Electric System Failure (no Warning) Patents (Class 303/122.04)
  • Patent number: 11951968
    Abstract: An EPB (Electronic Parking Brake) control apparatus may include: a first EPB switch of an EPB; a first controller connected to two terminals among the plurality of terminals of the first EPB switch, and configured to calculate a first signal value by combining signals received from the two terminals, and diagnose the state of the first EPB switch according to the first signal value, and a second controller connected to the other two terminals among the plurality of terminals of the first EPB switch, and configured to calculate a second signal value by combining signals received from the two terminals, and diagnose the state of the first EPB switch according to the second signal value.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: April 9, 2024
    Assignee: HYUNDAI MOBIS CO., LTD.
    Inventors: Sang Hyun Lee, Jung Hoon Kim
  • Patent number: 11904820
    Abstract: A brake system for selectively actuating at least one of a pair of front wheel brakes and a pair of rear wheel brakes of a vehicle, one of which is hydraulically actuated and the other of which is electrically actuated, includes a reservoir. First and second integrated control units are in fluid communication with the reservoir and respective ones of the hydraulically actuated wheel brakes. The first and second integrated control units have first and second power transmission units connected to first and second electronic control unit, respectively. Each electronic control unit is configured to control a corresponding power transmission unit and a selected one of the electrically actuated wheel brakes on a contralateral side of the vehicle from the selected one of the hydraulically actuated wheel brakes which is actuated by the power transmission unit.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: February 20, 2024
    Assignee: ZF Active Safety US Inc.
    Inventor: Blaise J. Ganzel
  • Patent number: 11827192
    Abstract: A control unit comprises a first power source line connecting a vehicle power source and a motor, a second power source line connecting the vehicle power source and a plurality of electromagnetic valves, a solenoid relay arranged in a second power source line, a link line connecting a portion of the second power source line, which extends between the solenoid relay and the plurality of electromagnetic valves, to the first power source line, and a link relay arranged in the link line.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: November 28, 2023
    Assignee: Hitachi Astemo, Ltd.
    Inventor: Katsuhiko Wakabayashi
  • Patent number: 11760367
    Abstract: A system for controlling a failure of an environment-friendly vehicle is provided to which a highway driving pilot (HDP) system is applied. The system includes a vehicle control unit (VCU) controller that operates a driving motor, an integrated electric booster (IEB) controller that operates IEB for controlling a brake of the environment-friendly vehicle and generate a request to the VCU controller for regenerative braking, and an HDP controller that calculates a required deceleration of the environment-friendly vehicle based on the situation around the environment-friendly vehicle, determined through cognitive control sensors applied to the environment-friendly vehicle. The HDP controller transmits the required deceleration to the IEB controller. At least one of regenerative braking of the driving motor or braking through the brake is performed based on a type of a fault message output by the IEB controller or a failure in communication between the HDP controller and the IEB controller.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: September 19, 2023
    Assignees: Hyundai Motor Company, Kia Corporation
    Inventor: Joo Beom Kim
  • Patent number: 11590946
    Abstract: A method and device for a vehicle having wheels which are each assigned a sensor for generating wheel signals. The unit determines whether a wheel is affected by a failure of the corresponding wheel signal. The unit acquires wheel signals which are assigned to the wheels, and for a wheel affected by a wheel signal failure, the corresponding wheel signal is acquired in the form of a substitute signal. The unit calculates a target brake pressure for a wheel at which an increase in brake pressure is necessary. The increase in brake pressure takes place in accordance with the wheel signal which is obtained for the wheel and in accordance with the determination as to whether the wheel is affected by a wheel signal failure. The unit further determines a slip threshold for an anti-lock brake control operation applied to the wheel affected by the wheel signal failure.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: February 28, 2023
    Assignee: ZF Active Safety GmbH
    Inventor: Andreas Passmann
  • Patent number: 11472387
    Abstract: A brake system for a motor vehicle with at least four hydraulically activated wheel brakes, including for each of the wheel brakes an electrically activated first wheel valve which is designed to be open when de-energized and an electrically activated second wheel valve which is designed to be closed when de-energized, a first electrically activated pressure source, which is connected to the first wheel valves via a first brake supply line, a second electrically activated pressure source, and a pressure medium reservoir vessel which is, in particular, at atmospheric pressure, wherein the second electrically activated pressure source is connected to the second wheel valves via a second brake supply line, and a method for operating said brake system.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: October 18, 2022
    Inventors: Robert Grimm, Jochen Zimmermann, Christian Courth, Jochen Beuss
  • Patent number: 11414062
    Abstract: A brake system for a motor vehicle with at least four hydraulically activated wheel brakes. Each of the wheel brakes has a first electrically activated wheel valve which is open when de-energized and a second electrically activated wheel valve which is closed when de-energized, a first electrically activated pressure source, connected to the first wheel valves via a first brake supply line. Arranged in the first brake supply line is an electrically activated circuit isolating valve by which two of the first wheel valves can be hydraulically disconnected from the first pressure source, a second electrically activated pressure source, and a pressure medium reservoir vessel at atmospheric pressure. The circuit isolating valve is designed to be open when de-energized, and the second electrically activated pressure source is connected to the second wheel valves via a second brake supply line. A method for operating the brake system is also disclosed.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: August 16, 2022
