Auxiliary Pressure Failure Patents (Class 303/122.13)
  • Patent number: 9550482
    Abstract: A method for operating a braking system of a vehicle includes: establishing a first setpoint brake pressure to be set in a first wheel brake cylinder of a first brake circuit and a second setpoint brake pressure to be set in a second wheel brake cylinder of a second brake circuit; reducing first and second actual brake pressures by setting a master brake cylinder pressure to be no greater than a minimum of the first and second setpoint brake pressures, and controlling a first switchover valve of the first brake circuit and/or of the second brake circuit; and/or increasing the first and second actual brake pressures by setting the master brake cylinder pressure to be no smaller than a maximum of the first and second setpoint brake pressures, and activating a first wheel inlet valve of the first brake circuit and/or of the second brake circuit.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: January 24, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Christoph Betz, Christian Koehler, Michael Reichert, Michael Bunk, Olaf Grotheer
  • Patent number: 9174617
    Abstract: A braking system for motor vehicles. The system comprises a brake pedal, a travel simulator which is coupled via actuating-forces transmitting first mechanical connecting means to the brake pedal. A brake master cylinder having at least one pressure chamber and one piston. The pressure chamber is connected or connectable via a pressure line to at least one hydraulically actuable wheel brake, and an electrically controllable electromechanical drive device with which the piston of the brake master cylinder is actuable via a second mechanical connecting means. The electromechanical drive device is arranged between the brake pedal on one side and the brake master cylinder and the travel simulator on the other side. The first mechanical connecting means extends from the brake pedal through the drive device to the travel simulator.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: November 3, 2015
    Assignee: CONTINENTAL TEVES AG & CO. OHG
    Inventor: Hans-Jorg Feigel
  • Patent number: 9004615
    Abstract: A method for operating a hydraulic brake system of a motor vehicle, comprising a pressure generating device used to build up additional brake pressure in a master brake cylinder or in addition to a master brake cylinder and in opposition to further pedal actuation wherein the additional pressure is a function of the pedal actuation travel distance. A method that reduces the limitations of a braking system's physical parameters on the build-up of additional braking pressure.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: April 14, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Thomas Svensson, Ian Moore, Rudolf Daniels
  • Patent number: 8662602
    Abstract: A brake control apparatus for a vehicle includes: a master cylinder for raising a wheel cylinder pressure according to operation of a brake pedal; a booster for raising the wheel cylinder pressure by operating the master cylinder independently of operation of the brake pedal; a pressure regulator provided with a hydraulic pump for raising the wheel cylinder pressure independently of operation of the master cylinder; and a control section including: a first controller for controlling the booster; and a second controller for controlling the pressure regulator. The control section detects that at least one of the booster and the first controller is in a state of malfunction; selects one of backup modes according to the state of malfunction, wherein the backup modes restrict operation of at least one of the booster and the pressure regulator in different manners; and controls the wheel cylinder pressure in the selected backup mode.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: March 4, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Kimio Nishino, Toshiyuki Innami, Kenichiro Matsubara, Toshiharu Sugawara
  • Patent number: 8376476
    Abstract: A brake system in an electric drive dump truck. The electric drive dump truck has a generator 11 driven by an engine 10 and traveling motors 13L, 13R driven with electric power generated by the generator 11. Hydraulic brakes 20L, 20R, 21L, 20R are operated by brake pedal 18. An oil pressure sensor 22 detects hydraulic fluid pressure produced in accordance with the amount of depression of the brake pedal 18 and a control unit 14 controls the traveling motors 13L, 13R so as to operate them as generator-type retarders when the hydraulic fluid pressure P detected by the oil pressure sensor 22 is not smaller than a predetermined value P1.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: February 19, 2013
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Jun Ikeda, Takashi Yagyu, Tomohiko Yasuda, Yutaka Watanabe
  • Patent number: 8226176
    Abstract: A brake system includes a master cylinder which generates brake fluid pressure by a braking operation of a driver, an electric motor-driven slave cylinder which generates brake fluid pressure based on an electric signal responsive to a braking operation of a driver, and a wheel cylinder for braking a wheel by the brake fluid generated in the master cylinder or slave cylinder. During normal operation of the brake system, the brake fluid generated in the slave cylinder is transferred to the wheel cylinder. During abnormal operation of the brake system, the brake fluid generated in the master cylinder is transferred to the wheel cylinder. The brake system also includes an opening and closing valve in a fluid passage connecting the slave cylinder to the wheel cylinder. When a problem occurs with the slave cylinder, the opening and closing valve is closed for a predetermined amount of time.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: July 24, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Kunimichi Hatano
  • Patent number: 8167383
    Abstract: A brake control apparatus for a vehicle includes: a master cylinder for raising a wheel cylinder pressure according to operation of a brake pedal; a booster for raising the wheel cylinder pressure by operating the master cylinder independently of operation of the brake pedal; a pressure regulator provided with a hydraulic pump for raising the wheel cylinder pressure independently of operation of the master cylinder; and a control section including: a first controller for controlling the booster; and a second controller for controlling the pressure regulator. The control section detects that at least one of the booster and the first controller is in a state of malfunction; selects one of backup modes according to the state of malfunction, wherein the backup modes restrict operation of at least one of the booster and the pressure regulator in different manners; and controls the wheel cylinder pressure in the selected backup mode.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: May 1, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Kimio Nishino, Toshiyuki Innami, Kenichiro Matsubara, Toshiharu Sugawara
