Producing Microporous Article (e.g., Filter, Etc.) Patents (Class 264/628)
  • Patent number: 6946013
    Abstract: An improved, efficient, and regenerable exhaust emission filter and filter system are provided which incorporate the use of an inorganic, non-woven fiber filter element. The filter is able to capture exhaust pollutants and particulates through the interwoven nature of the filter element and due to area enhancements applied to the filter element including microscopic enhancements. The filter has an improved life and is able to combust a greater percentage of trapped particulates due to the high temperatures the filter element can withstand. The filter element if formed from a non-woven fiber block which is machined or shaped into a filter foundation. The filter element can have a multitude of coatings and catalysts applied and can be wrapped in insulation and a casing. The improved exhaust emission filter is particularly useful for diesel engine exhausts.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: September 20, 2005
    Assignee: GEO2 Technologies, Inc.
    Inventors: Gordon S. Alward, Robert A. DiChiara, Jr.
  • Patent number: 6942713
    Abstract: An aluminum titanate-based ceramic body having a composition a formula comprising a(Al2O3.TiO2)+b(CaO.Al2O3.2SiO2)+c(SrO.Al2O3.2SiO2)+d(BaO.Al2O3.2SiO2)+e(3Al2O3.2SiO2)+f(Al2O3)+g (SiO2)+h(Fe2O3.TiO2)+i(MgO.2TiO2), wherein a, b, c, d, e, f, g, h, and i are weight fractions of each component such that (a+b+c+d+e+f+g+h+i)=1, wherein 0.5<a?0.95; 0?b?0.5; 0?c?0.5; 0?d?0.5; 0<e?0.5; 0?f?0.5; 0?g?0.1; 0?h?0.3; 0?i?0.3; b+d>0.01. A method of forming the ceramic body is provided. The ceramic body is useful in automotive emissions control systems, such as diesel exhaust filtration.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: September 13, 2005
    Assignee: Corning Incorporated
    Inventors: Steven B. Ogunwumi, Patrick D. Tepesch, Raja R. Wusirika
  • Patent number: 6936306
    Abstract: This invention relates generally to a method for controlling the pore size, pore size distribution and porosity of aluminum-oxide based ceramics through the choice of substituents on carboxylate-alumoxanes and aluminum-oxide nanoparticles. The method allows for the formation of intra-granular pores in the nanometer range to be created in alumina and aluminum oxide ceramic bodies. The control over pore size and pore size distribution is accomplished through the use of different chemical substituents on the carboxylate-alumoxanes and aluminum-oxide nanoparticles. The size and distribution of pores within the alumina-oxide ceramic are dependent on the identity of the carboxylate substituents. In particular the formation of intra-versus inter-granular porosity is dependent on the identity of the carboxylate substituents. The invention also provides methods for the manufacture of ceramic coatings on ceramic and carbon fibers for composite applications and ceramic membranes with nanometer sized pores.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: August 30, 2005
    Assignee: William Marsh Rice University
    Inventors: Andrew R. Barron, Diane Amy Bailey, Mark Robert Wiesner, Christopher Daniel Jones, Rhonda Lynn Callender
  • Patent number: 6869563
    Abstract: A process for the preparation of bulk foams which comprises contacting ceramic foam particles with a hydrophobic material to form impregnated and/or coated ceramic foam particles with hydrophobic properties. The impregnated and/or coated ceramic foam particulate material is mixed with a ceramic binding material with or without an organic binder in an aqueous composition solution to form a castable and pressable mixture. The castable and pressable mixture is cast, and optionally pressed, in a mold to form a wet green body, which is in turn dried to form a dried green body, and is then fired and sintered to form a bulk shape foam article.
    Type: Grant
    Filed: October 14, 2002
    Date of Patent: March 22, 2005
    Assignee: Cellaris Ltd.
    Inventors: Gideon Grader, Gennady Shter
  • Patent number: 6869902
    Abstract: A silicon nitride porous body (5) obtained by nitriding a molded body having metallic silicon (3) as a main component, the porous body having a porous structure with an average pore diameter of 3 ?m or above, and wherein the total content of silicon and nitrogen is 95% or above and the nitridation ratio of silicon is 90% or above. The silicon nitride porous body has a porous structure with a large average pore diameter, with a test specimen cut out from the porous body exhibiting large thermal conductivity and a small thermal expansion coefficient, and can be suitably used in a component for purifying gas and/or solution such as a ceramic filter.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: March 22, 2005
    Assignee: NGK Insulators, Ltd.
