Piezoelectric Device Making Patents (Class 29/25.35)
  • Patent number: 11950962
    Abstract: Ultrasound imaging systems and methods for generated clutter-reduced images are provided. For example, an ultrasound imaging system can include an array of acoustic elements in communication with a processor. The processor is configured to activate the array to perform a scan sequence to obtain a plurality of signals, identify off-axis signals from the plurality of signals by comparing the right subaperture and the left subaperture, and create a clutter-reduced image based on the comparison. Because off-axis signals are more likely to create image clutter, reducing the influence of off-axis signals on the image can therefore improve the quality of the image. Accordingly, embodiments of the present disclosure provide systems, methods, and devices for generating ultrasound images that have reduced or minimized clutter, even for images obtained using arrays that do not satisfy the Nyquist criterion.
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: April 9, 2024
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventors: Andrew Hancock, Yiqun Yang, David Hope Simpson, Francois Guy Gerard Marie Vignon, Jun Seob Shin
  • Patent number: 11955950
    Abstract: A formation method of a filter device includes: forming a first layer by providing a first substrate and forming a resonance device preprocessing layer with a first side and a second side opposite to the first side, wherein the first substrate is located on the first side; forming a second layer by providing a second substrate and forming a first passive device with a third side and a fourth side opposite to the third side, wherein the second substrate is located on the third side; connecting the first layer located on the fourth side and the second layer located on the second side; removing the first substrate; and forming at least one first resonance device based on the resonance device preprocessing layer. The resonance device and the passive device are integrated in one die to form a filter device, which requires less space in an RF front-end chip.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: April 9, 2024
    Assignee: SHENZHEN SUNWAY COMMUNICATION CO., LTD.
    Inventors: Chengcheng Yu, Yanjie Cao, Wei Wang
  • Patent number: 11950052
    Abstract: A transducer of the preferred embodiment including a transducer and a plurality of adjacent, tapered cantilevered beams. Each of the beams define a beam base, a beam tip, and a beam body disposed between the beam base and the beam tip. The beams are arranged such that each of the beam tips extends toward a common area. Each beam is joined to the substrate along the beam base and is free from the substrate along the beam body. A preferred method of manufacturing a transducer can include: depositing alternating layers of piezoelectric and electrode onto the substrate in block, processing the deposited layers to define cantilever geometry in block, depositing metal traces in block, and releasing the cantilevered beams from the substrate in block.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: April 2, 2024
    Assignee: QUALCOMM Technologies, Inc.
    Inventors: Karl Grosh, Robert J. Littrell
  • Patent number: 11948610
    Abstract: A suspension is described. The suspension includes a base plate and a load beam coupled to the base plate. The base plate includes a distal elongated element and a proximal elongated element. The distal elongated element includes at least one non-straight baseplate edge and the proximal elongated element includes at least one non-straight baseplate edge. The load beam includes a first mounting shelf and a second mounting shelf. The load beam is coupled to the base plate such that the first mounting shelf is exposed adjacent to the distal elongated element, and the second mounting shelf is exposed adjacent to the proximal elongated element. The first and second mounting shelves are configured to receive an actuator, such that an edge of the actuator and the at least one non-straight baseplate edge forms a gap.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: April 2, 2024
    Assignee: Magnecomp Corporation
    Inventors: Kuen Chee Ee, Ekaratch Pankaew, Preecha Sudachun
  • Patent number: 11949399
    Abstract: Resonator devices, filter devices, and methods of fabrication are disclosed. A resonator device includes a substrate and a single-crystal piezoelectric plate having front and back surfaces. An acoustic Bragg reflector is sandwiched between a surface of the substrate and the back surface of the piezoelectric plate. An interdigital transducer (IDT) is formed on the front surface of the piezoelectric plate. The IDT and the piezoelectric plate are configured such that a radio frequency signal applied to the IDT excites a primary acoustic mode within the piezoelectric plate. The acoustic Bragg reflector comprises alternating SiO2 and diamond layers and is configured to reflect the primary acoustic mode.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: April 2, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Ventsislav Yantchev
  • Patent number: 11942915
    Abstract: A bulk acoustic wave resonator device comprises bottom and top electrodes (120, 360). A piezoelectric layer (355) sandwiched therebetween has a thickness in the active resonator area different from the thickness in the surrounding area. A method of manufacturing the device comprises a bonding of a piezoelectric wafer to a carrier wafer and splitting a portion of the piezoelectric wafer by an ion-cut technique. Different thicknesses of the piezoelectric layer in the active area and the surrounding area are achieved by implanting ions at different depths.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 26, 2024
    Assignee: RF360 Singapore Pte. Ltd.
