Plural Converters Patents (Class 307/82)
  • Patent number: 8994230
    Abstract: An electrical circuit for bi-directional power control between two devices, including a mobile communication card, an electronic device that connects to the communication card, the electronic device being either (i) a host device that operates independently of the communication card and also interoperates with the communication card, or (ii) a jacket for the communication card, wherein the jacket is a passive device that does not operate independently of the communication card, and circuitry connecting the mobile communication card with the electronic device, including a device on/off button operative to power the electronic device on and off, and a switch, wherein the circuitry uses a single connection line connecting the communication card, the electronic device, the device on/off button, and the switch, to enable the electronic device to automatically power the communication card on and off using the switch, in response to the electronic device being respectively powered on and off.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: March 31, 2015
    Assignee: Google Inc.
    Inventors: Itay Sherman, Eran Miller
  • Patent number: 8994219
    Abstract: A DC/DC module comprises a buck-boost circuit, which is used to convert the input voltage of the DC/DC module into a gate off-state voltage VGL; a LDO circuit, which is used to convert the input voltage of the buck-boost circuit into a lower limit output voltage VBB of a liquid crystal driver; a BUCK circuit, which is used to convert the input voltage of the DC/DC module into an operating voltage VDD of a specific IC; a charge pump circuit, which is used to convert the input voltage of the DC/DC module into a gate on-state voltage VGH; wherein, the input voltage of the DC/DC module is used directly as an upper limit output voltage VAA. The DC/DC module according to the present invention has simple circuit structure, low hardware cost, and high load capacity.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 31, 2015
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventor: Xueliang Yang
  • Patent number: 8994218
    Abstract: A method and apparatus is disclosed for intelligently inverting DC power from DC sources such as photovoltaic (PV) solar modules to single-phase or three-phase AC power to supply power for off-grid applications. A number of regular or redundant off-grid Mini-Inverters with one, two, three, or multiple input channels in a mixed variety can easily connect to one, two, three, or multiple DC power sources such as solar PV modules, invert the DC power to AC power, and daisy chain together to generate and supply AC power to electrical devices that are not connected to the power grid including motors, pumps, fans, lights, appliances, and homes.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: March 31, 2015
    Assignee: CyboEnergy, Inc.
    Inventors: George Shu-Xing Cheng, Steven L. Mulkey, Andrew J. Chow
  • Patent number: 8994217
    Abstract: An energy storage system includes a converter coupled between an inverter and both a power generator and a battery, thereby reducing the number of devices for circuit implementation and the size of a printed circuit board (PCB). The energy storage system is coupled to an electric power system that generates a system power, and the energy storage system includes a battery for generating a battery power and a converter coupleable to a power generator for generating an electric power and the battery in parallel, wherein the converter is configured to boost or drop a voltage of at least one of the electric power, the battery power, or the system power.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: March 31, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sungchun Cho, Namsung Jung, Jungpil Park, Sungsoo Hong, Chungwook Roh, Sangkyoo Han
  • Patent number: 8981708
    Abstract: The present invention concerns a charging apparatus for charging electric storage devices of electric vehicles including a feed-in unit for feeding electric energy into an electric ac voltage network including an electric dc voltage intermediate circuit for the intermediate storage of electric energy with an intermediate circuit voltage, and an inverter for converting a direct current of the dc voltage intermediate circuit into an alternating current, for feeding it into the electric ac voltage network and for converting an alternating current from the ac voltage network into a direct current for feeding it into the dc voltage intermediate circuit, and at least one electric storage charge circuit for at least partial charging of one of the electric storage devices from the dc voltage intermediate circuit and for at least partial discharging of one of the electric storage devices into the dc voltage intermediate circuit.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 17, 2015
    Inventors: Volker Diedrichs, Alfred Beekmann
  • Publication number: 20150069844
    Abstract: A power storage module and a power storage device are disclosed. The power storage module and the power storage device include a DC/AC converter, a first power storage element, a second power storage element and at least one DC/DC converter. The first power storage element is coupled to the DC side of the DC/AC converter to form a first power storage branch. The second power storage element is coupled to the DC side of the DC/AC converter to form a second power storage branch. The DC/DC converter is disposed on the first power storage branch or the second power storage branch.
    Type: Application
    Filed: May 23, 2014
    Publication date: March 12, 2015
    Applicant: Delta Electronics (Shanghai) Co., Ltd.