    Assignee: CONTINENTAL TEVES AG & CO. OHG
    Inventors: Jochen Zimmermann, Robert Grimm
  • Patent number: 10752230
    Abstract: A method of performing prognostics on a hydraulic brake system of an aircraft may include determining, during primary braking mode and by a hydraulic brake controller, a first status of a first brake pressure sensor adjacent a brake assembly. The method may also include, in response to determining that the first status of the first brake pressure sensor is valid, determining, during park braking mode and by the hydraulic brake controller, a second status of a second brake pressure sensor adjacent a park valve assembly. In response to determining that the first status of the first brake pressure sensor is degraded, the method may include outputting, by the hydraulic brake controller, at least one of an inspection indicator and a maintenance indicator.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: August 25, 2020
    Assignee: GOODRICH CORPORATION
    Inventors: Marc Georgin, Michael Kordik
  • Patent number: 10647273
    Abstract: A brake system including: (a) a pair of electric brake devices respectively for right and left wheels; (b) a pair of individual controllers respectively associated with the electric brake devices; (c) a central controller communicable with the individual controllers; and (d) an on-vehicle network to which the central and individual controllers are connected, wherein the central controller transmits, via the on-vehicle network, control commands to the individual controllers as signals containing destination information of the respective individual controllers, wherein each individual controller controls an associated one of the electric brake devices according to the control command based on the signal containing the destination information of its own, and wherein the brake system further includes a position-change determining device configured to determine, based on a turning behavior of a vehicle, that positions of the individual controllers are mutually changed with respect to the association with the elect
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 12, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaru Shimono
  • Patent number: 10576919
    Abstract: A vehicle power supply control device includes a vehicle power supply master connected at one end of a single-system trunk line unit and including a main battery charged with power and discharging power, a plurality of area power supply masters connected with the single-system trunk line unit through branch line units and connected with load units consuming power, a first supply path supplying power from the vehicle power supply master to the area power supply masters through the single-system trunk line unit, a second supply path different from the first supply path, and an external power supplying unit provided outside the area power supply masters and supplying power to the area power supply masters through the second supply path.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: March 3, 2020
    Assignee: YAZAKI CORPORATION
    Inventor: Yoshihito Aoki
  • Patent number: 10523196
    Abstract: An electronic circuit and a method are disclosed. The electronic circuit includes a first supply node and a second supply node configured to receive a supply voltage, an input configured to receive an input signal, and an output configured to be coupled to a control node of a transistor device. The electronic circuit further includes an undervoltage lockout (UVLO) circuit configured to perform a comparison of the supply voltage and a UVLO threshold. The electronic circuit is configured to operate in one of a first operating mode or a second operating mode based on the comparison. The UVLO circuit is configured to generate the UVLO threshold based on the supply voltage, and the electronic circuit is configured to generate the output signal, in the first mode, dependent on the input signal and to generate the output signal, in the second mode, in a predefined fashion independent of the input signal.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: December 31, 2019
    Assignee: Infineon Technologies Austria AG
    Inventor: Wolfgang Frank
  • Patent number: 10501063
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electrical power circuits. Each brake assembly includes an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The electrical power circuits are located remotely from one another. Each power circuit is configured to drive a respective actuator. The vehicle further includes a first electronic brake system (EBS) controller and a second EBS controller. The first EBS controller is configured to output a first data command signal to control a first group of power circuits among the plurality of power circuits. The second EBS controller is configured to output a second data command signal to control a second group of power circuits among the plurality of power circuits. The second group excludes the power circuits from the first group.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 10, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Paul A. Kilmurray, Steven J. Weber
  • Patent number: 10471831
    Abstract: A control system for handling a fault condition on a utility vehicle includes a lithium battery, a contactor configured to control electrical access to the lithium battery, and control circuitry coupled with the lithium battery and the contactor. The control circuitry is configured to detect, while the contactor is closed to provide a set of loads of the utility vehicle with electrical access to the lithium battery, onset of a fault condition. The control circuitry is further configured to perform, in response to detection of the onset of the fault condition, a set of remedial operations to address the fault condition. The control circuitry is further configured to perform, after a predefined amount of time has elapsed since the onset of the fault condition, a subsequent operation which opens the contactor if the fault condition remains and maintains closure of the contactor if the fault condition does not remain.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: November 12, 2019
    Assignee: Textron Innovations Inc.