    Inventors: Ulrike Roesler, Willi Aigner, Maximilian Schiek, Giuseppe Toscano
  • Patent number: 11938680
    Abstract: The disclosure belongs to the technical field of additive manufacturing, and discloses a flexible piezoelectric sensor based on 4D printing and a preparation method thereof. The sensor includes a magnetic part and a conductive part, wherein: the conductive part includes two substrates disposed opposite to each other and a spiral structure disposed between the two substrates. Both the two substrates and the spiral structure are made of conductive metal materials. The magnetic part has a flexible porous structure and is arranged between the two substrates to generate a magnetic field. When the substrate is subjected to external pressure, the spiral structure and the magnetic part are compressed simultaneously, the magnetic flux passing through the spiral structure changes, and the voltage of the two substrates changes, by measuring the voltage change of the two substrates to reflect the change of external pressure, the pressure measuring process is achieved.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: March 26, 2024
    Assignee: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Bin Su, Hongzhi Wu, Chunze Yan, Yusheng Shi
  • Patent number: 11938515
    Abstract: The teachings of the present disclosure enable the manufacture of one or more piezoelectric micromachined ultrasonic transducers (PMUTs) having a resonant frequency of a specific target value and/or substantially matched resonant frequencies. In accordance with the present disclosure, a flexible membrane of a PMUT is modified to impart a desired parameter profile for stiffness and/or mass to tune its resonant frequency to a target value. The desired parameter profile is achieved by locally removing or adding material to regions of one or more layers of the flexible membrane to alter its geometric dimensions and/or density. In some embodiments, material is added or removed non-uniformly across the structural layer to realize a material distribution that more strongly affects membrane stiffness than mass. In some embodiments, material having a specific residual stress is added to, and/or removed from, the membrane to define a desired modal stiffness for the membrane.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: March 26, 2024
    Assignee: InvenSense, Inc.
    Inventors: Fabian Goericke, Stefon Shelton, Benedict Costello
  • Patent number: 11942916
    Abstract: A film bulk acoustic resonator and a fabricating method thereof is provided. The fabricating method includes: fabricating a lower electrode on a first surface of an SOI substrate; forming piezoelectric layers on the first surface of the SOI substrate and the lower electrode; forming top electrodes on the piezoelectric layers; processing an air cavity on a second surface of the SOI substrate, wherein the second surface and the first surface are oppositely arranged. The fabricating method simplifies a preparation process of FBAR, a quality of a AlN film crystal grown though the fabrication method is high, an improvement of a device performance is facilitated, and meanwhile a thickness of a top silicon is controlled through a position of a silicon injected oxygen isolation to regulate a frequency of the film bulk acoustic resonator.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: March 26, 2024
    Assignee: SUZHOU INSTITUTE OF NANO-TECH AND NANO-BIONICS (SINANO), CHINESE ACADEMY OF SCIENCES
    Inventors: Xiaodong Zhang, Wenkui Lin, Baoshun Zhang
  • Patent number: 11941974
    Abstract: Systems, methods, and devices for haptic feedback are provided. A microfluidic device includes an inlet port for supplying a fluid into the microfluidic device. A tube receives the fluid from the inlet port. The microfluidic device includes a piezoelectric actuator for realizing a displacement of a substrate to which the microfluidic device is attached, the displacement based on an electrical actuation applied to the piezoelectric actuator, and an amount of the fluid or a pressure in the tube. In some embodiments, the tube includes a carbon nanotube. In some embodiments, an amount of the fluid in the tube is controlled by an actuator (e.g., the piezoelectric actuator).