    Inventors: Hong-Yang WU, Xiao LI, Wen-Tao ZHAN
  • Patent number: 8975783
    Abstract: A converter unit to improve the response dynamics and overall recovered power in a photovoltaic array configuration. Each photovoltaic panel in the photovoltaic array may be coupled to a respective converter unit, which may include a controller to sense an output voltage and output current produced by the solar panel, and control operation of a power converter to output modified voltage and current corresponding to the solar panel onto a bus coupling the converter units. The controller may operate as an analog or (digital) firmware control system to regulate the input voltage of each power converter unit under indirect guidance of a Maximum Power Point Tracking (MPPT) controller to optimize and regulate the resultant power, and achieve very fast dynamic response to environmental transients.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: March 10, 2015
    Assignee: Draker, Inc.
    Inventors: Bertrand J. Williams, Sam B. Sandbote
  • Patent number: 8975784
    Abstract: The invention relates to a method for managing an electrical network. The electrical network includes two power centers making it possible for each one to supply several loads, each power center including: an electrical power supply bus, a plurality of reversible converters making it possible to exchange energy between the bus and the various loads , routing means making it possible to vary an association between the converters and the loads, an energy storage element. According to the invention, if for a first of the power centers, the regenerated power cannot be dissipated in the other loads associated with the first center, the regenerative load dissipates its power toward the bus of the second power center.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 10, 2015
    Assignee: Thales
    Inventor: Alain Tardy
  • Publication number: 20150061397
    Abstract: This invention relates to a photovoltaic inverter, capable of connecting a plurality of photovoltaic modules to each input port of a multi-string photovoltaic inverter through a single booster. The photovoltaic inverter disclosed herein includes a plurality of input portions connected in series to a plurality of photovoltaic modules, respectively, a plurality of reactors connected in series to the plurality of input portions, respectively, a first capacitor configured to charge DC voltages of the plurality of photovoltaic modules, respectively, transferred through the plurality of input portions, a first resistor connected in parallel to the first capacitor, a booster unit connected in parallel to the first capacitor and m the first resistor connected in parallel to each other, and configured to boost the voltages charged in the first capacitor, and an inverter unit configured to convert the voltage boosted by the booster unit into an AC voltage to provide to a grid.
    Type: Application
    Filed: August 21, 2014
    Publication date: March 5, 2015
    Applicant: LSIS CO., LTD.
    Inventor: Tae Bum PARK
  • Patent number: 8970068
    Abstract: A converter unit configured to couple to a photovoltaic panel (PV) may include a controller to sense an input voltage and input current obtained from the photovoltaic panel, and manage the output voltage of a corresponding power converter coupled to a DC bus to regulate the resultant bus voltage to a point that reduces overall system losses, and removes non-idealities when the panels are series connected. The controller may also perform input voltage management and regulation, including maximum power point tracking (MPPT) for the PV. The controller may probe the bus voltage using a probe waveform generated according to a pseudo-random bit sequence (PRBS), to provide a probe signal that is distinct from the control steps performed by the controller. A PV array may feature a respective converter unit coupled to each PV, with each respective controller using a different and unique seed for generating its PRBS.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 3, 2015
    Assignee: Draker, Inc.
    Inventors: Shawn R. McCaslin, Bertrand J. Williams
  • Patent number: 8970070
    Abstract: A wireless power transmission unit according to the present invention transmits power wirelessly from a power transmitting section 100 to a power receiving section 200 through a resonant magnetic field. The unit includes: the power transmitting section 100, which resonates at a resonant frequency f0; at least one relay section 300, which can resonate at a frequency that is selected from multiple frequencies including the resonant frequency f0; and a resonance control section 600 that outputs information that specifies a resonance condition to be imposed on the relay section 300 according to the arrangement of the power receiving section 200 and that makes the relay section 300 resonate on the resonance condition that has been specified in accordance with that information.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: March 3, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Tomokazu Sada, Hiroshi Kanno
  • Patent number: 8970067
    Abstract: An embodiment hybrid dc/dc converter comprises a first power source and a low power converter coupled to the first power source. The low power converter generates an output connected in series with the first power source. The hybrid dc/dc converter further comprises a selection network coupled to the first power source and the output of the low power converter and a main unregulated power converter coupled to the selection network. By controlling the voltage across the output of the low power converter, the hybrid dc/dc converter can achieve high efficiency through the unregulated power converter.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: March 3, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Dianbo Fu, Hengchun Mao, Bing Cai
  • Patent number: 8963373
    Abstract: A grid tie system includes a plurality of solar panels, a plurality of inverters, wherein each of the inverters is in electrical communication with at least one of the solar panels to convert a direct current to an alternating current, wherein each of the inverters has an active state and an inactive state and at least one of the inverters includes a tracking component to track a maximum power point of at least one of the solar panels, and a controller in communication with at least one of the inverters for selectively toggling the at least one of the inverters between the active state and the inactive state.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: February 24, 2015
    Assignee: Nextronex, Inc.
