Slip Time Versus Nonslip Time Patents (Class 303/164)
  • Patent number: 9914442
    Abstract: The present disclosure provides a system, method, and apparatus for distributing energy amongst at least one forward brake and at least one aft brake for a vehicle. The method involves determining, with at least one processor, an energy for at least one first brake and an energy for at least one second brake. Further, the method involves comparing, with at least one processor, the energy for at least one first brake with the energy for at least one second brake. Also, releasing at least one first brake, when at least one processor determines the energy of at least one first brake is greater than the energy for at least one second brake. Further, releasing at least one second brake, when at least one processor determines the energy of at least one second brake is greater than the energy for at least one first brake.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: March 13, 2018
    Assignee: The Boeing Company
    Inventors: Scott Brandon Kanemori, David T. Yamamoto
  • Patent number: 8958968
    Abstract: A traction control device for a motorcycle eliminates a need for a waiting time for detecting an amount of change in a vehicle state and a subsequent prediction time, and can execute quick traction control. The traction control device includes an engine driving force control unit, for calculating a real slip ratio of the motorcycle, setting a target slip ratio according to a driving state of the motorcycle, and controlling a driving force of an engine so that the real slip ratio becomes the target slip ratio. The traction control device also includes a throttle grip opening degree sensor for detecting an opening degree of a throttle grip; and a bank angle sensor for detecting a bank angle of the motorcycle. The engine driving force control unit calculates the target slip ratio on a basis of the throttle opening degree and the bank angle of the motorcycle.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Fuyuki Kobayashi, Yoichiro Fukao, Yohei Maruyama, Tatsuya Ito
  • Patent number: 8244443
    Abstract: A slip suppression control system for a vehicle includes a monitored value detecting device for detecting a monitored value corresponding to a difference between a rotational speed of a front wheel and a rotational speed of a rear wheel of the vehicle, a threshold determiner unit configured to determine a relationship between the monitored value detected by the monitored value detecting device and a threshold; and a controller configured to initiate traction control for reducing a driving power of a drive wheel when the threshold determiner unit determines that the monitored value exceeds a predetermined start threshold, wherein the threshold determiner unit is configured to count a return time which lapses from when the monitored value exceeds the start threshold until the monitored value becomes smaller than second threshold; and wherein the controller is configured to determine whether or not to terminate the traction control based on the return time.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: August 14, 2012
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Takeru Oshima, Tatsuya Hirokami
  • Patent number: 7865289
    Abstract: A method of distribution braking between the brakes of an aircraft. The method includes a first step of estimating a braking force objective and a steering torque objective to be achieved by the brakes of the aircraft. It also includes the steps of defining at least two groups of brakes (12, 13) and determining, for each group, a braking level that is to be achieved by the group. The braking levels being calculated in such a manner that braking performed in application of the braking levels is, at least under normal operating conditions of the brakes, in compliance with a braking force objective and with a steering torque objective.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: January 4, 2011
    Assignee: Messier-Bugatti
    Inventors: Stéphane Dellac, Arnaud Jacquet, Gérard Léon Gissinger, Michel Basset, Yann Chamaillard, Jean-Pierre Garcia
  • Patent number: 7571033
    Abstract: System for detecting stability/instability of behavior of a motor vehicle upon occurrence of tire slip or lock. State of the motor vehicle is determined on the basis of an alignment torque (Ta) applied from a road and a side slip angle (?). By taking advantage of such torque/slip-angle characteristic that although the alignment torque is proportional to a side slip angle when the latter is small, the alignment torque becomes smaller as the side slip angle increases, a normal value is determined from a straight line slope and the side slip angle in a region where the latter is small. Unstable behavior of the motor vehicle is determined when deviation of actual measured value from the normal value increases. Further, unstable state is determined when the slope of the alignment torque for the slip angle departs significantly from that of approximate straight line slope.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: August 4, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hiroshi Fujioka, Takanori Matsunaga, Takashi Maeda, Toshinori Matsui, Masahiko Kurishige, Hideyuki Tanaka
  • Patent number: 7448700
    Abstract: In controlling a vehicle, an ECU (anti-lock brake control device) of a brake control device judges a difference in relative length between lock-to-lock time intervals of left and right wheels (step 302), calculates cumulative compensation amounts in dependence on the judged difference (steps 306, 310 to 316), then calculates pressure increase amounts which are brake fluid pressures to be applied respectively to wheel cylinders for the left and right wheels in a pressure increasing mode, in dependence on the cumulative compensation amounts and a base pressure increase amount, and then controls the brake fluid pressures in the pressure increasing mode so that the brake fluid pressures coincide with those so calculated.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: November 11, 2008
    Assignee: Advics Co., Ltd.