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Luke Anthony O'Hara
  • Patent number: 10179576
    Abstract: A brake system may comprise a controller, a vehicle management system (VMS) in communication with the controller, a valve in communication with the controller, and a tangible, non-transitory memory configured to communicate with the controller, the tangible, non-transitory memory having instructions stored thereon that, in response to execution by the controller, cause the controller to perform operations comprising determining, by the controller, that a first enable signal is received by the controller from the VMS, determining, by the controller, that a second enable signal is received by the controller from the VMS, and disabling, by the controller, the controller from control of the valve in response to the first enable signal and the second enable signal.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: January 15, 2019
    Assignee: Goodrich Corporation
    Inventors: Eric Daniel Cahill, Thomas Fink, Marc Georgin, Efrem Ayichew
  • Patent number: 10180369
    Abstract: The present invention relates to a fault diagnosis apparatus for a brake of a train, an automatic train operation system operated due to degradation of braking performance using the same, and a fault diagnosis method for the brake of the train. In particular, the present invention is directed to determining that a fault has occurred in the brake when the difference between the current acceleration of the train and the required acceleration is greater than or equal to a reference value and safely moving the train to a stopping point through a powering operation or coasting operation such that emergency braking is not applied by an automatic train protection (ATP) system if the fault has occurred in the brake. When a fault occurs in the brake of the train, the train is automatically operated such that emergency braking is not triggered by an ATP system.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: January 15, 2019
    Assignee: LSIS CO., LTD.
    Inventors: Jong-Chul Jung, Yong-Gee Cho
  • Patent number: 10077037
    Abstract: A hydraulic control device for at least one hydraulic aggregate of a brake system, and a brake booster control device, interacting therewith, for an electromechanical brake booster of the brake system. The hydraulic control device includes a first control electronics by which at least one motor target quantity that is to be realized by a motor of the electromechanical brake booster can be determined, taking into account a provided brake actuating strength quantity relating to a current actuation of a brake actuating element, and by which a specification signal corresponding to the at least one determined motor target quantity can be outputted to the brake booster control device. The brake booster control device has a second control electronics that, at least in a normal mode, outputs the control signal to the motor of the electromechanical brake booster, taking into account the specification signal outputted by the hydraulic control device.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: September 18, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Bertram Foitzik, Patrick Christian Schaefer
  • Patent number: 10065506
    Abstract: A vehicle includes a friction brake, a regenerative brake, and an ECU. The ECU is configured to: (a) control a total braking force that is generated in the vehicle; (b) execute first brake control for controlling a braking force of the vehicle on the basis of the brake operation amount; (c) determine based on the brake operation amount whether the driver's brake operation is being carried out; (d) when the ECU determines that the driver's brake operation is not being carried out, execute second brake control for automatically controlling the braking force of the vehicle in response to a condition of the vehicle, other than the brake operation amount; and (e) when the second brake control is executed, reduce a proportion of a braking force of the regenerative brake within the total braking force as compared to when the first brake control is executed.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: September 4, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroshi Katsuta
  • Patent number: 9975530
    Abstract: An electronic brake system is provided comprising a brake control unit (BCU), an electronic brake actuation controller (EBAC) electrically coupled to the BCU, and an electronic brake actuator (EBA) electrically coupled to the EBAC. The EBAC is configured to detect the EBA based on an electric signal from the EBA. A method of detecting an EBA is also provided. The method comprises the steps of measuring a voltage on an input pin connected to an EBAC, determining an EBA type connected to the input pin based on the voltage, and activating circuitry and software in an EBAC corresponding to the EBA type.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: May 22, 2018
    Assignee: GOODRICH CORPORATION
    Inventor: Marc Georgin
  • Patent number: 9539993
    Abstract: A vehicle includes a brake-by-wire system that delivers a certain amount of brake fluid pressure to wheel brakes depending upon the position of a brake pedal. A brake-by-wire fallback or backup mode of operation is also provided. When activated, this by-wire fallback mode commands a certain, known magnitude of brake pressure. The commanded amount of brake pressure can vary based on the state of a brake pedal on/off switch, and can be set regardless of brake pedal position. This provides a backup to the brake-by-wire system without necessarily requiring a mechanical push-through backup system to brake the vehicle in the event a backup mode is required.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: January 10, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Dale Scott Crombez, Timothy Jurkiw, Jerry Wayne Seal, II, Jinkoo Lee
  • Patent number: 9446752
    Abstract: A control apparatus for an electric parking brake, including an electric motor to generate a brake force by contacted friction materials upon a brake request, includes a no-load current detection unit to detect a current with the no-load electric motor; a voltage monitor unit to detect a voltage applied to the electric motor monitored between two points on a power line; a resistance calculation unit to calculate a resistance between two points based on the no-load current and the monitored voltage; a required voltage calculation unit to calculate a required voltage between the two points required for driving the electric motor to generate the brake force based on the resistance and a target current; and a control unit to flow a current over the target current in the electric motor based on a comparison between the required and monitored voltages.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: September 20, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Taiko Sato