    Inventors: Peter F. Gerhardinger, David R. Feltner, Richard L. Ashton, Robert J. Simons
  • Patent number: 8963378
    Abstract: A method and apparatus for power wiring. In one embodiment, the apparatus comprises a splice box comprising (i) a plug having a plurality of plug pins, each plug pin of the plurality of plug pins for coupling to a conductor within a cable adapted for coupling to a power line; (ii) a first pin receptacle for coupling to a first guide pin of a connector; and (iii) a first pair of retention bars disposed within the first pin receptacle, the first pair of retention bars for retaining the first guide pin.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: February 24, 2015
    Assignee: Enphase Energy, Inc.
    Inventors: Martin Fornage, Raghuveer R. Belur
  • Patent number: 8957546
    Abstract: An electrical cogeneration system and AC coupling method for efficiently distributing power from multiple AC sources. The system includes a main AC source, an AC generator, a solar panel, and an automatic transfer switch. The main AC source and the AC generator are connected to the transfer switch. The system also includes a DC/AC inverter, which is in communication with the solar panel. The transfer switch and the inverter are both connected to a common AC load panel where the power provided by the solar panel, the AC generator, and the main AC source is used to satisfy a common electrical load. The system further includes a system control device that is in communication with the inverter and the transfer switch and is capable of selectively determining power input to the AC load panel. An AC coupling method for distributing power from multiple AC sources is also provided.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: February 17, 2015
    Assignee: Nixon Power Services, LLC
    Inventors: Mark W. Brennan, Kenneth E. Cockerham
  • Patent number: 8952567
    Abstract: System, for transmitting and receiving signals over residential electrical cables includes at least one active wire, one neutral wire and one ground wire. The system includes at least two power line modems, each one of the two power line modems including a processor, transmitters and at least one receiver, transmitters and the receiver being coupled with the processor, for respectively transmitting and receiving the signals. At least two of the wires form at least one receive wire pair and at least two of the wires form at least one transmit wire pair. Each one of the transmitters defines a respective carrier wave range over the transmit wire pair, the processor determining a frequency carrier wave for the signals when the signals are transmitted. A given one of the transmitters transmits the signals if the frequency carrier wave is in the carrier wave range of the given one of the transmitters.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: February 10, 2015
    Assignee: SIGMA Designs Israel S.D.I. Ltd.
    Inventors: Ilan Reuven, Rami Verbin, Ron Sterenson
  • Publication number: 20150035284
    Abstract: An exemplary power conversion system includes a first power conversion module, a second power conversion module, and a controller. The first power conversion module includes a first source side converter, a first load side converter, and a first DC link coupled between the first source side converter and the second load side converter. The second power conversion module includes a second source side converter, a second load side converter, and a second DC link coupled between the second source side converter and the second load side converter. The controller is configured to generate a number of switching signals according to a circuit structure of the power source module or a circuit structure of the load module. The switching signals are provided to the first power conversion module and the second power conversion module to balance a first DC link voltage and a second DC link voltage.