    Inventors: Katsuhiro Inoue, Kenji Morimoto, Masaaki Masuda, Shinji Kawasaki, Hiroaki Sakai
  • Patent number: 6863705
    Abstract: A ceramic material containing organic binder is formed by extrusion, dried and cut off so as to make the honeycomb body 100 having the bulkheads 11 and a plurality of cells 12 partitioned by the bulkheads 11 and penetrating between both end faces of the honeycomb body 100. The tapered jig 3 having a tapered forward end portion 31 is inserted into the opening 13 of the cell 12 of the honeycomb body 100. Then, the bulkheads 11 are heated and softened and deformed by a pushing force given by the tapered jig 3 so that the opening 13 of the cell 12 is expanded to form the large opening 131, and the opening 13 of the adjoining cell 12 is reduced at the same time so as to form the small opening 132. After that, the honeycomb body 100 is fired. In this way, the exhaust gas purifying filter for collecting particulates is manufactured.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: March 8, 2005
    Assignee: Denso Corporation
    Inventors: Mikio Ishihara, Mamoru Nishimura
  • Patent number: 6860917
    Abstract: A method for making high temperature filter media is provided by melt-spinning a plurality of fibers of preceramic thermoplastic polymer to form a nonwoven textile web of the fibers, curing and cross-linking the thermoplastic polymer to a thermoset polymer, and thermally decomposing the thermoset polymer to ceramic. Between the melt-spinning step and the curing step, the web is formed to a filter pre-form in a green state while still pliable and malleable. The filter pre-form is cured without re-melting the thermoplastic polymer and without destroying morphology.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: March 1, 2005
    Assignee: Fleetguard, Inc.
    Inventors: Matthew P. Henrichsen, William C. Haberkamp, Gene A. Mullins, Jr.
  • Patent number: 6858178
    Abstract: A composition of a porous body for use as biomaterial according to the present invention is produced by adding Al (aluminum) in the amount of 0.1 to 3.0 atomic % to a porous composition consisting of titanium, nickel, iron and molybdenum, and it promotes the growth of living tissue and cells into pores. By the addition of Al to Ni, Ti, Fe and Mo, the temperature of formation of the liquid phase is lowered, and thus the diffusion of the constitutional elements of the composition is promoted, and the uniform distribution of the constitutional elements increases. As a result, the proportion of micropores in the porous body becomes increased to the extent that the distribution of micropores having the size in the range of 10?2 ?m˜10 ?m is more than 5% in the metal bridge.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: February 22, 2005
    Assignee: Bio-Smart, Ltd.
    Inventor: Victor E. Gunther
  • Patent number: 6849570
    Abstract: The present invention relates to a process for the production of a titanium silicalite shaped body by: (a) forming a formable composition containing titanium silicalite, a binder and a pasting agent, so that the Curd curve of the formable composition has a plateau value in the range from 20 to 90 mm; (b) shaping the composition of step (a) to form a green body; (c) optionally drying and (d) calcining the green body, to a titanium silicalite shaped body obtainable by that process, and to the use of such titanium silicalite shaped bodies in the epoxidation of olefins or the ammoximation of ketones.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: February 1, 2005
    Assignee: Degussa AG
    Inventors: Steffen Hasenzahl, Ralf Jantke
  • Patent number: 6849213
    Abstract: A method for producing a silicon nitride filter including heat-treating in nitrogen a green body containing from 40 to 90% of metal silicon particles having an average particle diameter of from 1 to 200 ?m and from 10 to 60% of a pore-forming agent, where the total amount of the metal silicon particles and the pore-forming agent is at least 90%, forms a porous product made substantially of silicon nitride.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: February 1, 2005
    Assignee: Asahi Glass Company, Limited
    Inventors: Naomichi Miyakawa, Nobuhiro Shinohara, Kanji Arai, Hideo Takahashi
  • Patent number: 6846764
    Abstract: A silicon nitride porous body which is obtained by nitriding a molded body having metallic silicon as a main component and by performing a high temperature heating treatment at a temperature higher than the nitriding temperature, and which has a porous structure with an average pore diameter of 3 ?m or above, and contains at least one kind of element selected from the group consisting of the groups 2A, 3A, 3B inclusive of lanthanoid elements, and 4B. The silicon nitride porous body has a porous structure with a large average pore diameter, a test specimen cut out from the porous body exhibiting a high thermal conductivity and a small thermal expansion coefficient, and can be suitably used in a component for purifying gas and/or solution such as a ceramic filter.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: January 25, 2005
    Assignee: NGK Insulators, Ltd.