  • Patent number: 9421975
    Abstract: A vehicle control apparatus includes a battery, a boost converter connected to the battery for boosting battery voltage, an inverter connected to the boost converter for performing DC to AC conversion, and a motor-generator connected to the inverter for outputting drive power. Then, if an inter-vehicle distance is less than or equal to a predetermined distance or a relative speed in approaching direction is greater than or equal to a predetermined speed, the output voltage of the boost converter is lowered. This suppresses the output of the motor-generator and controls the inter-vehicle distance.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: August 23, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Ryoji Sato
  • Patent number: 9187074
    Abstract: A method for monitoring a wheel mounted on a bogie of a rail vehicle. The method includes detecting a deformation of a brake for braking the wheel in a wheel circumferential direction of the wheel and checking the plausibility of the detected deformation based on a comparison with a target alignment.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: November 17, 2015
    Assignee: KNORR-BREMSE SYSTEME FUR SCHIENENFAHRZEUGE GMBH
    Inventors: Marc-Oliver Herden, Rainer Rau, Robert Haupt, Marc-Gregory Elstorpff
  • Patent number: 9050956
    Abstract: A brake device for a vehicle is provided in which when there is an abnormality in which a slave cylinder becomes incapable of being actuated, a wheel cylinder is actuated using a brake fluid pressure generated by a master cylinder, which is actuated by a brake pedal. Since an idling detector detects idling of a motor when the rotational speed of the motor is greater than a reference value that is set according to the stroke of the slave cylinder, it is possible to reliably and rapidly detect idling of the motor. When the idling of the motor is detected, since a control device opens a master cut valve and the wheel cylinder is actuated by the brake fluid pressure generated by the master cylinder, the slave cylinder, which has become incapable of being actuated, can be backed up rapidly by the master cylinder.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: June 9, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yuki Hotani, Naoto Ohkubo, Yuki Ito
  • Patent number: 9004617
    Abstract: A brake device can prevent deterioration of braking force by applying a predetermined pressure in the drive hydraulic pressure chamber even when an electric system failure occurs. The brake device includes a stroke simulator portion, regulator, a first passage connecting the accumulator and the high pressure port of the regulator, a second passage connecting the reservoir tank and the low pressure port of the regulator, a third passage connecting the stroke simulator portion and the pilot pressure input port of the regulator, a fourth passage connecting the drive hydraulic pressure chamber and the output port of the regulator and a fifth passage connecting the accumulator and the drive hydraulic pressure chamber bypassing the high pressure port. The normally open type pressure decrease control valve is provided in the second passage or in the fourth passage whereas the normally closed pressure increase control valve is provided in the fifth passage.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: April 14, 2015
    Assignee: Advics Co., Ltd
    Inventor: Satoshi Ishida
  • Patent number: 8919893
    Abstract: Under a normal condition, brake fluid pressure generated by a slave cylinder (23) that operates according to operation of a brake pedal (12) is fed to a wheel cylinder (16, 17; 20, 21) to perform braking, while under a fault condition of the slave cylinder (23), brake fluid pressure generated by a master cylinder (11) for backup that operates by the operation of the brake pedal (12) is fed to the wheel cylinder (16, 17; 20, 21) to perform braking. In the latter case, brake fluid fed by a pump (64) is fed to the wheel cylinder (16, 17; 20, 21), before the brake fluid is fed from the master cylinder (11) to the wheel cylinder (16, 17; 20, 21) by a driver depressing the brake pedal (12). Accordingly, without leading to an increase in the stroke of the brake pedal (12), a required amount of brake fluid can be fed to the wheel cylinder (16, 17; 20, 21) to thus ensure a sufficient braking force.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: December 30, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Arata Inoue, Kunimichi Hatano
  • Patent number: 8888197
    Abstract: A brake system including: (a) a manual hydraulic pressure source; (b) a power hydraulic pressure source; (c) a high pressure generator for generating high pressure, by utilizing pressure of the power hydraulic pressure source; (d) a common passage to which first and second brake cylinders and the high pressure generator are connected; (e) a high-pressure-generator cut-off valve disposed between the common passage and the high pressure generator; (f) a first manual-pressure-source passage connecting a first individual passage and the manual hydraulic pressure source; (g) a first manual-pressure-source cut-off valve provided in the first manual-pressure-source passage; (h) a first valve provided between the second brake cylinder and a connected portion of the first individual passage which is connected to the first manual-pressure-source passage; and (i) a pressure-supply control device for controlling supply of pressure to the brake cylinders, by controlling the high-pressure-generator cut-off valve, first val
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: November 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Miyazaki, Takayuki Yamamoto
  • Patent number: 8870302
    Abstract: A hydraulic brake device and a method for controlling the same are disclosed. The disclosed hydraulic brake device determines failure of a booster pressure sensor provided at a hydraulic power unit, using pressure correlation among a master cylinder pressure sensor, a pressure sensor provided at the hydraulic power unit to detect a pressure transferred to a hydraulic pressure controller, and a high pressure accumulator pressure sensor. When there is failure of the booster pressure sensor, the driver is informed of the failure, and a braking operation is carried out, taking into consideration the failure. Accordingly, it may be possible to avoid excessive braking, sudden braking, insufficient braking, etc., and to achieve enhancement in braking sensation and braking force.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: October 28, 2014