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: March 26, 2024
    Assignee: TDK CORPORATION
    Inventor: Rakesh Sethi
  • Patent number: 11932017
    Abstract: A liquid discharge head includes a diaphragm, a first electrode, a piezoelectric body, and a second electrode which are stacked in this order in a first direction, in which when a region of the piezoelectric body interposed between the first electrode and the second electrode is set as a first region, a region of the piezoelectric body other than the first region is set as a second region, a portion of the diaphragm that overlaps a boundary between the first region and the second region when viewed in the first direction is set as a first portion, and a portion of the diaphragm that is different from the first portion and overlaps the first region when viewed in the first direction is set as a second portion, a thickness of the first portion is smaller than a thickness of the second portion.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: March 19, 2024
    Assignee: Seiko Epson Corporation
    Inventor: Motoki Takabe
  • Patent number: 11931777
    Abstract: Disclosed is a method for manufacturing an ultrasonic transducer assembly comprising an ultrasonic transducer chip having a main surface comprising a plurality of ultrasound transducer elements and a plurality of first contacts for connecting to said ultrasound transducer elements, a contact chip having a further main surface comprising a plurality of second contacts, a backing member comprising ultrasound absorbing and/or scattering bodies, said backing member comprising a first surface on which the transducer chip is mounted and a second surface on which the contact chip is mounted. A flexible interconnect extends over said backing member from the main surface to the further main surface, the flexible interconnect comprising a plurality of conductive tracks, each conductive track connecting one of said first contacts to a second contact.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: March 19, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johannes Wilhelmus Weekamp, Vincent Adrianus Henneken, Alfons Wouter Groenland, Marcus Cornelis Louwerse
  • Patent number: 11936358
    Abstract: An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on the diaphragm. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the device to provide lower thermal resistance between the conductor pattern and the substrate.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: March 19, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Greg Dyer, Chris O'Brien, Neal O. Fenzi, James R. Costa
  • Patent number: 11936367
    Abstract: An acoustic wave resonator is disclosed. The acoustic wave resonator can include a piezoelectric layer, an interdigital transducer electrode positioned over the piezoelectric layer, a temperature compensation layer positioned over the interdigital transducer electrode, and a velocity reduction cover that extends over at least a portion of a central region of the interdigital transducer electrode and over at least a portion of the temperature compensation layer. The velocity reduction cover is arranged to cause a velocity of an acoustic wave generated by the acoustic wave resonator to be reduced.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: March 19, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Hironori Fukuhara, Rei Goto
  • Patent number: 11929730
    Abstract: An acoustic wave element includes: a substrate; a bonding structure on the substrate; a support layer on the bonding structure; a first electrode including a lower surface on the support layer; a cavity positioned between the support layer and the first electrode and exposing a lower surface of the first electrode; a piezoelectric layer on the first electrode; and a second electrode on the piezoelectric layer, wherein at least one of the first electrode and the second electrode includes a first layer and a second layer that the first layer has a first acoustic impedance and a first electrical impedance, the second layer has a second acoustic impedance and a second electrical impedance, wherein the first acoustic impedance is higher than the second acoustic impedance, and the second electrical impedance is lower than the first electrical impedance.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: March 12, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Ta-Cheng Hsu, Wei-Shou Chen, Chun-Yi Lin, Chung-Jen Chung, Wei-Tsuen Ye, Wei-Ching Guo
  • Patent number: 11912031
    Abstract: An active portion of a piezoelectric actuator includes a first region provided in a region opposed to a recess and extending in a first direction, and a second region provided in a region corresponding to a central part in the first direction of the recess, and being configured such that a laminated body including the active portion and a vibration plate has a thickness larger than a thickness of a portion corresponding to the first region and that deformation of the second region is suppressed as compared to deformation of the first region when a voltage is applied between a first electrode and a second electrode.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: February 27, 2024
    Assignee: Seiko Epson Corporation
    Inventors: Yasushi Yamazaki, Daisuke Nagano
  • Patent number: 11906375
    Abstract: The present disclosure is directed to methods for low-cost, high-volume production of strain gages having substantially uniform gage-to-gage resistances. Strain gages in accordance with the present disclosure are sculpted from a device layer of a semiconductor-on-insulator wafer using deep reactive ion etching, thereby enabling well-controlled electrical properties and physical dimensions of the strain gages. In some embodiments, groups of fully fabricated strain gages are physically connected to handling frames via sprues to facilitate handling, automated assembly, and/or tracing of individual gages from the beginning of fabrication through final packaging. In some embodiments, sprues are configured to mitigate accidental separation of the gages from their frames while simultaneously enabling their removal in response to specific forces applied by a handling tool.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: February 20, 2024
    Assignee: Piezo-Metrics Inc
    Inventors: Franklin Curtis Wong, Robert Andrew Mueller, Kimberly Lakea Harrison, Farzad Khademolhosseini, Carolyn D. Bianco
  • Patent number: 11910159
    Abstract: An object is to provide a laminated piezoelectric element capable of preventing a short circuit between adjacent piezoelectric films and an electroacoustic transducer using the laminated piezoelectric element. The object is solved by laminating a plurality of layers of piezoelectric films polarized in a thickness direction, in which a piezoelectric layer is interposed between two thin film electrodes, and causing polarization directions of the adjacent piezoelectric films to be opposite to each other.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: February 20, 2024
    Assignee: FUJIFILM Corporation
    Inventor: Tetsu Miyoshi
  • Patent number: 11890900
    Abstract: The transmitter is arranged in a tire attached to a wheel and configured to transmit data to a receiver. The transmitter includes an obtaining section configured to obtain a detection result of the sensor, a generating section configured to generate the data including the detection result of the sensor, a transmitting section configured to transmit the data generated by the generating section, and an organic power generation element that is a power source of the transmitter. The organic power generation element is configured to generate power through a chemical reaction with organic matter contained in a fuel solution accommodated in the tire.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: February 6, 2024
    Assignee: PACIFIC INDUSTRIAL CO., LTD.