    Type: Application
    Filed: August 1, 2014
    Publication date: February 5, 2015
    Inventors: Wenqiang YANG, Hongwu SHE, Rajendra NAIK, Shivkumar Venkatraman IYER
  • Patent number: 8946932
    Abstract: The present invention provides a configurable dc-dc power converter module and method of manufacture for such module. The power converter module comprises an isolated subassembly with a capacitor bank, control circuits and an isolated power train that converts an input voltage to an intermediate bus voltage. The power module further comprises multiple non-isolated power trains electrically coupled to the isolated subassembly that are powered by the intermediate bus voltage to produce output voltages. The number of output voltages is determined by the number of populated non-isolated power trains, which may include all of the non-isolated power trains in the power module or a subset thereof. In one embodiment of the invention the non-isolated power trains are located on a carrier PWB that is electrically coupled to the bus PWB.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: February 3, 2015
    Inventors: Jeffrey J. Boylan, Carl Milton Wildrick, Sun-Wen Cyrus Cheng
  • Patent number: 8946931
    Abstract: A power converter includes a power conversion circuit switchably coupled to a first power input and a second power input. The power conversion circuit is operable to generate positive and negative DC output voltages and is configured such that, in a backup mode of operation, the negative DC output voltage is generated using backup power through a first current path of the power conversion circuit that includes a first diode coupled between the second power input and a second DC bus, and, in a line mode of operation, the negative DC output voltage is generated using AC input power through a second current path of the power conversion circuit that bypasses the first diode and includes a second diode coupled between the first power input and the second DC bus.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: February 3, 2015
    Assignee: Schneider Electric IT Corporation
    Inventors: Chandrasekaran Jayaraman, Indra Prakash, Damir Klikic
  • Patent number: 8946929
    Abstract: A method for effectively utilizing energy storage components within a microgrid may include the steps of connecting a first plurality of energy storage components to a DC bus through switches, connecting a second plurality of energy storage components to an AC bus through inverters, connecting controllers to the energy storage components, connecting a first plurality of the controllers to the DC bus to regulate bidirectional flow of energy between the DC bus and the first plurality of energy storage components and connecting a second plurality of the controllers to the AC bus to regulate bidirectional flow of energy between the AC bus and the second plurality of energy storage components. The controllers may be interconnected with a local energy storage system bus and controlled via a master microgrid controller connected to the local energy storage system bus.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: February 3, 2015
    Assignee: Honeywell International Inc.
    Inventors: Harmohan N. Singh, Cristian Anghel
  • Patent number: 8947038
    Abstract: A power supply apparatus of a home appliance which meets standby power regulation of 0.5 watts using one SMPS. As compared with a general circuit which meets the standby power regulation using two or more SMPSs, it may be possible to curtail expenses required for addition of a separate standby only SMPS and miniaturize a PCB, resulting in a reduction in cost. Further, in a washing machine employing a motor, a circuit is provided to bypass a back EMF generated in the motor even if AC power is not supplied to the washing machine due to occurrence of a power failure or unplugging of the washing machine. Therefore, it may be possible to prevent a PCBA from being damaged due to the back EMF.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: February 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong Hun Won, Tae Hoon Lim
  • Publication number: 20150028684
    Abstract: Embodiments of the present invention are directed to a multi-connection splice box. In one embodiment, the multi-connection splice box comprises a first plug having a first plurality of plug pins coupled to a plurality of conductors within a cable wherein the cable couples to an AC power line, and a second plug having a second plurality of plug pins coupled to the plurality of conductors, wherein the first plug detachably couples a first microinverter to the plurality of conductors and the second plug detachably couples a second microinverter to the plurality of conductors.
    Type: Application
    Filed: July 24, 2014
    Publication date: January 29, 2015
    Inventors: Michael J. Harrison, John Scott Berdner
  • Publication number: 20150022006
    Abstract: We describe a modular adjustable power factor renewable energy inverter system. The system comprises a plurality of inverter modules having a switched capacitor across its ac power output, a power measurement system coupled to a communication interface, and a power factor controller to control switching of the capacitor. A system controller receives power data from each inverter module, sums the net level of ac power from each inverter, determines a number of said capacitors to switch based on the sum, and sends control data to an appropriate number of the inverter modules to switch the determined number of capacitors into/out of said parallel connection across their respective ac power outputs.