  • Publication number: 20100181825
    Abstract: A brake system with a master cylinder, a first piston which is coupled to a brake pedal via a push rod transmitting actuating forces, a second piston which can be actuated by the first piston and which can be brought into force-transmitting connection to a third piston, via which the master cylinder is actuated, at least one elastic element which forms a pedal travel simulator which, in the “brake-by-wire” operating mode, gives the vehicle driver a pleasant pedal sensation, an interspace capable of being acted upon with hydraulic pressure, between the second and the third piston, the action of pressure upon the interspace loading the second and the third piston in opposite directions, a pressure supply device which has a high-pressure source and which allows both a filling of the interspace with pressure medium and emptying thereof, and a valve device for varying pressure fed in the interspace.
    Type: Application
    Filed: March 19, 2008
    Publication date: July 22, 2010
    Inventors: Stefan A. Drumm, Lothar Schiel
  • Patent number: 7517027
    Abstract: A normally closed secondary solenoid opening/closing valve 36 is provided along a secondary branched fluid pipe 35 establishing a communication between an accumulator 11 and a reservoir 8 through a fluid pressure input side to a fluid pressure output side of a regulator valve 3, and in the event that a fluid pressure supplied to the regulator valve 3 decreases down to or lower than a predetermined range due to something abnormal occurring in the accumulator 11, the state of the secondary solenoid opening/closing valve 36 is changed over from a closed state to an opened state, whereby a residual pressure in the accumulator 11 and a residual pressure in the output fluid pressure chamber 15 can be released through the reservoir 8 which is in communication therewith through an output fluid pipe 31 and the secondary branched fluid pipe 35 along which the secondary opening/closing valve 36 is provided.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: April 14, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yasushi Aoki, Akiharu Kanagawa
  • Patent number: 7393065
    Abstract: Disclosed is a redundant braking system for a vehicle. A controller may monitor a status of a hydraulic braking system, and during vehicle travel, automatically switch to a modulated electric braking system which is separate from the hydraulic braking system when the hydraulic braking system fails. The modulated electric braking system may utilize a brake acting on a drive shaft of the vehicle, and an operator-actuated switch may set a mode of the modulated electric braking system to a non-modulated parking brake mode.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: July 1, 2008
    Assignee: Lockheed Martin Corporation
    Inventors: William C. Craig, Patrick J. Fitzgibbons
  • Patent number: 7374253
    Abstract: The invention discloses a method for determining the air content of the brake fluid in a hydraulic braking system. This method also permits determining the quality of the bleeding of the braking system. The principle of the method is a comparison of the volume intake with the respectively achieved pressure. The correlation is compared to nominal values. As the volume intake is determined by the clearance, the system is set by means of a pre-actuation to an initial condition before each actual measurement.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: May 20, 2008
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Gunther Buschmann, Martin Baechle, Axel Wagner, Michael Hitzel
  • Patent number: 6805415
    Abstract: When the increasing gradient of the operating power is larger than a predetermined gradient, if a master pressure PM2 corresponding to a second predetermined operating power F2 is larger than a second predetermined fluid pressure Pth2, a servo function failure in the brake operation is determined; if it is smaller than the second predetermined fluid pressure Pth2, fluid leakage failure (S23, S26, S27) is determined. Furthermore, if the master pressure PM0 corresponding to the first predetermined operating power F0 is larger than a first predetermined fluid pressure Pth1, small amount fluid leakage failure is determined; if it is smaller than the first predetermined fluid pressure Pth1, large amount fluid leakage failure (S28, S29, S30) is determined.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: October 19, 2004
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Isono, Yasuji Mizutani
  • Patent number: 6705683
    Abstract: To monitor the emergency braking capability of an electro-hydraulic braking system (EHBwherein, during normal operation, the brake pressure in the wheel brakes is generated by means of a pressure source comprised of a hydraulic pump, an umulator, and hydraulic valves, and wherein a switch-over to a hydraulic connection between a master cylinder and the wheel brakes is executed in the event of an emergency braking situation. With predetermined events, e.g.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: March 16, 2004
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Mathias Niepelt, Georg Fachinger, Andreas Klein
  • Patent number: 6494545
    Abstract: A diagnosing apparatus for diagnosing an accumulator operable to store under pressure a pressurized fluid delivered from a high-pressure source and to supply the pressurized fluid to a fluid-operated actuator for operating the fluid-operated actuator, the apparatus including a pressure detecting device for detecting a pressure of the pressurized fluid in the accumulator while the accumulator is placed in a fluid-tightly sealed state in which the accumulator is isolated from both the high-pressure source and the fluid-operated actuator, and a diagnosing device operable to diagnose the accumulator on the basis of the pressure of the pressurized fluid detected by the pressure detecting device in the fluid-tightly sealed state of the accumulator.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: December 17, 2002
    Assignees: Toyota Jidosha Kabushiki Kaisha, NHK Spring Co., Ltd.