    Inventors: Katsuhiro Inoue, Kenji Morimoto, Masaaki Masuda, Shinji Kawasaki, Hiroaki Sakai
  • Patent number: 6843821
    Abstract: The aim of the invention is to provide filtering candles (1) comprising a sintered filtering tube (2) and a collar (3) which is connected thereto, and having an increased shelf life and improved resistance values. To this end, the collar (3) comprises an annular collar wall (4) which oriented towards the filtering tube (2) from the neck. Said wall comprises at least one recess (8) which is arranged in a perpendicular manner and at an angle in relation to a plane which is perpendicular to the axis of the filtering tube.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: January 18, 2005
    Assignee: GKN Sinter Metals GmbH
    Inventor: Simon Steigert
  • Patent number: 6840976
    Abstract: A ceramic honeycomb wall-flow filter is prepared by plugging channels in a clay containing ceramic honeycomb by a method that has the following steps. First, a mixture of a dispersing liquid and ceramic powder is formed. Second, the mixture is inserted into at least one channel of a clay containing green ceramic honeycomb to form a plugged green ceramic honeycomb wherein the dispersing liquid essentially fails to swell the clay. Alternatively, the mixture is inserted into a calcined ceramic honeycomb to form a plugged calcined ceramic honeycomb. Finally, the plugged green or calcined ceramic honeycomb is heated to a temperature sufficient to sinter the plugged green ceramic honeycomb to form a porous sintered plugged ceramic honeycomb. The method is particularly useful for simultaneously making the plugs and discriminating layers in the channels.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: January 11, 2005
    Assignee: Dow Global Technologies Inc.
    Inventors: Fredrick W. Vance, Sten A. Wallin
  • Patent number: 6837911
    Abstract: A ceramic-made filter for capturing the particulates present in the exhaust gas discharged from diesel engines, wherein a ceramic particles layer made of heat-resistant ceramic particles is formed on a filter by coating, the heat-resistant ceramic particles having a BET specific surface area of 300 m2/g or less. In this ceramic-made filter, the melting of the filter caused by the ash remaining and accumulating after the particulates captured by the filter have been burnt, can be prevented easily without using a large system or the like.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: January 4, 2005
    Assignee: NGK Insulators, LTS.
    Inventors: Naomi Noda, Kanji Yamada, Yoshiyuki Kasai
  • Publication number: 20040253279
    Abstract: An aqueous dispersion of ceramic particles and containing a polymerisable monomer was foamed before polymerisation, e.g., using a catalyst and initiator, was started.
    Type: Application
    Filed: April 8, 2004
    Publication date: December 16, 2004
    Applicant: Dytech Corporation Limited
    Inventors: Robert Terence Smith, Rodney Martin Sambrook
  • Publication number: 20040239011
    Abstract: Method of manufacturing an exhaust gas purifying filter capable of purifying an exhaust gas.
    Type: Application
    Filed: April 23, 2004
    Publication date: December 2, 2004
    Applicant: DENSO CORPORATION
    Inventor: Mikio Ishihara
  • Patent number: 6824727
    Abstract: A SiAlON-based ceramic particularly suited for use as a cutting tool in the high speed chip forming machining of metals composed of a SiAlON matrix including a) a phase of alpha′ SiAlON represented by the general formula of Mx (Si,Al)12(O,N)16, wherein 0<x<2 and M is at least two cationic elements, a first cationic element being 0.2 to 4 weight percent Mg and optionally between 0.5 and 15 weight percent of one or more of Ca, Sr, and Ba calculated as oxide, based on the SiAlON matrix, and a second cationic element being one or more of Y, Sc, La and the rare earth (RE) elements; b) a phase consisting of beta′ SiAlON represented by the general formula Si6−zAl2OzN8−z wherein 0<z<4.2; and c) a component containing glass, and at least one additional intergranular crystal phase that is detectable using X-ray diffraction techniques is provided.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: November 30, 2004
    Assignee: Indexable Cutting Tools of Canada Limited
    Inventors: Robert Donald Roy, David Allan
  • Patent number: 6808663
    Abstract: There is a method of manufacturing a ceramic structure in which a ceramics raw material, a prefoamed resin foam, and a forming aid if needed are mixed together to prepare a mixture, then the mixture is formed into a formed body, and subsequently the formed body is fired to obtain a porous ceramic structure. According to the manufacturing method, a ceramic structure having a high porosity can be obtained, without using a large amount of flammable powder.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: October 26, 2004
    Assignee: NGK Insulators, Ltd.