    Assignee: Mando Corporation
    Inventor: Seung Chul Baek
  • Patent number: 8752908
    Abstract: A parking brake system for a motor vehicle comprising a control element and at least two electromechanical actuators. Each electromechanical actuator is configured for generating a parking brake force at one wheel of the motor vehicle. The electromechanical actuators are each provided with wheel electronic systems. The control element is connected via a brake controller to the wheel electronic system of a first electromechanical actuator by at least a first signal line. The control element is connected via a brake controller to the wheel electronic system of a second electromechanical actuator by a second signal line. At least a third signal line connects the control element directly to the wheel electronic systems or to one of the electromechanical actuators to convey a driver's request.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: June 17, 2014
    Assignee: Continental Teves AG & Co. oHG
    Inventor: Andreas Heise
  • Patent number: 8733847
    Abstract: An asymmetrical electric braking architecture for aircraft, having plural electro-mechanical brake actuators (EBAs) for selectively applying a braking force on friction elements of braked wheels. The architecture comprises (1) a brake control unit (BCU) for acting in normal mode to generate braking setpoint values in response to a braking order, (2) electro-mechanical actuator controllers (EMACs), each including at least one inverter for supplying power to the EBAs in response to the braking setpoint values, (3) at least one emergency brake power and control unit (EBPCU) including at least one inverter for supplying power to some of the EBAs in response to a braking order; and (4) protection means for channeling power supplied by the EMACs or the EBPCU towards the actuators while preventing power from being diverted towards the architecture.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: May 27, 2014
    Assignee: Messier-Bugatti-Dowty
    Inventors: Julien Thibault, Emmanuel Colin
  • Patent number: 8727453
    Abstract: A hydraulic pressure control apparatus has an electromagnetic valve having a valve body forced to one side by an elastic member and a coil driving the valve body to the other side; a hydraulic pressure control section for calculating a command current value to drive the electromagnetic valve and controlling a hydraulic pressure in a hydraulic circuit by opening/closing the electromagnetic valve; a current detection section detecting a value of the current passing through the coil; and a command current value correction section. The command current value correction section detects a change of an inductance of the coil when the valve body moves from the one side to the other side or from the other side to the one side through the current detection section, and corrects the command current value using the detected inductance change.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: May 20, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Norihiro Saita, Taichi Shibata, Masamichi Imamura, Shinichiro Nishida, Satoshi Doi, Tadaharu Yokota
  • Patent number: 8702181
    Abstract: Disclosed is a method for operating a brake system for motor vehicles that can be actuated in a “brake-by-wire” operating mode both by the vehicle driver and independently of the vehicle driver, and that is operated preferably in the “brake-by-wire” operating mode, and that can be operated in a first fallback operating mode wherein a brake force amplifier is available, and in a second operating mode without brake force amplification, in which only operation by the vehicle driver is possible. According to the invention, the “brake-by-wire” operating mode, provided as the normal operating mode, is divided into energy-saving and high-power operating modes, between which a switch is made depending on the braking situation, and using different components of the hydraulic circuit.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: April 22, 2014
    Assignee: Continental Teves AG & Co. OHG
    Inventor: Stefan A. Drumm
  • Patent number: 8706376
    Abstract: To provide an ABS control system and software with an automatic parameter calibration function. An ABS control system according to the present invention includes an electronic control unit (ECU), a wheel speed sensor, and a brake pressure sensor. The wheel speed sensor and the brake pressure sensor measure wheel speed and brake pressure during ABS braking, and the ABS control system automatically calibrates an internal parameter used in ABS control in response to the wheel speed and brake pressure measurement results.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: April 22, 2014
    Assignee: Bosch Corporation
    Inventors: Shunsaku Ono, Shuichi Miyagawa
  • Patent number: 8634985
    Abstract: A method of detecting an in-range failure of a brake pedal position sensor includes calculating the difference between a minimum position and a maximum position of the brake pedal position sensor. The calculated difference is weighted to define a fast test weighted input value and/or a full test weighted input value. A cumulative test result value is incremented by the fast test weighted input value and/or the full test weighted input value. The cumulative test result value is filtered to define a moving average of the cumulative test result value after each incremented occurrence. The moving average of the cumulative test result value is tracked to determine if the brake pedal position sensor is functioning properly.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew M. Zettel, John F. Van Gilder, Ammar A Atmeh, Stanley D Sullivan
  • Patent number: 8550573
    Abstract: In a brake device, when a piston (38A, 38B) of a slave cylinder (23) seizes at an advanced position, an out-valve (60, 61) is opened to discharge brake fluid in a wheel cylinder (16, 17; 20, 21) to a reservoir (62). Then, an in-valve (54, 56) and the out-valve (60, 61) are both closed, and a pump (64) is activated. This allows the brake fluid in the reservoir (62) to be supplied to a fluid pressure chamber (39A, 39B) of the slave cylinder (23), enabling a piston (38A, 38B) of the slave cylinder (23), which has seized at the advanced position, to be pushed back to a retreated position. When the seizure of the piston (38A, 38B) is eliminated in this way, the brake fluid pressure generated in the master cylinder (11) can be supplied to the wheel cylinder (16, 17; 20, 21) via the fluid pressure chamber (39A, 39B) of the slave cylinder (23). Accordingly, it is proposed a method of eliminating seizure of a slave cylinder of a brake device capable of the backup of a failure in the slave cylinder (23).