    Inventors: Eiji Nakamura, Hiroshi Mizukami
  • Patent number: 6425644
    Abstract: A braking pressure control apparatus for a hydraulically operated brake, including a first hydraulic system having a first hydraulic pressure source power-operated to pressurize a working fluid and capable of controlling the fluid pressure, for operating the brake, a second hydraulic system having a second hydraulic pressure source operable by an operating force acting on a manually operable brake operating member, to pressurize the working fluid to a pressure higher than a level corresponding to the operating force, for operating the brake, a switching device operable to selectively establish a first state in which the brake is operated with the pressurized fluid delivered from the first hydraulic pressure source, and a second state in which the brake is operated with the pressurized fluid delivered from the second hydraulic pressure source, and a diagnosing device operable to diagnose the second hydraulic system on the basis of the fluid pressure in the second hydraulic system.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: July 30, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Fumiaki Kawahata, Tetsuya Miyazaki, Hirohiko Morikawa, Akihiro Otomo
  • Patent number: 6354672
    Abstract: A braking system including a brake cylinder, a first hydraulic pressure source having a first pump device for pressurizing a working fluid, a second hydraulic pressure source operable in response to an operation of a brake operating member, to pressurize the fluid to a pressure higher than a value corresponding to an operating force of the brake operating member, and a brake-cylinder-pressure control device operable when the brake cylinder is disconnected from the second hydraulic pressure source, to control the pressure of the fluid pressurized by the first hydraulic pressure source, such that the fluid pressure in the brake cylinder is controlled to a value determined on the basis of the operating force, and wherein an emergency communication device is operated when at least one of the brake-cylinder-pressure control device and the first pump device fails to normally function, to hold the brake cylinder in communication with the second hydraulic pressure source.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: March 12, 2002
    Assignees: Toyota Jidosha Kabushiki Kaisha, Aisin Seiki Kabushiki Kaisha
    Inventors: Eiji Nakamura, Akihiro Otomo, Fumiaki Kawahata, Tetsuya Miyazaki, Hiroshi Toda
  • Publication number: 20010054843
    Abstract: Two brake circuits (1, 2) each comprise at least one wheel brake (VL, VR, HL, HR), a fluid control module (38, 42, 44; 40, 46, 48; 24) for fluid pressure control at the at least one wheel brake, and at least one brake line (50, 52; 54, 56) for connecting the fluid control module to the at least one wheel brake, such that only one brake line is connected to each wheel brake. In order to increase the safety of the vehicle brake system during braking with only one intact brake circuit, according to the invention in the vehicle brake system a sensor arrangement (58) for determining failure of a brake circuit is provided, and the fluid control modules in the event of failure of a brake circuit are capable of controlling the fluid pressure at the at least one wheel brake of the intact brake circuit in such a way that the gradient of a developing yawing moment (G) of a vehicle provided with the vehicle brake system does not exceed a predetermined maximum value.
    Type: Application
    Filed: May 18, 2001
    Publication date: December 27, 2001
    Inventors: Frank Schmidt, Steven Keen, Ingo Montermann, Christoph Puderbach
  • Patent number: 6244672
    Abstract: A method and an apparatus for controlling a brake system, the brake pressure of at least one wheel brake being controlled electrically as a function of at least the braking request of the driver. The brake system includes a high-pressure reservoir, whose pressure is detected and taken into consideration in controlling the brake system. In case of failure of the reservoir pressure detection system, the reservoir pressure is estimated on the basis of a model, and the estimated reservoir pressure is taken into consideration in controlling the brake system.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: June 12, 2001
    Assignee: Robert Bosch GmbH
    Inventor: Juergen Hachtel