    Inventors: Yasushi Noguchi, Hideaki Nishi, Hiroyuki Suenobu
  • Patent number: 6803086
    Abstract: There are provided a porous honeycomb structure body capable of satisfying a pressure loss and isostatic strength which are mutually contradictory properties simultaneously and a method for manufacturing the same. In a porous honeycomb structure body having partition walls which contain cordierite as a primary crystal phase and have a porosity of 40 to 75% and an average pore diameter of 10 to 50 &mgr;m, porosity and an average pore diameter in a center portion of the structure body are made larger than porosity and an average pore diameter in a peripheral portion of the structure body.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: October 12, 2004
    Assignee: NGK Insulators, Ltd.
    Inventors: Yasushi Noguchi, Yukihisa Wada, Yumi Muroi
  • Patent number: 6803015
    Abstract: A ceramic honeycomb wall-flow filter is prepared by plugging channels in a ceramic honeycomb by a method comprising the following. First, a mixture comprised of a dispersing liquid and ceramic powder is formed. Next, the mixture is inserted on one end of the channel in an unplugged ceramic honeycomb such that the mixture flows to the other end where the mixture collects and forms a plugged ceramic honeycomb. Then, the plugged ceramic honeycomb is heated to a temperature sufficient to sinter the plugged ceramic honeycomb to form a porous sintered plugged ceramic honeycomb.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: October 12, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Fredrick W. Vance, Sten A. Wallin
  • Patent number: 6777114
    Abstract: It is directed to a silicon carbide-based porous body, wherein said body is a porous one which contains silicon carbide particles as an aggregate and metallic silicon, and has an oxygen-containing phase at the surfaces of silicon carbide particles and/or metallic silicon or in the vicinity of the surfaces thereof. The silicon carbide-based porous body contains refractory particles such as silicon carbide particles or the like and yet can be produced at a relatively low firing temperature at a low cost, has a high thermal conductivity, and is superior in oxidation resistance, acid resistance, chemical resistance to ash and particulates.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: August 17, 2004
    Assignee: NGK Insulators, Ltd.
    Inventors: Takahiro Tomita, Shuichi Ichikawa, Shinji Kawasaki, Hiroaki Sakai
  • Patent number: 6773657
    Abstract: A sintered ceramic that exhibits an average linear coefficient of thermal expansion (25-800° C.) below about 5.0×10−7° C.−1, a total porosity between the range of 20% to about 30%. Furthermore, the sintered ceramic article exhibits a pore size distribution such that at least about 86% of pores are of a pore size of less than about 2 &mgr;m. Lastly, the ceramic article exhibits an interconnected pore structure with the pores exhibiting a generally elongated shape, i.e., the pores are predominately oriented with their long axis in the plane of the webs. This invention also relates to a method for producing a sintered cordierite ceramic article involving first compounding and plasticizing a cordierite-forming inorganic powder batch comprising a platy talc having median particle of size less than about 2 &mgr;m, and preferably a talc morphology index greater than about 0.75.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: August 10, 2004
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Christopher J. Malarkey, Gregory A. Merkel
  • Patent number: 6773479
    Abstract: A particulate filter for diesel engines comprises a metal shell or casing inside which is set a filtering body made of ceramic foam. The filtering body is made up of a plurality of separate elements made of ceramic foam and having a substantially plane and elongated shape, which are set about a longitudinal axis of the shell in such a way as to define, inside the shell, an inner chamber (B) set inside the array of filtering elements and at least one outer chamber (A) set outside the array. The said chambers respectively communicate with the intake pipe and with the outlet pipe, or vice versa, in such a way that, during use, the flow of the engine exhaust gases that traverses the shell passing from the intake pipe to the outlet pipe (or vice versa) is forced to traverse the aforesaid filtering elements, thus assuming a component of radial velocity with respect to the longitudinal axis of the shell.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: August 10, 2004
    Assignee: C.R.F. Societa Consortile per Azioni
    Inventors: Massimo Debenedetti, Gianmarco Boretto
  • Patent number: 6770111
    Abstract: A ceramic structure which is pollucite-based and has high refractoriness and high resistance to thermal shock. The inventive structure is suitable in high temperature applications such as a filtering particulates from diesel engine exhaust.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: August 3, 2004
    Assignee: Corning Incorporated
    Inventors: Robert Morena, Dell J. St. Julien, Bryan R. Wheaton, John F. Wight, Jr.