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: October 8, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Kunimichi Hatano
  • Patent number: 8548708
    Abstract: A brake system for a vehicle has a first and a second brake control device, four wheel actuator devices, and a first and a second signal line, the first signal line connecting the first brake control device to two of the four wheel actuator devices and the second signal line connecting the second brake control device to the two other wheel actuator devices, each of the four wheel actuator devices in the active state being additionally designed to detect whether a specified number of brake control devices and/or wheel actuator devices are in the inactive state, in which case a specified braking torque is exerted on the wheel of the vehicle associated with the brake control device.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: October 1, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Strengert, Werner Harter
  • Patent number: 8544964
    Abstract: A brake control system is provided for a utility vehicle having manned and unmanned operational modes. The brake control system includes a hydraulically operated brake. A manually operated brake circuit and an electro-hydraulic (E-H) brake circuit are connected to the brake. The E-H brake circuit includes a pump, a solenoid operated inlet valve, an accumulator, and first and second solenoid operated brake valve connected between the brake and the inlet valve. A first CPU is operatively connected to the inlet valve and to the first brake valve. A second CPU is operatively connected to the inlet valve and to the second brake valve. An accumulator pressure sensor senses the accumulator pressure. A brake pressure sensor senses brake pressure. The first and second CPUs control the inlet valve and the brake valves as a function of the sensed accumulator pressure and brake pressure.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Deere & Company
    Inventors: Andrew Karl Wilhelm Rekow, Troy Eugene Schick, Richard Vallieres, Timothy Diller
  • Patent number: 8523294
    Abstract: A system for use in a vehicle with a brake pedal and a brake circuit which includes a master cylinder assembly, a sensor assembly configured to generate a pedal position signal indicative of position of the brake pedal, an electronic control unit configured to (i) generate a brake request signal in response to generation of the pedal position signal, and (ii) generate a selector control signal, and a selector valve assembly operable in a first mode and a second mode, the selector valve assembly being moved from the first mode to the second mode in response to generation of the selector control signal, the master cylinder assembly is (i) isolated from fluid communication with the brake circuit when the selector valve assembly is positioned in the first mode, and (ii) in fluid communication with the brake circuit when the selector valve assembly is positioned in the second mode.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: September 3, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Milan Klimes, Timothy J. Albert, Gregory P. Goodzey, Kevin Johnson, Kenneth S. Towers
  • Patent number: 8506020
    Abstract: A brake control system that enables accurate brake control is provided that precisely detects a master-cylinder pressure and includes a back-up function. The brake control system includes a master-cylinder operated by a brake operation of a driver; a first mechanism that regulates a pressure inside the master-cylinder according to the brake operation amount; a first control apparatus that controls operation of the first mechanism; a second mechanism that regulates communication of the pressure inside the master-cylinder to a wheel-cylinder; and a second control apparatus that controls operation of the second mechanism and operation of a pump apparatus that increases a pressure communicated to the wheel-cylinder. The first and second control apparatuses each have a power supply circuit and CPU.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: August 13, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kimio Nishino, Toshiyuki Innami, Norikazu Matsuzaki, Masayuki Kikawa, Takuya Obata, Takayuki Ohno
  • Patent number: 8494699
    Abstract: System for electrical braking of a road vehicle of which at least one wheel is linked in rotation to at least one rotary electric machine, at least one wheel drive electronic module 23 driving the electric machine or machines of one and the same wheel, comprising a central unit 3 ensuring the management of the movement of the vehicle, the said central unit controlling the wheel drive electronic module or modules 23, comprising a braking control at the disposal of a driver, the said control being linked mechanically at least to three sensors C1, C2, C3 delivering a control signal for braking the vehicle having a given amplitude representative of the total braking force desired for the vehicle, the said sensors C1, C2, C3 being distributed into a first group C1 and a second group C2, C3, in which the sensor (sensors) C1 of the first group delivers (deliver) its (their) control signal to the said central unit 3 and the sensor (sensors) of the second group C2, C3 delivers (deliver) its (their) control signal to t
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: July 23, 2013
    Assignees: Compagnie Generale des Etablissements Michelin, Michelin Recherche et Technique, S.A.
