With Phosphor Patents (Class 313/543)
  • Patent number: 11688592
    Abstract: A photocathode including a substrate, a photoelectric conversion layer provided on the substrate and generating photoelectrons in response to incidence of light, and an underlayer provided between the substrate and the photoelectric conversion layer and containing beryllium, in which the underlayer has a first underlayer containing a nitride of beryllium.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: June 27, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Terunori Kawai, Yoshitaka Torii, Masami Shibayama, Hiroyuki Watanabe, Shinichi Yamashita
  • Patent number: 8729799
    Abstract: A low-workfunction photocathode includes a photoemissive material employed as a coating on the photocathode. The photoemissive material includes AnMC2, where A is a first metal element, the first element is an alkali metal, an alkali-earth element or the element Al; n is an integer that is 0, 1, 2, 3 or 4; M is a second metal element, the second metal element is a transition metal or a metal stand-in; and C2 is the acetylide ion C22?. The photoemissive material includes a crystalline structure or non-crystalline structure of rod-like or curvy 1-dimensional polymeric substructures with MC2 repeating units embedded in a matrix of A.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: May 20, 2014
    Assignee: U.S. Department of Energy
    Inventors: Joseph Z. Terdik, Linda Spentzouris, Jeffrey H. Terry, Jr., Katherine C. Harkay, Karoly Nemeth, George Srajer
  • Patent number: 8310141
    Abstract: In a fluorescent lamp, an initial chromaticity change can be suppressed. An atmosphere in contact with a blue light-emission phosphor forming a phosphor particle layer 3 that contains argon (Ar) and neon (Ne) shown by the following equation A/(A+N)?0.04, wherein A represents a mole fraction of argon and N represents a mole fraction of neon.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: November 13, 2012
    Assignee: Sony Corporation
    Inventors: Takahiro Igarashi, Tsuneo Kusunoki
  • Patent number: 7692384
    Abstract: An envelope has a glass bulb body and a cylindrical glass bulb base. The glass bulb body includes an upper hemisphere and a lower hemisphere. The upper hemisphere is curved in a substantially spherical shape. The lower hemisphere is substantially curved in a spherical shape and connects the upper hemisphere and glass bulb base. A photocathode is formed on the inner surface of the glass bulb body. An avalanche photodiode is disposed on the glass bulb body side relative to an intersection between an imaginary extended curved surface of the lower hemisphere within the glass bulb base and an axis. When light enters the photocathode, electrons are emitted from the photocathode. The electrons are converged at the position above and in the vicinity of the APD by an electrical field in the electron tube, so that the electrons enter the APD in an efficient manner and are detected satisfactorily.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: April 6, 2010
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Hiroyuki Kyushima, Motohiro Suyama, Suenori Kimura, Yasuharu Negi, Atsuhito Fukasawa, Yoshihiko Kawai, Atsushi Uchiyama, Yasuyuki Egawa
  • Patent number: 7654712
    Abstract: A lamp module is constructed of a light source part made of a semiconductor light emitting element, and an optical member for distributing light emitted from the light source part. The light source part includes a surface-emitting laser element in which plural light emission parts are parallel arranged on a surface, a mask which is disposed on a surface of the surface-emitting laser element and includes plural mask openings for exposing the light emission parts, and fluorescent substances with which the mask openings are filled. By forming the light source part in a monolithic configuration, an array pitch of the plural light emission parts can be decreased, a light source can be miniaturized and also a lamp can be further miniaturized.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: February 2, 2010
    Assignee: Koito Manufacturing Co., Ltd.
    Inventors: Hitoshi Takeda, Tsukasa Tokida
  • Patent number: 7482571
    Abstract: An image intensifier tube is provided. The image intensifier tube has a microchannel plate (MCP), a photocathode and phosphor screen deposited on a fiber optic substrate. A first spacer is positioned between the microchannel plate and the fiber optic substrate. A second spacer is positioned between the fiber optic substrate and the photocathode. The first and second spacers cooperate to provide a spatial relationship among the MCP, phosphor screen and photocathode for effective operation of the image intensifier tube.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: January 27, 2009
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventor: Nils Ian Thomas
  • Patent number: 6736995
    Abstract: This invention relates to a plasma picture screen provided with a phosphor layer which comprises an intrinsically pigmented phosphor. The plasma picture screen has an improved value for the luminance contrast performance without the efficiency of the phosphors being detracted from.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: May 18, 2004
    Assignee: Koninklijke Philips Electronics N.V
    Inventors: Thomas Juestel, Hans-Helmut Bechtel, Walter Mayr
  • Patent number: 6624414
    Abstract: The present invention comprises an enhanced vision device having an image intensifier tube (16) with an input end (17a) and an output end (17b) with an IR phosphor (19) deposited on the input end (17a) of the image intensifier tube (16). The IR phosphor (19) produces photons in response to light of wavelengths that would be undetectable by the image intensifier tube (16).
