Intersecting Traction And Skid Occurrence Patents (Class 303/144)
  • Patent number: 9889744
    Abstract: In the case where a virtual vehicle speed selection means selects one of a first virtual vehicle speed and a second virtual vehicle speed so as to perform switching from the other one to said one of the first virtual vehicle speed and the second virtual vehicle speed, the rotation speed of an electric motor is decelerated to a threshold value with which travel of the vehicle stabilizes and the deceleration of the electric motor is stopped when the rotation speed of the electric motor becomes lower than the threshold value, and then traction of the vehicle is controlled based on the selected virtual vehicle speed.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: February 13, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kotaro Nakano, Hiroyuki Kobayashi
  • Patent number: 8989969
    Abstract: An object of the invention is to provide a traction control apparatus capable of suitably controlling an error, if it occurs, between an estimation of a vehicle speed and an actual vehicle speed. A traction control apparatus according to the invention includes a vehicle speed estimator and a driving-force controller. The traction control apparatus includes a vehicle state determiner that determines whether the vehicle speed of the construction vehicle estimated by the vehicle speed estimator and the driving-force control by the driving-force controller are balanced, and a driving-force control changer that changes a driving-force control by the driving-force controller when the vehicle state determiner determines the vehicle speed and the driving-force control to be unbalanced.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 24, 2015
    Assignee: Komatsu Ltd.
    Inventors: Koji Uematsu, Kazuhiro Hatake
  • Patent number: 8504254
    Abstract: An object of the invention is to provide a traction control apparatus capable of suitably controlling an error, if it occurs, between an estimation of a vehicle speed and an actual vehicle speed. A traction control apparatus according to the invention includes a vehicle speed estimator and a driving-force controller. The traction control apparatus includes a vehicle state determiner that determines whether the vehicle speed of the construction vehicle estimated by the vehicle speed estimator and the driving-force control by the driving-force controller are balanced, and a driving-force control changer that changes a driving-force control by the driving-force controller when the vehicle state determiner determines the vehicle speed and the driving-force control to be unbalanced.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: August 6, 2013
    Assignee: Komatsu Ltd.
    Inventors: Koji Uematsu, Kazuhiro Hatake
  • Patent number: 8326504
    Abstract: A trailer sway intervention system. The trailer sway intervention system includes a trailer having a plurality of wheels, each wheel having a brake, and a vehicle towing the trailer. The vehicle includes a plurality of sensors configured to sense operating characteristics of the vehicle, and a controller. The controller receives the sensed operating characteristics from the sensors, determines an error based on a difference between an expected yaw rate and a sensed yaw rate, asymmetrically applies braking forces to one or more trailer wheels based on the difference, and symmetrically applies braking forces to the trailer wheels when the absolute value of the difference between the expected yaw rate and the sensed yaw rate is declining.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: December 4, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Hsien-cheng Wu, Jin-jae Chen, Nathan Drummond
  • Patent number: 8311693
    Abstract: Systems and methods for stabilizing a hybrid electric vehicle (“HEV”) towing a trailer. One system includes a regenerative braking system, a non-regenerative braking system, and a stabilization system. The stabilization system determines a direction of rotation and a speed of the HEV and compares the HEV's speed to a predetermined low speed threshold value and a predetermined high speed threshold value. The stabilization system instructs the regenerative braking system to brake at least one wheel when the speed is less than or equal to the predetermined low speed threshold value and instructs the regenerative braking system to brake at least one wheel opposite the direction of rotation and at least one of the regenerative braking system and the non-regenerative braking system to provide an extra stabilizing braking torque to at least one wheel opposite the direction of rotation when the speed is greater than the predetermined high speed threshold value.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 13, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Hsien-Cheng (Kevin) Wu, Bo Xu
  • Patent number: 7937194
    Abstract: A method of reducing wheel slip and wheel locking in an electric traction vehicle includes receiving in a first controller a first signal value representative of a first amount of torque to be applied to at least one wheel of the electric traction vehicle by a motor coupled to the wheel and to the first controller, and a second signal value representative of a reference speed of the electric traction vehicle. The first and second signal values are generated by a second controller in communication with the first controller. The method also includes receiving in the first controller a third signal value representative of a speed of the at least one wheel, determining in the first controller a torque output signal using the first, second, and third signal values; and transmitting the torque output signal from the first controller to the motor.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: May 3, 2011
    Assignee: Oshkosh Corporation
    Inventors: Nader Nasr, Peter Werner
  • Publication number: 20090115246
    Abstract: An electric motor is coupled to driving wheels 2, 2. When a slippage of the driving wheels 2, 2 is detected, the electric motor 5 produces a regenerative torque to suppress the slippage of the driving wheels 2, 2. The regenerative torque is controlled in a variable manner according to an index parameter that indicates a road surface condition. Thus, when the slippage of the driving wheels occurs, the slippage of the driving wheels is suppressed according to the road surface condition by a regenerative operation of the electric motor coupled to the driving wheels.