    Inventors: Gérald Bourqui, Fabrice Cudre-Mauroux, Jean-Louis Linda
  • Patent number: 8449048
    Abstract: An electric braking system is provided for a road vehicle that includes at least two wheels (1) each connected for rotation to at least one rotary electric machine (2), and one electronic wheel control module (23) controlling an electric machine of a corresponding wheel, with each electronic control module enabling a control torque of determined amplitude and sign to be imparted selectively to a corresponding wheel. The electric braking system includes at least two sub-systems (A and B) each including: at least one of the electronic wheel control modules (23), a central electric line (40), and a low-voltage electrical supply stage for supplying electronics for controlling and driving power elements. The low-voltage electrical supply stage includes a first low-voltage electrical supply and at least one second low-voltage electrical supply.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: May 28, 2013
    Assignee: Michelin Recherche et Technique S.A.
    Inventors: Gerard Bourqui, Fabrice Cudre-Mauroux, Jean-Louis Linda
  • Patent number: 8366204
    Abstract: A brake system for a vehicle including a master cylinder in which a front pressure chamber and a rear pressure chamber are defined by movably supporting an input piston and a pressure piston in a cylinder. A high-pressure supply pipe of an accumulator is coupled to wheel cylinders via hydraulic supply pipes, and coupled to the rear pressure chamber via a hydraulic supply pipe and a second hydraulic pipe. Pressure booster valves and pressure reducing valves are attached to the hydraulic pressure supply pipes, respectively. The wheel cylinder is coupled to the front pressure chamber via the first hydraulic pipe, and a coupling pipe for coupling a first hydraulic pipe and the hydraulic supply pipe is provided with the switching valve.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: February 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroshi Isono
  • Patent number: 8348354
    Abstract: A vehicle braking system including an input piston and a pressure piston that are moveably supported within a cylinder. The input piston is allowed to depress the pressure piston and is connected to the a brake pedal. Pressure chambers to the front and to the rear of the input piston are communicated through a communication passage such that the control hydraulic pressure in accordance with the operation amount to the brake pedal is applied to the second pressure chamber via first and second linear valves. The control hydraulic pressure in accordance with the operation amount to the brake pedal that has been transmitted to the pressure piston through the input piston is regulated by a pressure regulating valve so as to be applied to the second pressure chamber. The braking hydraulic pressure may be output from the pressure chambers, respectively.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: January 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Isono, Yasuji Mizutani
  • Patent number: 8340853
    Abstract: A motor vehicle has wheels on which it travels, a powertrain delivering propulsion torque to at least some of the wheels propel the vehicle, and a service brake system having service brakes. When the service brakes are applied by a service brake actuator, braking torque is applied to at least some wheels. A first device provides data representing a velocity that correlates with velocity of the vehicle, and a second device associated with the actuator provides data that distinguishes between application and non-application of the service brakes by the actuator. A processor monitors data from the first and second devices and processes the monitored data to provide a data output when the first device has disclosed velocity change indicative of the service brakes having been applied without the second device having disclosed that the service brakes have been applied.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: December 25, 2012
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Rogelio Rodriguez, Ly V. Tran
  • Patent number: 8246120
    Abstract: A fully electrically controlled electric braking system is provided for a road vehicle fitted with wheels (1). Each of the wheels is connected for rotation to at least one rotary electric machine (2) specific thereto, with at least one electronic wheel control module (23) controlling the electric machine(s) (2) of that wheel. Each electronic wheel control module (23) makes it possible to impart selectively to a corresponding wheel a control torque of determined amplitude and sign, in such a way that the corresponding wheel imparts to the vehicle a drive force or a braking force in accordance with the control torque. The system includes a central unit (3) for managing vehicle displacement, the central unit (3) controlling all the electronic wheel control modules (23). The central unit (3) has a vehicle braking mode activated by a vehicle braking control signal having a given amplitude representing a total desired braking force for the fully electrically controlled wheels.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: August 21, 2012
    Assignee: Michelin Recherche et Technique S.A.