    Type: Application
    Filed: July 29, 2014
    Publication date: January 22, 2015
    Inventors: Paul Garrity, Aaron Michael Jungreis
  • Patent number: 8933594
    Abstract: A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power the drive system of a vehicle using electrical power, and a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator; and wherein the field of at least one of the first electromagnetic resonator and the second electromagnetic resonator is shaped using a conducting surface to avoid a loss-inducing object.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: January 13, 2015
    Assignee: WiTricity Corporation
    Inventors: Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Katherine L. Hall, Morris P. Kesler, Andrew J. Campanella
  • Patent number: 8933721
    Abstract: An embodiment method of diagnosing a power source arrangement includes a plurality of n power sources connected in series between output terminals, wherein n?2. At least two different groups of power sources are selected from the power source arrangement. A voltage of each of the at least two different groups is measured between the output terminals. During the measurement of the voltage of one group, the power sources of the power source arrangement that do not belong to the one group are bypassed. The at least two measured voltages obtained through measuring the voltage of each of the at least two different groups or at least two voltages that are dependent on these at least two measured voltages are compared.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 13, 2015
    Assignee: Infineon Technologies Austria AG
    Inventor: Gerald Deboy
  • Publication number: 20150008750
    Abstract: A power conversion system includes at least one multi-level power converter and a controller coupled to the at least one multi-level power converter. The controller includes a first CMV injection module and a second CMV injection module. The first CMV injection module generates a first CMV signal for modifying at least one voltage command to achieve a first function in association with operation of the power conversion system. The second CMV injection module generates a second CMV signal based at least in part on a local limit either for modifying the at least one voltage command or for further modifying the at least one modified voltage command to achieve a second function in association with operation of the power conversion system.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 8, 2015
    Inventors: Jie Shen, Stefan Schroeder, Kunlun Chen, Shuitao Yang, Bo Qu, Qin Lei
  • Patent number: 8928259
    Abstract: A modular stacked DC architecture for traction system includes a propulsion system includes an electric drive, a direct current (DC) link electrically coupled to the electric drive, and a first DC-DC converter coupled to the DC link. A first energy storage device (ESD) is electrically coupled to the first DC-DC converter, and a second DC-DC converter is coupled to the DC link and to the first DC-DC converter. The system also includes a second energy storage device electrically coupled to the second DC-DC converter and a controller coupled to the first and second DC-DC converters and configured to control a transfer of energy between the first ESD and the DC link via the first and second DC-DC converters.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 6, 2015
    Assignee: General Electric Company
    Inventors: Viswanathan Kanakasabai, Bhaskar Sen
  • Publication number: 20150001947
    Abstract: An uninterruptible power supply (UPS) system (100) comprises a plurality of UPS units (UPS-1, UPS-2) connected in parallel. Each UPS unit comprises a power converter (124) for supplying a share (i load 1, i_load—2) of a total load current (i_tot). The total load is shared automatically between UPS units of power ratings, in a proportionate manner. A controller 130 of each converter is arranged to establish real-time feedback control of a current supplied by the power converter. An exchange current (i_exch) for each converter represents an imbalance between an output current of the converter in question and output currents of the parallel converters. Exchange current sensing circuits of the parallel-connected UPS units are connected together. The controller steers the exchange current of each converter toward a value (i_exc_c) that is a non-zero proportion of a current (i_mut) sensed within the converter.
    Type: Application
    Filed: January 5, 2012
    Publication date: January 1, 2015
    Applicant: American Power Conversion Corporation
    Inventors: Daniel Rozand, Patrick Chambon, Stefano De Cesaris
  • Patent number: 8922062
    Abstract: A photovoltaic system includes solar cells and photovoltaic inverters configured to convert direct current generated by the solar cells to alternating current. Grid voltage at the point of interconnection (POI) of the photovoltaic system and the power grid is measured and compared to a setpoint. A control signal is generated based on the measured grid voltage. The control signal is provided to the photovoltaic inverters. The control signal is adjusted to cause the photovoltaic inverters to generate or absorb reactive power to respond to transient grid voltage changes.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 30, 2014
    Assignee: SunPower Corporation
    Inventors: Lars Johnson, Robert Johnson
  • Patent number: 8922048
    Abstract: A photovoltaic (PV) sub-generator junction box (1) for a PV system (100) comprises a plurality of electric terminals (11) for optionally connecting one respective PV string (2) of one or more serially connected PV modules (3). Said PV sub-generator junction box (1) further comprises a sub-generator line terminal (12) for connecting a PV sub-generator line (4) of a remote central PV inverter (5) or connecting a PV sub-generator line (4) of an inserted PV generator junction box (6). The PV sub-generator junction box (1) also comprises an electronic control unit (10) that is connected to a central control unit (7) of the PV inverter (5) in order to exchange data (DAT0). According to the invention, the PV sub-generator junction box (1) comprises a power line modem (8) for feeding and retrieving the data (DAT) via the PV sub-generator line (4).