    Inventors: Akira Momose, Yasuhisa Tsujita
  • Patent number: 11895921
    Abstract: A preparation method for a piezoelectric fiber is provided including a piezoelectric functional layer and an insulating layer coated on the piezoelectric functional layer. The piezoelectric functional layer includes a piezoelectric composite layer of a spiral winding structure, and the piezoelectric composite layer includes a first piezoelectric layer, a conductive layer and a second piezoelectric layer that are sequentially stacked. The preparation method includes taking one end of the piezoelectric composite layer as a winding axis, winding the piezoelectric composite layer in a direction perpendicular to the winding axis to form the piezoelectric functional layer, wherein turns of winding the piezoelectric composite layer are greater than 5, coating the piezoelectric functional layer with the insulating layer, and vacuum heating to consolidate, to prepare a preform rod.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: February 6, 2024
    Assignees: NANTONG TEXTILE & SILK IND TECH RES INST, SOOCHOW UNIVERSITY
    Inventors: Yuqing Liu, Yuting Wang, Jing Hu, Xin Yang, Ranran Li, Jian Fang
  • Patent number: 11885007
    Abstract: A structure includes a substrate including a wafer or a portion thereof; and a piezoelectric bulk material layer comprising a first portion deposited onto the substrate and a second portion deposited onto the first portion, the second portion comprising an outer surface having a surface roughness (Ra) of 4.5 nm or less. Methods for depositing a piezoelectric bulk material layer include depositing a first portion of bulk layer material at a first incidence angle to achieve a predetermined c-axis tilt, and depositing a second portion of the bulk material layer onto the first portion at a second incidence angle that is smaller than the first incidence angle. The second portion has a second c-axis tilt that substantially aligns with the first c-axis tilt.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: January 30, 2024
    Assignee: Qorvo US, Inc.
    Inventors: Derya Deniz, Matthew Wasilik, Robert Kraft, John Belsick
  • Patent number: 11881835
    Abstract: An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on the diaphragm. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the device to provide lower thermal resistance between the IDT and the substrate.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: January 23, 2024
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Greg Dyer, Chris O'Brien, Neal O. Fenzi, James R. Costa
  • Patent number: 11873214
    Abstract: A method for fabricating nano-electro-mechanical tags for identification and authentication includes, in part, forming a protective layer above a substrate, forming a first conductive layer above the protective layer serving as a first electrode, forming a piezoelectric layer above the first conductive layer, forming a second conductive layer above the piezoelectric layer, patterning the second conductive layer to form a second electrode, patterning the piezoelectric layer to expose one or more portions of the first conductive layer, and forming one or more trenches that extends into a plurality layers formed above. In addition, a sacrificial layer can be formed above portions of the substrate, and the sacrificial layer can be removed by etching to release the nano-electro-mechanical tags from the substrate.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: January 16, 2024
    Assignee: University of Florida Research Foundation, Incorporated
    Inventors: Roozbeh Tabrizian, Swarup Bhunia
  • Patent number: 11872592
    Abstract: An ultrasonic device includes a base material that has an opening, a vibration plate that is provided on the base material and closes the opening, and a piezoelectric element that is provided on the vibration plate, in which the vibration plate has a first layer provided on the base material, and a second layer that is disposed between the first layer and the piezoelectric element and that suppresses diffusion of a component contained in the piezoelectric element, and a bending rigidity of the second layer is equal to or larger than a bending rigidity of the first layer.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: January 16, 2024
    Inventors: Chikara Kojima, Koji Ohashi, Eiji Osawa
  • Patent number: 11877516
    Abstract: A displacement sensor having a rectangular shaped elastic member. A piezoelectric element is attached to a first main face of the elastic member. The piezoelectric element has a rectangular-shaped piezoelectric sheet and electrodes on both main faces of the piezoelectric sheet. The piezoelectric sheet is made of poly-L-lactic acid and is at least uniaxially-stretched. The piezoelectric element is attached so that the uniaxial-stretching direction of the piezoelectric sheet is 45° relative to a long-side direction of the elastic member. When the elastic member is bent along the long-side direction, the piezoelectric sheet is stretched along the long-side direction, and the piezoelectric element generates voltage of predetermined level.