  • Patent number: 6764742
    Abstract: A honeycomb structure body which has a number of passages partitioned with partition walls and penetrating along the axial direction. A porous honeycomb structure body which contains refractory grains as filler, one or more elements selected from the group consisting of the rare earth elements, alkaline earth elements, Al, and Si, and the crystal containing one or more kinds of these elements. The present honeycomb structure body contains refractory grains such as silicon carbide grains and the like, but it can be produced at a relatively low firing temperature at a low price, it is sufficiently porous and high in specific surface area, and it can be used as a filter for purifying automobile exhaust gas, a catalyst carrier, and the like under the high SV conditions.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: July 20, 2004
    Assignee: NGK Insulators, Ltd.
    Inventors: Shuichi Ichikawa, Takahiro Tomita, Shinji Kawasaki, Hiroaki Sakai
  • Patent number: 6753282
    Abstract: The invention relates to a method for producing a monolithic, porous, ceramic shaped body and to the shaped bodies produced according to this method. Said shaped body is used predominantly as a support material for porous, inorganic and/or organic membranes for the flow filtration of liquids and gases. The aim of the invention is to provide a method for producing a shaped body consisting substantially of TiO2 with an open porosity >10%, an average pore size of between 1 and 50 &mgr;m and a mechanical stability >20 N/mm2. To achieve this, a first TiO2-powder fraction is pre-sintered at temperatures >1200° C.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: June 22, 2004
    Assignee: TAMI Deutschland GmbH
    Inventors: Thomas Fleischmann, Heike Kastner
  • Publication number: 20040079190
    Abstract: A die (20) comprises metal-rich sections (40a, 40b) which form an inner wall and an outer wall of the die (20), respectively. Gradient sections (42a, 42b) are disposed adjacent to the metal-rich sections (40a, 40b), respectively. Further, a ceramics-rich section (44) is disposed between the gradient sections (42a, 42b). A punch (30) comprises an inner ceramics-rich section (46), a gradient section (50), and an outer metal-rich section (48). In the die (20), the composition ratio of metal gradually decreases from the metal-rich sections (40a, 40b) to the ceramics-rich section (44). Similarly, in the punch (30), the composition ratio of the metal gradually decreases from the metal-rich section (48) to the ceramics-rich section (46).
    Type: Application
    Filed: June 17, 2003
    Publication date: April 29, 2004
    Inventors: Mitsuo Kuwabara, Masanori Ohtsuka
  • Publication number: 20040070096
    Abstract: A process for the preparation of bulk foams which comprises contacting ceramic foam particles with a hydrophobic material to form impregnated and/or coated ceramic foam particles with hydrophobic properties. The impregnated and/or coated ceramic foam particulate material is mixed with a ceramic binding material with or without an organic binder in an aqueous composition solution to form a castable and pressable mixture. The castable and pressable mixture is cast, and optionally pressed, in a mold to form a wet green body, which is in turn dried to form a dried green body, and is then fired and sintered to form a bulk shape foam article.
    Type: Application
    Filed: October 14, 2002
    Publication date: April 15, 2004
    Inventors: Gideon Grader, Gennady Shter
  • Patent number: 6716512
    Abstract: A honeycomb structure having, in the axial direction, a number of through-channels separated by partition walls, which honeycomb structure contains refractory particles and a vitreous component and is porous. Although the honeycomb structure contains refractory particles such as silicon carbide particles or the like, it can be produced at a relatively low firing temperature; therefore, the honeycomb structure has a low production cost and a high yield and can be provided at a low price.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: April 6, 2004
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshinori Yamamoto, Naomi Noda, Takashi Harada
  • Publication number: 20040055264
    Abstract: A method of fabricating a substrate used for purifying an exhaust gas is provided. This method comprises the step of transforming a pre-mold having a first end, a second end, a plurality of partition walls extending between the first end and the second end, the first transforming step for transforming the end portions of the partition walls at the first end in such a manner that the ends of the partition walls defining one of two adjacent passages at the first end of the pre-mold are collected toward the center of a corresponding passage and connected to each other, and the second transforming step for transforming the ends of the partition walls at the first end in such a manner that the end surfaces of the partition walls at the first end are depressed toward the center of each of the end surfaces.