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: December 30, 2014
    Assignee: SMA Solar Technology AG
    Inventor: Bodo Giesler
  • Patent number: 8921750
    Abstract: A system is disclosed that includes an open-circuit voltage measurement device for measuring an open-circuit voltage of a string of solar battery panels in a state where the string and a load are not connected; a drive control device for controlling an output voltage of the solar battery panels; and a calculation control device for outputting a signal for controlling the drive control device so that the open-circuit voltage attains a predetermined voltage equal to or more than an operable voltage of the load but not more than a breakdown voltage of the photovoltaic power system, based on the open-circuit voltage measured by the open-circuit voltage measurement device when the string and the load are in an open state.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: December 30, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kenji Kawamata
  • Patent number: 8922063
    Abstract: A circuit for rendering an energy storage device parallelable comprised of an energy storage device connected to a power adapter that converts the potential of the energy storage device into a potential that follows a predetermined function of the state of charge of the energy storage device. When multiple assemblies are paralleled, they may be charged and discharged as a whole with individual storage devices maintaining equal states of charge. The energy storage devices can be batteries with different cell counts, configurations, and energy discharge profiles. In some cases, the power adapters are comprised of DC to DC converters and system controllers that are used to translate each battery's energy discharge profile into a user-determined energy discharge profile that is a predictable function of the battery's state of charge and independent of temperature or other external conditions.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: December 30, 2014
    Assignee: Green Charge Networks, LLC
    Inventor: Stephen Randolph Taddeo
  • Patent number: 8922053
    Abstract: A semiconductor chip includes: a data output buffer that outputs a data signal; a first power-supply pad that supplies a first power-supply potential to the data output buffer; a power-supply wiring that is connected to the first power-supply pad; a strobe output buffer that outputs a strobe signal; and a second power-supply pad that supplies a second power-supply potential to the strobe output buffer. The power-supply wiring and the second power-supply pad are electrically independent of each other. Therefore, the power-supply noise associated with the switching of the data output buffer does not spread to the strobe output buffer. Thus, it is possible to improve the quality of the strobe signal.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: December 30, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventors: Hiromasa Takeda, Hiroki Fujisawa
  • Patent number: 8922061
    Abstract: Provided is a system and method for detecting and correcting a suboptimal operation of one or more maximum power point tracking (MPPT) devices in a solar photovoltaic power generation (SPVPG) system. MPPT devices may become stuck in a local maximum in a power curve and fail to reach an optimal maximum power point. Described herein are methods and systems for detecting sub-optimal performance of an MPPT device and managing components within the SPVPG system to cause the MPPT device to track a different maximum power point.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: December 30, 2014
    Assignee: Tigo Energy, Inc.
    Inventor: Sam Arditi
  • Publication number: 20140375134
    Abstract: An electric power system includes N electric power sources and N switching circuits, where N is an integer greater than one. Each switching circuit includes an input port electrically coupled to a respective one of the N electric power sources, an output port, and a first switching device adapted to switch between its conductive and non-conductive states to transfer power from the input port to the output port. The output ports of the N switching circuits are electrically coupled in series and to a load to establish an output circuit. Each of the N switching circuits uses an interconnection inductance of the output circuit as a primary energy storage inductance of the switching circuit.
    Type: Application
    Filed: September 10, 2014
    Publication date: December 25, 2014
    Inventors: Anthony J. Stratakos, Michael D. McJimsey, Ilija Jergovic, Alexandr Ikriannikov, Artin Der Minassians, Kaiwei Yao, David B. Lidsky, Marco A. Zuniga, Ana Borisavljevic
  • Publication number: 20140368047
    Abstract: A power line communication (PLC) routing system includes a plurality of micro inverters and a data collection apparatus connected to the micro inverters through a power line. After being installed in the building, the micro inverters are registered to the data collection apparatus. When submitting a connection request to the micro inverters but cannot receive the corresponding response, the data collection apparatus commands a micro inverter which has responded the request to transmit the request to another micro inverter which is out of time to response, and re-transmits data from the another micro inverter to the data collection apparatus.
    Type: Application
    Filed: December 17, 2013
    Publication date: December 18, 2014
    Applicant: DELTA ELECTRONICS, INC.
    Inventor: Sheng-Hua LI
  • Publication number: 20140363881
    Abstract: A pulse generation system for applying electric pulses across a load includes a first plurality of energy storage modules connected in series on a positive chain and configured to apply a positive potential to the load and a second plurality of energy storage modules connected in series on a negative chain and configured to apply a negative potential to the load. Each energy storage module of the positive chain and the negative chain includes a rectifier and a storage element, and at least one control element.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 11, 2014
    Inventors: Antonio Caiafa, Vasile Bogdan Neculaes, Andrew Soliz Torres, Allen Lawrence Garner
  • Patent number: 8903681
    Abstract: A monitoring system and method for monitoring performance of individual powers sources in a distributed power source system. A monitoring module is coupled to each of the power sources, or to each string of serially connected power sources, to monitor and collect data regarding current, voltage, temperature and other environmental factors at the power source. The collected data is transmitted over a power line to a central analysis station for analysis. Data collected from each source indicates malfunction or degradation at the source. Comparison of data collected from adjacent sources filters for environmental factors impacting neighboring sources such as cloudy days for a solar panel. Comparison of data collected from the same source at different times indicates soiling or degradation of the source with time or periodic events such as a moving shade from an adjacent building.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: December 2, 2014
    Assignee: Solaredge Technologies Ltd.
