Abstract: A method for adjusting braking in a vehicle having wheels and a regenerative braking system is provided. The method comprises the steps of providing regenerative braking torque for the vehicle via the regenerative braking system at a first level if a wheel slip of the vehicle is not present, and providing regenerative braking torque for the vehicle via the regenerative braking system at one of a plurality of modulated levels if the wheel slip is present. Each of the plurality of modulated levels is dependent on a magnitude, a location, or both, of the wheel slip. Each of the modulated levels is less than the first level.
Type:
Grant
Filed:
November 30, 2009
Date of Patent:
July 22, 2014
Assignee:
GM Global Technology Operations LLC
Inventors:
Eric E. Krueger, Kevin S. Kidston, Eric J. Holdorf, Mahir Hodzic
Abstract: Improved methods and systems for controlling hydraulically or electrically actuated anti-lock brake systems (ABS) on air and land vehicles requiring only measurement of wheel angular speed although brake torque measurements can also be employed if available. A sliding mode observer (SMO) based estimate of net or different wheel torque (road/tire torque minus applied brake torque) derived from the measured wheel speed is compared to a threshold differential wheel torque derived as a function of a “skid signal” also based on wheel speed only to generate a braking control signal. The braking control signal can be employed to rapidly and fully applying and releasing the brakes in a binary on-off manner and, as an additional option, possibly modulating the maximum available brake hydraulic pressure or electrical current when the brakes are in the “on” state in a continuous manner.
Type:
Grant
Filed:
February 6, 2002
Date of Patent:
May 10, 2005
Inventors:
William B. Ribbens, Ronald J. Fredricks
Abstract: A method and apparatus for operating a vehicle anti-lock braking system includes a brake pedal and a brake modulator that reduces braking pressure by an initial pressure reduction after detecting insipient wheel lock. Vehicle deceleration is measured as a function of brake pedal position. A first table is updated with the vehicle deceleration and the brake pedal position. A coefficient of friction of a road surface is estimated based on the first table. A slip target for at least one wheel is estimated and is based on an estimated maximum slip of the at least one wheel before losing traction minus an estimated potential for vehicle rollover. A deceleration target for at least one wheel is estimated and is based on an estimated maximum deceleration of the at least one wheel before losing traction minus the estimated potential for vehicle rollover.
Type:
Grant
Filed:
October 4, 2002
Date of Patent:
April 27, 2004
Assignee:
General Motors Corporation
Inventors:
Allen John Walenty, Kevin Gerard Leppek, David Alan Thatcher
Abstract: The adaptive brake application and initial skid detection system allows rapid brake application and prevents deep initial skids. Brake torque is compared with a predetermined threshold brake torque. Wheel velocity error signals are also generated to indicated the difference between the wheel velocity and a reference velocity signal. A torque bias modulator integrator responsive to brake torque signals adjusts the wheel velocity error signals to provide an anti-skid control signal. The torque bias modulator integrator can also be initialized to the value of the measured brake torque when the wheel velocity error signals indicate the beginning of a skid. Brake torque difference signals are generated to indicate the difference between brake torque and a commanded brake torque, and an adjusted brake torque error signal is generated in response to the brake torque difference signals.
Abstract: A method and apparatus for calculating the actuation control of a hydraulic sub-system of a braking system in order to reduce noises associated with the hydraulics is presented. Input signals and measured/determined characteristics are utilized to calculate a value of a drive time for an inlet valve, a value of a pulse width modulator output, a duration of a current signal reduction time and a pulse width modulator value associated with the current signal reduction time, all of which determine actuation control of the hydraulic sub-system.
Abstract: A road surface condition determination system for an automotive vehicle comprises wheel-speed sensors, and a control unit being configured to be electrically connected to the wheel-speed sensors for data-processing a wheel-speed data signal. The control unit calculates a wheel-speed fluctuation of each of the road wheels on the basis of a previous value of the wheel-speed data signal and a current value of the wheel-speed data signal, and calculates an absolute value of the wheel-speed fluctuation of each of the road wheels. A integration circuit is provided to produce a first integrated value of the absolute values of the wheel-speed fluctuations of the road wheels. A smoothing circuit is provided to make a smoothing operation to the integrated value to produce a smoothed value. A road-surface condition determining section is also provided to determine a road surface condition on the basis of the smoothed value.