    Type: Grant
    Filed: August 19, 2022
    Date of Patent: January 16, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Masamichi Ando, Hideki Kawamura
  • Patent number: 11870408
    Abstract: Acoustic wave filter devices are disclosed. A device includes a layer providing or on a topmost layer of an acoustic reflector. The intermediary layer has a first region and a second region. The first region has a first layer thickness and the second region has a second layer thickness different from the first layer thickness. The device includes a first multilayer stack on the first region and a second multilayer stack on the second region of the intermediary layer. Each of the first and the second stacks includes a piezoelectric layer on a counter electrode that is located on the respective region, an input and an output electrode. Application of a radio frequency voltage between the input electrode and the counter electrode layer of the first stack creates acoustic resonance modes in the piezoelectric layer between the input and output electrodes of the first and the second stack.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: January 9, 2024
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Markku Ylilammi, Tapani Makkonen, Tuomas Pensala
  • Patent number: 11871523
    Abstract: An electronic component module includes a substrate, an electronic component, an insulating resin, and a shield film. The insulating resin covers a first main surface side of the substrate. The insulating resin exposes an opposite surface of the electronic component. The shield film covers the insulating resin and the opposite surface of the electronic component. The opposite surface has an uneven portion. A concave portion of the uneven portion has a smoother shape than a convex portion of the uneven portion.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: January 9, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Ryohei Okabe, Toru Komatsu
  • Patent number: 11870415
    Abstract: Techniques for improving acoustic wave device structures are disclosed, including filters, oscillators and systems that may include such devices. First and second layers of piezoelectric material may be acoustically coupled with one another to have a piezoelectrically excitable resonance mode. The first layer of piezoelectric material may have a first piezoelectric axis orientation, and the second layer of piezoelectric material may have a second piezoelectric axis orientation that substantially opposes the first piezoelectric axis orientation of the first layer of piezoelectric material. The first and second layers of piezoelectric material have respective thicknesses so that the acoustic wave device has a resonant frequency that is in a super high frequency band or an extremely high frequency band.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: January 9, 2024
    Assignee: Qxonix Inc.
    Inventors: Dariusz Burak, Kevin J. Grannen, Jack Lenell
  • Patent number: 11860465
    Abstract: A display device comprises a display panel including a pixel providing a light and an input sensing panel sensing an external input. The input sensing panel includes a first sensing insulating layer disposed on the display panel, first conductive patterns disposed on the first sensing insulating layer, a second sensing insulating layer covering the first conductive patterns, second conductive patterns disposed on the second sensing insulating layer, a piezoelectric pattern covering the second conductive patterns, a light blocking pattern covering the piezoelectric pattern and defining a transmission opening transmitting the light, and a third sensing insulating layer covering the light blocking pattern.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: January 2, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventor: Changyun Moon
  • Patent number: 11858807
    Abstract: An electronic device includes a microelectromechanical system (MEMS) rectifier. The MEMS rectifier includes a mainboard and a sub-board. The mainboard has one or more radiofrequency (RF) inputs configured to receive an RF signal, and a first electrical contact. The sub-board is positioned parallel to the mainboard with a gap in-between, and has a thin film piezoelectric layer, a second electrical contact positioned opposite the first electrical contact, and a ground plane. The sub-board is configured to vibrate as the RF signal is received at the one or more RF inputs, and the thin film piezoelectric layer is configured to generate energy due to the vibration and piezoelectric properties of the thin film piezoelectric layer.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: January 2, 2024
    Assignee: X DEVELOPMENT LLC
    Inventor: Amit Lal
  • Patent number: 11864464
    Abstract: A method for polarizing a piezoelectric film is described. In this method, a piezoelectric film is formed by using an injection deposition method. The piezoelectric film is flat adhered to a surface of a conductive substrate. A polarization process is performed on the piezoelectric film while the piezoelectric film is flat adhered to the surface of the conductive substrate by generating static electricity on the adhesion surface of the piezoelectric film, and generating the static electricity on the adhesion surface of the piezoelectric film comprises using a pressurized gas to blow the adhesion surface, and the adhesion surface of the piezoelectric film is adhered to the even surface of the conductive substrate by an electrostatic adsorption method.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 2, 2024
    Assignee: CREATING NANO TECHNOLOGIES, INC.