    Inventors: Meir Adest, Lior Handelsman, Yoav Galin, Amir Fishelov, Guy Sella
  • Patent number: 8901774
    Abstract: A power supply system includes a digital power manager and multiple power blocks each conveying regulated power to a respective load. The power blocks include the power part of non-isolated DC/DC converters, signal sampling and conversion circuits to provide analog voltage signal representing output voltage, output current, temperature, etc., and driving circuits to receive pulse width modulation (PWM) signals and drive switching devices. Closed-loop voltage control and protection functions for the power blocks are integrated into the digital power. The digital power manager includes a non-volatile memory containing registers, including a digital power manager configuration register, a power block set-up register, and a power block monitor register, as well as a user-definable space.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: December 2, 2014
    Assignee: Bel Fuse (Macao Commercial Offshore) Limited
    Inventors: Jiajia Yan, Yuanping Zhou, Huajun Jian, Mark Jutras
  • Patent number: 8896158
    Abstract: A variable capacitance circuit includes: a prescribed node, to which an alternate current signal with a reference potential as a center voltage is applied; a first capacitor connected to the prescribed node; a second capacitor connected between the first capacitor and the reference potential; a third capacitor and a transistor for controlling capacitance, provide between a first node between the second capacitor and the first capacitor, and the reference potential; and a bias circuit which applies a first bias voltage to a second node between the third capacitor and the transistor.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: November 25, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Hiroyuki Nakamoto
  • Patent number: 8890364
    Abstract: A power plant coupled to, and configured to provide power to, an electrical grid, is described. The power plant includes a plurality of power converters electrically coupled to, and configured to receive power from, at least one power source. The power plant also includes a voltage regulation device electrically coupled between the power converters and the electrical grid. The voltage regulation device includes a series transformer and a bi-directional converter configured to regulate a voltage at an output of the power converters.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: November 18, 2014
    Assignee: General Electric Company
    Inventors: Kathleen Ann O'Brien, Ralph Teichmann, Jovan Z Bebic
  • Patent number: 8890362
    Abstract: A semiconductor device includes a plurality of internal circuits, a plurality of low drop output regulators, and a power management unit. The plurality of low drop output regulators are configured to reduce a power source voltage applied from an outside and generate supply voltages which are to be supplied to the plurality of internal circuits. The power management unit is configured to change a voltage value of the power source voltage in accordance with a state of combination of voltage values of the plurality of supply voltages generated by the plurality of low drop output regulators.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: November 18, 2014
    Assignee: Fujitsu Limited
    Inventor: Kenichi Kawasaki
  • Patent number: 8890363
    Abstract: A solar energy plant may include a DC bus, photovoltaic panels coupled in parallel to the DC bus, each photovoltaic panel having a DC/DC converter, and a first controller controlling the DC/DC converter depending on whether a voltage on the DC bus is equal to or greater than a first threshold and lower than or equal to a second threshold. The solar energy plant may include a DC/AC inverter coupled to the DC bus and outputting an output AC voltage, an auxiliary start-up power supply charging a parasitic capacitance on the DC bus up to the first threshold, and a second controller turning on the auxiliary start-up power supply based upon a start command, and turning off the auxiliary start-up power supply and simultaneously turning on the DC/AC inverter.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 18, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Natale Aiello, Francesco Giovanni Gennaro, Giuseppe Scuderi
  • Patent number: 8890374
    Abstract: An uninterruptible power supply includes plural power units, plural output capacitor units, a capacitor energy bleeder circuit, plural output units, a detecting unit and a controlling unit. The capacitor energy bleeder circuit is electrically connected to the plural output capacitor units. The plural output units are connected with each other in parallel to issue the output voltage to the power output side and avoid returning electrical energy from the power output side back to the capacitor energy bleeder circuit. The detecting unit is used for detecting operating statuses of the plural power units. The controlling unit is used for controlling operations of the plural power units and the capacitor energy bleeder circuit. In response to a to-be-interrupted status of a specified power unit, the controlling unit controls the capacitor energy bleeder circuit to discharge electrical energy of the output capacitor unit corresponding to the specified power unit.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: November 18, 2014
    Assignee: Delta Electronics, Inc.