    Type: Application
    Filed: September 8, 2003
    Publication date: March 25, 2004
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kazuhiro Itoh
  • Patent number: 6709622
    Abstract: A method of fabricating nanostructures containing isotropically distributed, interconnected pores having cross-sectional diameters in the nanometer and Angstrom range by integrating the steps of attriting precursor nanometer-sized particulate materials, desorbing the exposed surfaces of the attrited nanoparticulates, adsorbing a surfactant on 25-50% of the desorbed surfaces and dispersing the surfactant-coated nanoparticulates in an organic matrix to form a homogeneous thermoplastic compound from which green nanostructures are formed, dewaxed and sintered to the desired degree of microporosity.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: March 23, 2004
    Inventors: Romain Billiet, Hanh T. Nguyen
  • Publication number: 20040053767
    Abstract: The invention relates to a method for producing porous SiO2 green bodies having an extremely high green density, or porous SiO2 green bodies having an internal density gradient which is adjusted in a targeted manner. The inventive method is characterised in that a porous SiO2 green body known per se and consisting of amorphous SiO2 is redensified by electrophoretically depositing SiO2 particles in the pores of the green body.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 18, 2004
    Inventors: Fritz Schwertfeger, Johann Weiss, Rolf Clasen, Jan Tabellion
  • Patent number: 6696130
    Abstract: A ceramic honeycomb structure has an open frontal area of 50% to 85%, a porosity of 0.1% to 10%, and a proportion of the volume of pores of 1 &mgr;m or larger in diameter, in total pore volume, of 20% or more; a regenerative thermal oxidizer using the ceramic honeycomb structure. The ceramic honeycomb structure has a small porosity and, therefore, has a sufficient heat accumulation capacity and hardly causes floating by gas pressure; has controlled pore diameters and, therefore, hardly shows adsorption of VOC or the like, or rupture; and has controlled contraction and, therefore, has a large GSA.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: February 24, 2004
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshiyuki Kasai, Takashi Harada, Yukinari Shibagaki, Akito Higuchi
  • Patent number: 6680013
    Abstract: The present application discloses a method of forming an inorganic macroporous material. In some embodiments, the method includes: providing a sample of organic polymer particles having a particle size distribution of no greater than about 10%; forming a colloidal crystal template of the sample of organic polymer particles, the colloidal crystal template including a plurality of organic polymer particles and interstitial spaces therebetween; adding an inorganic precursor composition including a noncolloidal inorganic precursor to the colloidal crystal template such that the precursor composition permeates the interstitial spaces between the organic polymer particles; converting the noncolloidal inorganic precursor to a hardened inorganic framework; and removing the colloidal crystal template from the hardened inorganic framework to form a macroporous material. Inorganic macroporous materials are also disclosed.
    Type: Grant
    Filed: April 15, 2000
    Date of Patent: January 20, 2004
    Assignee: Regents of the University of Minnesota
    Inventors: Andreas Stein, Brian T. Holland, Christopher F. Blanford, Hongwei Yan
  • Patent number: 6673300
    Abstract: A method for plugging selected cell channels in a honeycomb structure for the fabrication of a solid particulate filter. The method includes covering a first end face of the honeycomb structure with a mask having openings corresponding to open ends of a first plurality of cell channels; loading powdered plugging material from through the mask openings into the first plurality of cell channels; forming plugs in the first plurality of cell channels at ends opposite the first end face of the honeycomb structure; loading powdered plugging material into the open ends of a second plurality of cell channels open at the second end face of the honeycomb structure; and forming plugs in the second plurality of cell channels at the ends adjacent the first end face of the honeycomb structure.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: January 6, 2004
    Assignee: Corning Incorporated
    Inventors: Bruce P. Allen, Richard A. Foster, Wade E. MacLaren
  • Patent number: 6667261
    Abstract: An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: December 23, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Alexander G. Anshits, Olga M. Sharonova, Tatiana A. Vereshchagina, Irina D. Zykova, Yurii A. Revenko, Alexander A. Tretyakov, Albert S. Aloy, Rem I. Lubtsev, Dieter A. Knecht, Troy J. Tranter, Yevgeny Macheret
  • Patent number: 6660224
    Abstract: The porous material of the present invention is produced by heating a dry powder mixture, containing mainly an organic solid binder and inorganic particles. The mixture is foamed while the organic binder is melted. Foaming comes from a foaming agent in the powder mixture. The solid foamed structure comprising inorganic particles embedded in an organic binder is then heated to eliminate the organic binder and finally to sinter the remaining inorganic tri-dimensional network into a rigid structure having interconnected porosity.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: December 9, 2003
    Assignee: National Research Council of Canada
    Inventors: Louis-Philippe Lefebvre, Yannig Thomas
  • Patent number: 6616873
    Abstract: Process for making thermally stable macro porous spheres with or without central core cavity includes steps of homogenizing dry pulverized selective constituents with or without burnable core particles and with <25% combustibles; sprinkling over pan pelletizer wetted with PVA aqua sol binder and rolling to form spheres having <25% moisture and dry compacting in pelletizer before oven drying at 90-100° C. until moisture and core particles are partially destroyed and sintering under rotary motion of the spheres for 45-60 minutes at 1350-1380° C. before being rapidly cooled down to ambient temperature and sieving and recovering therefrom low-to-high temperatures >90% loose fill macro porous spheres for catalyst and moulded bricks/monoliths forming refractory insulation applications.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: September 9, 2003
    Assignee: Associated Cement Companies Ltd.