    Inventors: Ji-Yung Lee, Andrew Ronaldi Tandio, Bo-Fan Tsai
  • Patent number: 11851747
    Abstract: A potassium sodium niobate sputtering target having a relative density of 95% or higher. A method of producing a potassium sodium niobate sputtering target, including the steps of mixing a Nb2O5 powder, a K2Co3 powder, and a Na2Co3 powder, pulverizing the mixed powder to achieve a grain size d50 of 100 ?m or less, and performing hot press sintering to the obtained pulverized powder in an inert gas or vacuum atmosphere under conditions of a temperature of 900° C. or higher and less than 1150° C., and a load of 150 to 400 kgf/cm2. The present invention aims to provide a high density potassium sodium niobate sputtering target capable of industrially depositing potassium sodium niobate films via the sputtering method.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: December 26, 2023
    Assignee: JX METALS CORPORATION
    Inventors: Ryosuke Sakashita, Hiroshi Takamura, Atsushi Nara, Ryo Suzuki
  • Patent number: 11856859
    Abstract: A piezoelectric device including a substrate, a metal-insulator-metal element, a hydrogen blocking layer, a passivation layer, a first contact terminal and a second contact terminal is provided. The metal-insulator-metal element is disposed on the substrate. The hydrogen blocking layer is disposed on the metal-insulator-metal element. The passivation layer covers the hydrogen blocking layer and the metal-insulator-metal element. The first contact terminal is electrically connected to the metal-insulator-metal element. The second contact terminal is electrically connected to the metal-insulator-metal element.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chih-Ming Chen
  • Patent number: 11850629
    Abstract: A piezoelectric sensor assembly, a manufacturing method thereof, a display panel and an electronic device including the same are provided. The piezoelectric sensor assembly includes: a base substrate; a plurality of ultrasonic transducers, wherein a spacing area is provided between two adjacent ultrasonic transducers; and an acoustic matching layer, wherein the acoustic matching layer includes a plurality of acoustic matching areas, and an orthographic projection of at least one acoustic matching area on the base substrate falls into an orthographic projection of the ultrasonic transducer corresponding to the acoustic matching area on the base substrate, wherein an isolation cavity is provided between two adjacent acoustic matching areas.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: December 26, 2023
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Chenyang Zhang, Yingming Liu, Haisheng Wang, Peixiao Li, Xiufeng Li, Yuzhen Guo, Yanling Han, Lijun Zhao
  • Patent number: 11850416
    Abstract: Various methods of manufacture can produce three-dimensional, high density, high-electrode probe arrays that can advantageously be used in neural-based applications. In one example, deep reactive ion etched (DRIE) ultra-high aspect ratio holes are etched in silicon and refilled with multiple films to a high density array of individual probes, each probe having individual recording and/or stimulation sites or tips. Using a DRIE lag effect technique can help control tip sharpness and electrode length, allowing for narrow, long, and dense needles to be formed side-by-side in a single array. In some examples, multimodal probe arrays are manufactured, with some probes having a recording/stimulating site, other probes having a waveguide, and yet other probes having a microfluidic channel.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: December 26, 2023
    Assignee: The Regents of the University of Michigan
    Inventors: Khalil Najafi, Seyed Amin Sandoughsaz Zardini, Daniel Egert
  • Patent number: 11849267
    Abstract: An apparatus includes a vibration member, a housing at a rear surface of the vibration member, a connection member between the vibration member and the housing, and a vibration apparatus configured to vibrate the vibration member, the vibration member includes at least one flat portion and at least one flexural portion adjacent to the at least one flat portion.
