objective is to enable composite materials to have the highest structural load bearing capability possible so that these technologies can be used as the replacement of wood, in aerospace applications and for other purposes.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: July 23, 2019
    Assignee: Ecopuro, LLC
    Inventor: William L. Johnson, Sr.
  • Patent number: 10350579
    Abstract: An oxidation catalyst is described for treating an exhaust gas produced by a diesel engine comprising a catalytic region and a substrate, wherein the catalytic region comprises a catalytic material comprising: iron (Fe) or an oxide thereof; a platinum group metal (PGM) selected from the group consisting of (i) platinum (Pt), (ii) palladium (Pd) and (iii) platinum (Pt) and palladium (Pd); and a support material, which is a refractory oxide comprising alumina; wherein the platinum group metal (PGM) and the iron (Fe) or an oxide thereof is each supported on the support material.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 16, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventor: Mark Robert Feaviour
  • Patent number: 10273610
    Abstract: A method of forming a three dimensional fiber structure is disclosed which comprises the steps of a) providing a starting material which comprises liquid carrier, fibers and binder; b) passing the starting material over a substrate so as to deposit fibers onto the substrate; c) forming a three dimensional fiber matrix; and d) curing the binder. The flow of material onto the substrate may be controlled such that the flow of a starting material over the substrate is chaotic and fibers are laid down in a three dimensional structure containing a high proportion of voids. The preform may be pressurized while moist and is cured under pressure. The fibers may comprise carbon fibers; recycled carbon fiber has been found to be particularly useful. The resulting preform may be stochastic and is suitable for use in ablative and braking applications.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: April 30, 2019
    Assignee: CFP COMPOSITES LIMITED
    Inventors: David Bell, Roy George Price
  • Patent number: 10247349
    Abstract: In a configuration of a method for preventing progression of corrosion in a steel pipe structure according to the present invention, two or more types of liquids 150 are injected, while being mixed, into a steel pipe that constitutes the steel pipe structure, from an opening at one of both ends of the steel pipe, and the inside of the steel pipe is filled with resin foam product (foam product 152) by foam expansion and hardening of the two or more types of liquids.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: April 2, 2019
    Assignee: Nitto Chemical Co., Ltd.
    Inventors: Kazuhiro Takaishi, Takehiro Miyazawa, Yoshio Tamura, Takuhiko Ohashi, Masashi Suematsu, Osamu Hatsumi, Tadashi Kimura, Makoto Ide, Isao Naganuma, Marco Volpato, Maurizio Corti, Tetsuya Matayoshi, Kouei Miyazato, Shinichi Suzuki, Nobuo Okamura, Kozo Hatsumi, Hiromi Hasegawa
  • Patent number: 10096862
    Abstract: A microporous acid-resistant resin separator has a total pore volume ratio of 55% or more and less than 75%. A negative electrode plate is made of an electrode material containing a bisphenol condensate. Thereby, a lead-acid battery can be obtained, which reduces the softening of a positive electrode material and has excellent low-temperature high rate discharge performance.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: October 9, 2018
    Assignee: GS Yuasa International Ltd.
    Inventor: Ikumi Motoi
  • Patent number: 9991494
    Abstract: The present invention relates to a composite nano microporous diaphragm for use in lithium ion cells using polyolefin modified with post-crosslinked rubber and manufacturing method thereof. The microporous diaphragm at least comprises a nano microporous diaphragm A layer with a chemical gel content of more than 20%, the microscopic structure thereof is designed to be the rubber material that has been evenly dispersed and has subjected to a post-crosslinking treatment in polyolefin nano microfiber matrix, forming a nano microporous diaphragm of rubber-plastic composite. The nano microporous diaphragm with high strength, thermal cutoff, high temperature resistance, as well as good liquid absorption and swelling and compression elasticity can be applied to lithium ion power cells with high safety and long cycling life.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: June 5, 2018
    Assignee: TIANJIN DG MEMBRANE CO., LTD.
    Inventors: Xin Li, Jianhua Li, Wei Chen, Yongjun Jiao, Long Li, Xinjian Deng
  • Patent number: 9887405
    Abstract: Disclosed is a method of preparing a crosslinked polyolefin separator including preparing a silane grafted polyolefin solution using a polyolefin having a weight average molecular weight higher than or equal to 200,000, a diluent, an alkoxy group containing vinylsilane, and an initiator, forming the silane grafted polyolefin solution in a sheet shape and stretching, extracting the diluent from the stretched sheet to produce a porous membrane, and crosslinking the porous membrane in the presence of water, and a crosslinked polyolefin separator.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: February 6, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Cheon-Il Park, Won-Sik Bae, Bi-Oh Ryu, Kyoung-Min Kim, Heon-Sik Song
  • Patent number: 9757417
    Abstract: A process of preparing a glass comprising: (a) heating a mixture of precursor chemicals to a melt temperature to form a melt, the melt being characterized in that quenching the melt at or above a threshold temperature results in a spinodal phase separation, and quenching the melt below the threshold temperature results in a droplet phase separation; and (b) quenching the melt at or above the threshold temperature in a preheated mold to form the glass composition having the spinodal phase separation.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: September 12, 2017
    Assignee: Lehigh Universtiy
    Inventors: Himanshu Jain, Roman Holovchak, Matthias M. Falk
  • Patent number: 9748545
    Abstract: The present invention provides a propylene-based resin microporous film which has excellent electrolyte solution retention property, and can provide a lithium ion battery in which a decrease in discharge capacity is highly reduced even after repeated charge and discharge. The propylene-based resin microporous film is a propylene-based resin microporous film having micropores, wherein a propylene-based resin having a weight average molecular weight of 250,000 to 500,000, a melting point of 160 to 170° C., and a pentad fraction of 96% or more is contained, the surface aperture ratio is 27 to 42%, the ratio of a surface aperture ratio to a porosity is 0.6 or less, and the degree of gas permeability is 50 to 400 s/100 mL.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: August 29, 2017
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventors: Shotaro Kobaru, Yuki Sakurai
  • Patent number: 9656900
    Abstract: Provided herein are methods for preparing nano-macroporous glass articles, such as bioscaffolds, from starting materials such as phosphosilicate glasses made by melt-quench methods, mixed with a soluble pore former such as a sugar, followed by steps of dissolving, heating, and leaching to yield a glass composition having a highly interconnected system of both macropores and large scale nanoporosity.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: May 23, 2017
    Assignee: Lehigh University
    Inventors: Himanshu Jain, Hassan Mohamady Mohamed Moawad