    Inventors: Venkateswaran Duraiswami, Vajifdar Parvez, Cursetji Rustom Minocher, Chatterjee Anjan Kumar
  • Patent number: 6605648
    Abstract: A method of producing an open, porous structure having an outer surface defining a shape having a bulk volume and having interconnecting openings extending throughout said volume and opening through said surface, and products resulting from the method. The method comprises preparing a viscous mixture comprising a sinterable powder dispersed in a sol of a polymer in a primary solvent, replacing the primary solvent with a secondary liquid in which the polymer is insoluble to produce a gel comprising an open polymeric network having the sinterable powder arranged therein, removing the secondary liquid from the gel; removing the polymer network, and sintering the sinterable powder to form the open, porous structure. Also disclosed are shaped, porous products resulting from methods of the invention.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: August 12, 2003
    Assignee: Phillips Plastics Corporation
    Inventors: James R. Johnson, Michael Edward Frencl
  • Patent number: 6596168
    Abstract: The invention relates to a filter element and its manufacture to be used in removal of liquid from solids containing material to be dried in a capillary suction dryer which filter element contains a ceramic microporous layer having the pore size under 5 micrometer and supported by a ceramic internal layer having recess areas for liquid flowing. The internal layer is made of at least one substrate which continuously surrounds at least one recess area and which ceramic internal layer is surrounded by at least one essentially continuous microporous surface layer.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: July 22, 2003
    Assignee: Outokumpu Oyj
    Inventors: Kerry Johnson, Olli Högnabba, Bjarne Ekberg
  • Patent number: 6589457
    Abstract: An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: July 8, 2003
    Assignee: The Regents of the University of California
    Inventors: DeQuan Li, Quanxi Jia
  • Patent number: 6576182
    Abstract: A process for producing a composite, containing at least one shrinkage-matched ceramic layer, wherein a starting material for the ceramic layer(s) has shrinkage behavior on sintering which is matched to remaining layer(s), and which is selected such that the ceramic-forming constituent of the same contains at least one ceramic powder of a specific size, and which process entails joining the layers of the composite by sintering.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: June 10, 2003
    Assignee: Institut Fuer Neue Materialien gemeinnuetzige GmbH
    Inventors: Alberto Ravagni, Rüdiger Nass, Helmut Schmidt, Bernhard Walter
  • Publication number: 20030101701
    Abstract: A method for making high temperature filter media is provided by melt-spinning a plurality of fibers of preceramic thermoplastic polymer to form a nonwoven textile web of the fibers, curing and cross-linking the thermoplastic polymer to a thermoset polymer, and thermally decomposing the thermoset polymer to ceramic. Between the melt-spinning step and the curing step, the web is formed to a filter pre-form in a green state while still pliable and malleable. The filter pre-form is cured without re-melting the thermoplastic polymer and without destroying morphology.