    Type: Grant
    Filed: November 7, 2022
    Date of Patent: December 19, 2023
    Assignee: LG DISPLAY CO., LTD.
    Inventors: YuSeon Kho, Sooyoun Kim
  • Patent number: 11849281
    Abstract: An apparatus includes a display member configured to display an image, a front member at a front surface of the display member, a vibration apparatus at a rear surface of the display member, and an adhesive member between the display member and the front member, the adhesive member including a piezoelectric material.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: December 19, 2023
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Giyoun Kim, Eun Roh
  • Patent number: 11845281
    Abstract: A liquid ejection head includes an ejection orifice for ejecting a liquid; a substrate on which an energy-generating element and an insulating layer are formed on a first surface; a liquid inflow path which penetrates the substrate and makes a liquid flow in a flow path disposed between the ejection orifice and the element; and a liquid outflow path which penetrates the substrate and makes the liquid flow out of the flow path. The liquid inflow path and the liquid outflow path have a first opening and a second opening penetrating the insulating layer on the first surface of the substrate, the ejection orifice is disposed between the liquid inflow path and the liquid outflow path, and an ejection orifice side end of the second opening is formed closer to the ejection orifice than an ejection orifice side end of the first opening.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: December 19, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masataka Kato
  • Patent number: 11848202
    Abstract: The present disclosure generally relates to process chambers for semiconductor processing. In one embodiment, a growth monitor for substrate processing is provided. The growth monitor includes a sensor holder and a crystal disposed in the sensor holder having a front side and a back side. An opening is formed in the sensor holder exposing a front side of the crystal. A gas inlet is disposed through the sensor holder to a plenum formed by the back side of the crystal and the sensor holder. A gas outlet is fluidly coupled to the plenum.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: December 19, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhepeng Cong, Mostafa Baghbanzadeh, Tao Sheng, Enle Choo
  • Patent number: 11838001
    Abstract: A bulk acoustic wave resonator and a method of manufacturing the same are provided. The bulk acoustic wave resonator includes: a first carrier substrate; a barrier layer on a main surface of the first carrier substrate and configured to prevent an undesired conductive channel from being generated due to charge accumulation on the main surface; a buffer layer on a side of the barrier layer away from the first carrier substrate; a piezoelectric layer on a side of the buffer layer away from the barrier layer; a first electrode and a second electrode on opposite sides of the piezoelectric layer; a first passivation layer and a second passivation layer, respectively covering sidewalls of the first electrode and the second electrode; a dielectric layer between the first passivation layer and the buffer layer, wherein a first cavity is provided between the first passivation layer and the dielectric layer.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: December 5, 2023
    Assignee: Shenzhen Newsonic Technologies Co., Ltd.
    Inventor: Guojun Weng
  • Patent number: 11838679
    Abstract: An infrared imaging device comprises an infrared imaging sensor to detect infrared light as heat, a temperature drift compensation amount calculator to calculate a temperature drift compensation amount in accordance with a temperature change of the substrate, with respect to a pixel output outputted from each of the plurality of pixels, a compensation amount calculation function generator to generate a function with the temperature of the substrate as an independent variable; and a timing controller to cause the infrared imaging sensor and the substrate temperature sensor to synchronously output data to the compensation amount calculation function generator for generating the function, wherein the compensation amount calculation function generator uses the data for generation output after the generation of the function as additional data for improving accuracy of the function.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: December 5, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tomohiro Maegawa, Hiroshi Hirosaki
  • Patent number: 11827017
    Abstract: A liquid ejection head includes a recording element substrate. The recording element substrate includes a recording element, a circuit wiring driving the recording element to eject liquid, a protective film, an electrode area, a plating bump, and a resin film having elastic properties. The electrode area electrically connects the circuit wiring to an external circuit through an opening in the protective film. The protective film covers the circuit wiring in an outer adjacent region to the opening to define a step in the protective film. The protective film protects the circuit wiring against the liquid. The plating bump is electrically connected to the electrode area. The resin film covers the step and extends from an inner peripheral region of the opening onto the protective film beyond an edge of the opening. The plating bump includes a part projecting from the electrode area onto an upper surface of the resin film.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: November 28, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yusuke Hashimoto, Junichiro Iri, Hiroaki Kusano