    Inventors: Yuan-Fang Lai, Ying-Sung Chang
  • Patent number: 8890361
    Abstract: An electric horizontal directional drilling machine. An electric horizontal directional drilling machine is powered by an electric power assembly. The power assembly is made up of a fuel cell and inverter, or multiple fuel cells with synchronized inverters. The electric motor operates hydraulic pumps or works independently to rotate, advance and retract a drill string and downhole tool through the earth and operate various machine functions. Mechanical functions of the drilling machine may also be satisfied through the use of electric rotary actuators (e.g., motors) and linear actuators (e.g., linear motors and solenoids).
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: November 18, 2014
    Assignee: The Charles Machine Works, Inc.
    Inventor: Michael F. Gard
  • Publication number: 20140333140
    Abstract: Provided is a plurality of power supply apparatuses connected in parallel with a grid that are capable of obtaining the same measured values of the same voltage. The power supply apparatus according to the present invention is connected in parallel with the grid and includes a voltage sensor 108 configured to obtain a first measured voltage value by measuring a voltage of the grid, a communication interface 114 configured to communicate with another power supply apparatus connected in parallel with the grid, and a controller 118 configured to obtain, via the communication interface 114, a second measured voltage value obtained by the another power supply apparatus by measuring the voltage of the grid and carrying out an adjustment such that the first measured voltage value and the second measured voltage value of the same voltage of the grid approximate to the same value.
    Type: Application
    Filed: November 6, 2012
    Publication date: November 13, 2014
    Applicant: KYOCERA CORPORATION
    Inventor: Masahiro Baba
  • Patent number: 8884462
    Abstract: A power flow regulator includes a plurality of bi-directional DC-DC converters, each of said converters comprising a first input, a second input, a first output and a second output; and a capacitor electrically connected between the first and second inputs of each of said converters. Either the first output of each of said converters is electrically connected to a corresponding DC source and the second output of each of said converters is electrically connected to a common DC load, or the first output of each of said converters is electrically connected to a corresponding DC load and the second output of each of said converters is electrically connected to a common DC source.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: November 11, 2014
    Assignee: Eaton Corporation
    Inventors: Yu Liu, Christopher S. Thompson, Vijay Bhavaraju
  • Patent number: 8884465
    Abstract: A photovoltaic array for use in an electrical power system includes multiple photovoltaic modules and a voltage converter coupled to at least one of the photovoltaic modules. The photovoltaic array also includes an over-voltage protection circuit. The over-voltage protection circuit includes an interface adapted to couple to an output of the voltage converter. The over-voltage protection circuit also includes a spike detector configured to detect a voltage spike in an output voltage of the voltage converter. The over-voltage protection circuit further includes a voltage control module configured to regulate an output voltage slew rate of the voltage converter in response to an over-voltage signal received from the spike detector.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: November 11, 2014
    Assignee: National Semiconductor Corporation
    Inventor: Sameh Sarhan
  • Publication number: 20140327316
    Abstract: Provided is a power system that can arbitrarily set output power while stabilizing output voltages. Connection terminals 13 and 23 of lower power sources 1 and 2 are connected to external connection terminals 41 in parallel. Voltage measurement section 31 measures voltage values of external connection terminals 41 as measured voltage values. Power converters 12 and 22 measure power supply capacities of lower power sources 1 and 2, respectively. Output instruction section 32 adjusts power or currents flowing through connection terminals 13 and 23 based on the measured voltage values and the power supply capacities so that the measured voltage values are included in a predetermined voltage range.
    Type: Application
    Filed: November 14, 2012
    Publication date: November 6, 2014
    Applicants: TAKASAGO LTD., NEC CORPORATION
    Inventors: Shingo Takahashi, Yasuhiro Ishikawa, Kazuaki Honda
  • Patent number: 8878396
    Abstract: A continuous grounding system for use in an alternating current system including a transformer is disclosed. The system includes a switch assembly connected between a transformer neutral of a transformer and a ground, the switch assembly having an open position and a closed position, the open position disrupting the path through the switch assembly between the electrical connection and the transformer neutral, and the closed position establishing a path connecting the electrical connection to the transformer neutral through the switch assembly, wherein in normal operation of the alternating current electrical device the switch assembly remains in a closed position. The system also includes a DC blocking component positioned in parallel with the switch assembly and connected between the transformer neutral and the ground.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: November 4, 2014
    Assignee: Emprimus, LLC
    Inventors: Frederick R. Faxvog, Wallace Jensen, Gale Nordling, Greg Fuchs, David Blake Jackson, Terry Lee Volkmann, James Nicholas Ruehl, Brian Groh