    Type: Application
    Filed: December 3, 2002
    Publication date: June 5, 2003
    Inventors: Matthew P. Henrichsen, William C. Haberkamp, Gene A. Mullins
  • Patent number: 6565797
    Abstract: A method for the production of a silicon nitride filter includes heat treating in nitrogen a green body containing from 40 to 90% of metal silicon particles having an average particle size of from 1 to 200 &mgr;m and from 10 to 60% of a pore forming agent. The green body contains at least 90% of the metal silicon particles and the pore forming agent and forms a porous product. The filter is excellent in heat resistance, corrosion resistance, acid resistance and mechanical strength and suitable for dust arresting or dust removing and is particularly suitable as a filter for particulates. The porosity of the silicon nitride filter is from 40 to 70% and the cumulative pore volume of pores with diameters of at most 1 &mgr;m is from 1 to 15 vol % of the total pore volume.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: May 20, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Naomichi Miyakawa, Nobuhiro Shinohara, Kanji Arai, Hideo Takahashi
  • Publication number: 20030041575
    Abstract: A ceramic material containing organic binder is formed by extrusion, dried and cut off so as to make the honeycomb body 100 having the bulkheads 11 and a plurality of cells 12 partitioned by the bulkheads 11 and penetrating between both end faces of the honeycomb body 100. The tapered jig 3 having a tapered forward end portion 31 is inserted into the opening 13 of the cell 12 of the honeycomb body 100. Then, the bulkheads 11 are heated and softened and deformed by a pushing force given by the tapered jig 3 so that the opening 13 of the cell 12 is expanded to form the large opening 131, and the opening 13 of the adjoining cell 12 is reduced at the same time so as to form the small opening 132. After that, the honeycomb body 100 is fired. In this way, the exhaust gas purifying filter for collecting particulates is manufactured.
    Type: Application
    Filed: August 21, 2002
    Publication date: March 6, 2003
    Inventors: Mikio Ishihara, Mamoru Nishimura
  • Patent number: 6524421
    Abstract: A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: February 25, 2003
    Assignee: Praxair Technology, Inc.
    Inventors: Jack C. Chen, Valerie M. Stawisuck, Ravi Prasad
  • Patent number: 6491861
    Abstract: A process for the production of a molding containing at least one zeolite, wherein the at least one zeolite contains a titanium-, zirconium-, chromium-, niobium-, iron- or vanadium-containing zeolite: (I) adding a mixture consisting of at least one alcohol selected from the group consisting of methanol, ethanol, propanol or butanol, and water to a mixture containing said zeolite or a mixture of two or more thereof, and (II) kneading, molding, drying and calcining the mixture from (I); wherein the molding is useful as a catalyst, particularly in epoxidation reactions.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: December 10, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Ulrich Müller, Andreas Walch, Norbert Rieber, Wolfgang Harder
  • Publication number: 20020167118
    Abstract: The disclosure describes a method to fabricate nanostructures containing isotropically distributed, interconnected pores having cross-sectional diameters in the nanometer and Angstrom range by integrating the steps of attriting precursor nanometer-sized particulate materials, desorbing the exposed surfaces of the attrited nanoparticulates, adsorbing a surfactant on 25-50% of the desorbed surfaces and dispersing the surfactant-coated nanoparticulates in an organic matrix to form a homogeneous thermoplastic compound from which green nanostructures are formed, dewaxed and sintered to the desired degree of microporosity.
    Type: Application
    Filed: March 11, 2002
    Publication date: November 14, 2002
    Inventors: Romain Billiet, Hanh T. Nguyen
  • Patent number: 6444162
    Abstract: An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: September 3, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Alexander G. Anshits, Olga M. Sharonova, Tatiana A. Vereshchagina, Irina D. Zykova, Yurii A. Revenko, Alexander A. Tretyakov, Albert S. Aloy, Rem I. Lubtsev, Dieter A. Knecht, Troy J. Tranter, Yevgeny Macheret
  • Patent number: 6410160
    Abstract: Porous metal-containing materials are provided for a variety of uses including filters, electrodes for batteries and fuel cells, light weight structural materials, heat exchangers and catalysts. A method is provided for making the porous metal-containing materials involving vapor phase sintering of a metal oxide green form followed by reduction to form a porous metal-containing material, typically without any significant shrinkage of the sample occurring during processing. The porous metal-containing materials may have porosities of from about 40 percent to as high as 90% in some embodiments. Furthermore, the pore volume is highly interconnected, which is particularly advantageous for many applications.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: June 25, 2002
    Assignee: Colorado School of Mines
    Inventors: Steven M. Landin, Dennis W. Readey, Darin J. Aldrich