    Inventor: Masato Terasaka
  • Publication number: 20030011243
    Abstract: The invention relates to an arrangement (11) for ensuring the functionning of a brake configuration for a vehicle with a multiplicity of wheels which are arranged with reference to a front axle and at least one rear axle and which support the vehicle, the brake configuration incorporating at least two brake devices (5a-f), each of them designed to act upon one of said wheels, and a brake control (12) with which the brake devices (5a-f) can be activated with a total brake action. The arrangement (11) incorporates a memory unit (14) designed to store at least one value of a parameter for said brake devices, said parameter relating to at least one previous braking operation performed by the respective brake device (5a-f), and a control unit (13) designed to distribute said brake action to said brake devices (5a-f), taking into account the value of said parameter of the respective brake devices (5a-f) when the brake control (12) is actuated.
    Type: Application
    Filed: August 14, 2002
    Publication date: January 16, 2003
    Inventors: Hakan Andersson, Nils-Gunnar Vagstedt
  • Patent number: 6443539
    Abstract: The duration and average deceleration of a vehicle wheel are measured during a wheel speed departure and compared to duration and deceleration thresholds to determined if a wheel sneakdown condition exists for the wheel.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: September 3, 2002
    Assignee: Kelsey-Hayes Company
    Inventor: Thomas M. Atkins
  • Patent number: 5707121
    Abstract: An anti-skid braking system for wheeled vehicles having fluid actuated brakes associated with the vehicle wheels. The anti-skid braking system includes speed sensors associated with the vehicle wheels, a scanning control device response to speed signals from the speed sensors to actuate a pressure dump device to periodically release the fluid pressure applied to the brake of any wheel which is determined, by detection of a predetermined level of relative slip between that wheel and the road surface to be about to lock. Later, the system, by detection, can re-apply the actuating pressure to that brake when the tendency of that wheel to lock has been reduced.
    Type: Grant
    Filed: November 24, 1995
    Date of Patent: January 13, 1998
    Assignee: Lucas Industries PLC
    Inventors: Alan Leslie Harris, Mark Ian Phillips
  • Patent number: 5567024
    Abstract: A method and system for damping wheel speed oscillation during an anti-lock braking event. The method includes the initial step of sensing the wheel speed and determining a wheel slip based on the sensed wheel speed and a vehicle speed reference. Next, the method continues with the step of determining whether the wheel slip has exceeded a predetermined slip threshold. If the wheel slip has not exceeded a predetermined slip threshold, the method performs normal or unmodified anti-lock brake control. If the wheel slip has exceeded the predetermined slip threshold, the method continues with the step of determining whether an acceleration feedback condition representative of a high mu surface has been satisfied. If an acceleration feedback condition has been satisfied, the method continues with the step of increasing brake pressure applied to the wheel from a steady-state level in a step-wise function during acceleration of the wheel before the wheel speed reaches the vehicle speed reference.
    Type: Grant
    Filed: December 13, 1994
    Date of Patent: October 22, 1996
    Assignee: Kelsey-Hayes Company
    Inventor: Bernard W. Johnson
  • Patent number: 5498071
    Abstract: The present invention relates to an improved antiskid control apparatus for vehicles. When the front wheel on either one of the right and left sides is antiskid-controlled, this apparatus detects whether the road surface is in the condition of split .mu. in which the road surface friction coefficient is different between the right and left wheels by more than the prescribed value. When the road surface is found to have a split .mu. condition, antiskid control should be implemented on the front wheel mentioned above. To control the rise in brake fluid pressure, the other front wheel must then be shifted in whatever direction facilitates control of the threshold value. In other words, even if a wheel does not attain a sufficient coefficient of surface friction, antiskid control is needed to control easily the rise in brake fluid pressure. A large side force is applied continuously to the vehicle, thereby reducing slippage and cancelling the yaw moment.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: March 12, 1996
    Assignee: Tokico, Ltd.
    Inventors: Hirotaka Oikawa, Toshio Takayama