    Inventors: Gerard Bourqui, Fabrice Coudre-Mauroux, Daniel Laurent, Jean-Louis Linda
  • Patent number: 8090515
    Abstract: Provided is a method for controlling regenerative braking in an electric vehicle, including operating regenerative braking, checking if a data communication using a control area network (CAN) standard is properly made between a regenerative braking torque controller and a hydraulic pressure braking torque controller, and enabling the regenerative braking torque controller and the hydraulic pressure braking torque controller to maintain regenerative braking torque and hydraulic pressure torque at their respective previous levels or to increase regenerative braking torque and/or hydraulic pressure torque until braking ends, when the data communication fails between the regenerative braking torque controller and the hydraulic pressure braking torque controller.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: January 3, 2012
    Assignee: Hyundai Motor Company
    Inventors: Gab Bae Jeon, Byeong Cheol Yang
  • Patent number: 8042885
    Abstract: A brake control apparatus for a vehicle includes a controlling device for actuating the pressure modulating device and the motor, calculating a target braking force corresponding to an operation amount, and driving the motor and the pressure modulating device, wherein, in an electric power supply stopped situation, in which electric power is not supplied by the battery, while an operation amount detected by the operation amount sensor increases, the controlling device starts driving the motor by means of electric power supplied by the capacitor, only when a target braking force corresponding to the operation amount reaches memorized target braking force memorized in the memorizing portion.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: October 25, 2011
    Assignee: Advics Co., Ltd.
    Inventors: Kazuya Maki, Hiroaki Niino
  • Patent number: 8029072
    Abstract: In order to achieve a good brake feeling, a brake control system includes a master cylinder which discharges pressurized operating fluid according to an operating amount of a brake operating member by a driver, a stroke simulator which is connected to the master cylinder and creates a reaction force with respect to that operation according to the operating amount of the brake operating member, and a control portion which calculates a target deceleration using hydraulic pressure in the stroke simulator. The brake control system is also provided with a master cylinder pressure sensor that measures the hydraulic pressure in the master cylinder. The control portion may also calculate the target deceleration using an estimated value of the hydraulic pressure in the stroke simulator calculated based on the measured value from the master cylinder pressure sensor.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: October 4, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Miyazaki, Yoshiaki Irie, Rio Suda
  • Patent number: 7784882
    Abstract: An electric brake system for an aircraft as described herein electrically actuates brake mechanisms in a seamless manner when a power interrupt condition is experienced. While operating in an autobraking mode and in response to a power interrupt condition, the electric brake system preserves the last brake actuation command generated by the autobrake function. After normal operating power is reestablished, the last brake actuation command is retrieved and processed by the electric brake system. While operating in a pedal braking mode and in response to a power interrupt condition, the electric brake system discards the last brake actuation command generated from brake pedal interaction. After normal operating power is reestablished, the brake pedal data is refreshed to generate a new brake actuation command. These procedures reduce lurching and unexpected brake actuation levels following a power interrupt in the electric brake system.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: August 31, 2010
    Assignee: The Boeing Company
    Inventor: T. Todd Griffith
  • Publication number: 20100147633
    Abstract: A brake system of the present invention is a dual braking system, which includes an ECU that controls parts for braking when a brake pedal is operated, a main brake that is controlled by ECU by locking a wheel disc for braking in normal braking, and a sub-brake that is mounted on the wheel disc and achieves sub-braking function to achieve emergency braking for safety by locking the wheel disc by control of ECU that has detects failure of main brake. Therefore, it is possible to improve safety by achieving emergency braking while achieving F-S (Fail-Safe), when the motor of main brake fails. Further, it is possible to also achieve stable FR (Failure Rate) in an EWB or an EMB that is practically applied to a vehicle, as in a hydraulic brake system, and to expedite common use of brake systems where a BBW (Brake By Wire) technology, such as EMB and EWB, is applied.
    Type: Application
    Filed: November 5, 2009
    Publication date: June 17, 2010
    Applicant: HYUNDAI MOBIS CO., LTD.
    Inventor: JONGSUNG KIM
  • Publication number: 20100070150
    Abstract: An electromechanical braking system includes first and second electromechanical actuator controllers (EMACs) that each independently generate a complete set of drive control signals for an associated set of electromechanical actuators (EMAs). The drive control signals are generated in accordance with an antiskid algorithm to impart antiskid control to the braking of wheels associated with the EMAs. Drive signals for some of the EMAs from the set of EMAs are output by drivers of the first EMAC and drive signals for the other EMAs from the set of EMAs are output by drivers of the second EMAC. Drive control signals from one of the EMACs are used to control output the drive signals for all the EMAs from the set of EMAs, regardless of the EMAC in which the associated drivers are present. The drive control signals from the other of the EMACs are used as a backup set of drive control signals.
    Type: Application
    Filed: May 15, 2008
    Publication date: March 18, 2010
    Applicant: GOODRICH CORPORATION
    Inventor: Bill May