    Type: Application
    Filed: June 27, 2006
    Publication date: May 7, 2009
    Applicant: HONDA MOTOR CO., LTD
    Inventors: Hisanori Yanagida, Yoshinari Sugita, Asao Uenodai, Takuya Shirasaka
  • Publication number: 20070138864
    Abstract: A method of braking a vehicle which includes ground engaging wheels, and a braking system with ABS capability and including an operator actuated brake control, the ABS becoming operative in response to the operator actuating the brake control, and upon the braking system sensing the slippage or impending slippage of at least one of the ground wheels relative to the ground, to vary the braking force applied to the at least one of the wheels between, in alternative periods, an applied state in which the braking force is applied, and a released state in which the braking force is released, and characterised in that the method includes applying torque to assist acceleration of the wheel 16-19 at least during periods in which the braking force is released by the ABS.
    Type: Application
    Filed: November 3, 2006
    Publication date: June 21, 2007
    Applicant: JCB LANDPOWER LIMITED
    Inventors: Gregory Peter Fitton, Andrew Robert Williams
  • Patent number: 6742850
    Abstract: A method for controlling a brake system for automotive vehicles including a vehicle speed control unit permitting the adjustment of a predetermined vehicle speed by way of an automatic intervention into brake control, wherein upon a braking request of the vehicle speed control unit and, simultaneously, a braking request of the driver the function of the vehicle speed control unit is deactivated, wherein the pressure (Px) introduced into the wheel brake due to the braking request of the vehicle speed control unit is reduced according to a predetermined function upon the braking request of the driver, wherein preferably a resulting brake pressure (Pres) is adjusted in the wheel brake of the vehicle which is determined by the formula Pres=PF+PX[1]−(PF*PX[1])/constant Z.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: June 1, 2004
    Assignee: Continental Teves AG & Co., oHG
    Inventors: Alfred Eckert, Ulrich Neumann, Thomas Berthold, Andreas Klein, Jürgen Pfeiffer, Christian Albrich von Albrichsfeld
  • Patent number: 6672689
    Abstract: The present invention involves a system and method of regulating manual control for a driver of a vehicle during a sliding condition of the vehicle having an electronic stability program using a stability control system. The method includes recognizing the vehicle in a sliding condition and determining whether the vehicle is manually controllable in the sliding condition. The method further includes adjusting the electronic stability program, if the vehicle is determined to be manually controllable, and activating the stability control system to control the vehicle when the vehicle is not manually controllable. The method further includes applying a compensated brake pressure on the vehicle based on the activation of the stability control system.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: January 6, 2004
    Assignee: Continental Teves, Inc.
    Inventor: Geoffrey Burke Bauer
  • Patent number: 6663196
    Abstract: A device for controlling the wheel slip, particularly for controlling the brake slip and/or the drive slip of individual wheels for a motor vehicle, by which a braking pressure applied to the vehicle wheels can be varied and/or set as a function of the movement behavior of the vehicle wheels, having means for braking, particularly for locking, at least the front wheels and/or the rear wheels of the motor vehicle in the event a skidding condition is detected, the vehicle having wheel-speed sensors (5) whose signals contain information about the direction of rotation of the respective wheel, these signals being processed within the framework of a skid detection.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: December 16, 2003
    Assignee: Robert Bosch GmbH
    Inventor: Elmar Mueller
  • Patent number: 6233505
    Abstract: In order to adapt a simplified vehicle model to the driving behavior of a real automotive vehicle, it is possible to modify the slip rigidity values assumed to be constant in a linear model. After departure from the linear range of the lateral-force/slip-angle characteristic, a lower value can be assumed for the slip rigidities. However, this will involve the risk that the wheels of the rear axle are already in a slip angle range to which the lower slip rigidity is associated whereas the front wheels are still in the linear range of the lateral-force/slip-angle characteristic. This would impart to the vehicle model an oversteering behavior which should the more so be avoided if such a vehicle model is used for presetting the nominal value. This problem is solved, in the practice of the invention, by suggesting to modify only the slip rigidity values of the front axle while the ones of the rear axle are assumed to be constant.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: May 15, 2001
    Assignee: Continental Teves Ag & Co., OHG
    Inventors: Thomas Kranz, Holger Duis, Peter Wanke, Ralf Endress
  • Patent number: 5897130
    Abstract: A chassis system control method comprising the steps of measuring rotational speed of a plurality of vehicle wheels; estimating, responsive to each wheel rotational velocity, a relative velocity between the wheel and a corresponding corner of a vehicle body; determining a chassis system control command responsive to the estimations; and applying the chassis system control command to control the chassis system responsive to the estimations, wherein need for body to wheel relative position and/or relative velocity sensors is eliminated.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: April 27, 1999
    Assignee: General Motors Corporation
    Inventors: Kamal Naif Majeed, Richard Edward Longhouse, Albert Victor Fratini, Jr., Donald Edward Schenk, John Francis Hoying