  • Patent number: 11832056
    Abstract: A disclosed vibration device comprises a first vibration generator and a first connection member disposed on a first surface of the first vibration generator. The first vibration generator may comprise a first vibration part including a plurality of inorganic material portions having a piezoelectric characteristic and an organic material portion between the plurality of inorganic material portions.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: November 28, 2023
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Sungwook Ko, Minji Kim, SeungRyull Park
  • Patent number: 11831300
    Abstract: An elastic wave filter apparatus includes at least one excitation electrode, a first electrode land, and second electrode lands provided on a first main surface of a device substrate including a piezoelectric layer. A signal terminal and metal members are provided on a second main surface of the device substrate. The first electrode land and the signal terminal are connected to a signal potential, and the second electrode lands and the metal members are connected to a ground potential. A first connection electrode connects the first electrode land and the signal terminal, and a second connection electrode connects at least one of the second electrode lands and at least one of the metal members. The at least one metal member connected to the second connection electrode overlaps at least a portion of the at least one excitation electrode across the device substrate.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: November 28, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Koichiro Kawasaki, Taku Kikuchi
  • Patent number: 11831277
    Abstract: A resonator device includes a resonator element, a base which has a first surface and a second surface that are in front-back relation, and in which the resonator element is arranged at the first surface, an integrated circuit provided to the base, a lid which has an inner surface opposed to the resonator element, and an outer surface in a front-back relationship with the inner surface, and which is bonded to the base so as to house the resonator element, and a radiation layer which is arranged at the inner surface of the lid, and is higher in emissivity than the lid.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: November 28, 2023
    Inventors: Ryuta Nishizawa, Junichi Takeuchi
  • Patent number: 11832057
    Abstract: A piezoelectric microelectromechanical systems microphone can be mounted on a printed circuit board. The microphone can include a substrate with an opening between a bottom end of the substrate and a top end of the substrate. The microphone can include a single piezoelectric film layer disposed over the top end of the substrate and defining a diaphragm structure, the single piezoelectric film layer having substantially zero residual stress and formed from a piezoelectric wafer. The microphone can include one or more electrodes disposed over the diaphragm structure. The diaphragm structure is configured to deflect when subjected to sound pressure via the opening in the substrate.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: November 28, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Yu Hui, Guofeng Chen
  • Patent number: 11824514
    Abstract: For a multilayer SAW device arranged on a carrier substrate it is proposed to use a specific material for the carrier substrate. If a silicon material having a selected range of Euler angles is used as a material for the carrier substrat improved suppression of disturbing signals is achieved.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: November 21, 2023
    Assignee: RF360 Singapore Pte. Ltd.
    Inventors: Matthias Knapp, Ingo Bleyl
  • Patent number: 11825749
    Abstract: A method of generating a piezoelectric actuator includes: forming a piezoelectric member upon a rigid substrate; and removing one or more portions of the rigid substrate to form one or more gaps in the rigid substrate, thus defining at least one deformable portion of the piezoelectric member and at least one rigid portion of the piezoelectric member.
    Type: Grant
    Filed: November 10, 2019
    Date of Patent: November 21, 2023
    Assignee: MEMS Drive (Nanjing) Co., Ltd.
    Inventors: Guiqin Wang, Xiaolei Liu, Mahmood Samiee, Yufeng Wang
  • Patent number: 11817845
    Abstract: Methods of making acoustic resonators and filter devices. A method includes attaching a piezoelectric plate to a substrate, and forming a conductor pattern including an interdigital transducer (IDT) on a portion of the piezoelectric plate that forms a diaphragm spanning a cavity such that interleaved fingers of the IDT are on the diaphragm. The substrate and the piezoelectric plate are the same material.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: November 14, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Neal Fenzi, Robert Hammond, Patrick Turner, Bryant Garcia, Ryo Wakabayashi
  • Patent number: 11817266
    Abstract: A conductive paste includes a conductive metal powder and a curable resin. The conductive metal powder includes Ag, Cu, and Ni. In the conductive metal powder, a mass ratio of Ag is about 3.0 wt % or more and about 10.0 wt % or less, a mass ratio of Cu is about {(1?mass ratio of Ag/100)×70} wt % or more and about {(1?mass ratio of Ag/100)×95} wt % or less, and a mass ratio of Ni is about {(1?mass ratio of Ag/100)×5} wt % or more and about {(1?mass ratio of Ag/100)×30} wt % or less.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: November 14, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kenichi Hamanaka, Kota Zenzai