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: September 23, 2003
    Assignee: Litton Systems, Inc.
    Inventor: John W. Glesener
  • Publication number: 20030164682
    Abstract: The invention relates to a radiation converter having a radiation absorber (2) for generating photons in a manner dependent on the intensity of impinging x-ray radiation, having a photocathode (3) arranged downstream of the radiation absorber (2) in the radiation direction at a distance (a) and serving for generating electrons in a manner dependent on the photons emerging from the radiation absorber (2), having a device for accelerating the electrons emerging from the photocathode onto an electron detector (5) for generating electrical signals in a manner dependent on the impinging electrons, and having an electron multiplier (4) arranged between the photocathode (3) and the electron detector (5), in which case the electrons emerging from the photocathode (3) can be multiplied by the electron multiplier (4).
    Type: Application
    Filed: January 21, 2003
    Publication date: September 4, 2003
    Inventors: Manfred Fuchs, Erich Hell, Wolfgang Knupper, Detlef Mattern
  • Patent number: 6583558
    Abstract: An electron tube 10 mainly includes a sleeve 12, an input plate 14 having a photocathode surface 18, a stem 16 and a CCD 20. A vacuum is provided in an interior of the electron tube 10. The CCD 20 is fixed onto the stem such that a rear surface B faces the photocathode surface 18. In the CCD 20, on a single conductive type semiconductor substrate 64, a buried layer 66, a barrier region 68, a SiO2 layer 70, a storage electrode layer 72, a transmission electrode layer 74, and a barrier electrode layer 76 are formed at their predetermined positions. A PSG film 78 is formed at an entire front surface A over these layers to flatten the surface of the CCD 20. Further, SiN film 106 mainly composed of SiN is formed above the PSG film over the entire front surface A.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: June 24, 2003
    Assignee: Hamamatsu Photonics K. K.
    Inventors: Motohiro Suyama, Akihiro Kageyama, Masaharu Muramatsu
  • Patent number: 6509701
    Abstract: The present invention may be used in the field of microelectronics, in medicine as well as in the production of lighting appliances. The method and the device of the present invention are used for increasing the brightness of optical radiation sources powered by low-voltage power supplies. The optical radiation is generated by emitting electrons and by exciting the radiation. The electrons are generated by emitting the same from the surface of a cathode, while the excitation of the radiation involves accelerating the electrons in the gaseous interval up to an energy exceeding the excitation energy of the radiating levels of the gas. To this end, a voltage is applied between the cathode and the anode, wherein said voltage does not exceed the ignition voltage of a self-maintained discharge. The device of the present invention comprises a chamber as well as electrodes having surfaces which are transparent to the radiation.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: January 21, 2003
    Inventors: Alexandr Tursunovich Rakhimov, Jury Alexandrovich Mankelevich, Vladimir Vitalievich Ivanov, Tatiyana Viktorovna Rakhimova, Nikolai Vladislavovich Suetin
  • Patent number: 6420829
    Abstract: In a radiographic image intensifier having an input window, and a method for its production, an intermediate layer is deposited on a substrate for a luminous layer, thereby smoothing the surface of the substrate. This intermediate layer serves to smooth the surface of the substrate and is thus a good base for a uniform growth of the crystal structure of the luminous layer.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: July 16, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventor: Heinrich Diepers
  • Patent number: 6002207
    Abstract: An electron source includes a photocathode (20) for emitting electrons on excitation by incident light radiation. A permanent magnet (60) is perforated by a plurality of channels extending between opposite poles of the magnet (60). The magnet (60) generates, in each channel, a magnetic field which forms electrons received from the photocathode (20) into an electron beam for guidance towards a target (90). A shutter device (22) is provided having an array of addressable shutter elements, each selectively actuable to alternately admit and block passage of light radiation onto the photocathode (20) in response to an address signal.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: December 14, 1999
    Assignee: International Business Machines Corporation
    Inventors: John Beeteson, Andrew Knox
  • Patent number: 5981935
    Abstract: The disclosure relates to radiological image intensifier tubes comprising a vacuum electron tube and a luminescent observation screen comprising means to improve the contrast of the image. These means consist of a layer of aluminium with a thickness of at least 1 micrometer, partially absorbent for the incident electrons, placed in the path of the electrons generated by the tube and in the vicinity of the layer of luminophores. The deposited layer has the effect of reducing, firstly, the quantity of electrons re-emitted from the observation screen to the tube and, secondly, the proportion of these electrons that return to strike the layer of luminophores. Application to radiological type image intensifier tubes.
    Type: Grant
    Filed: December 24, 1997
    Date of Patent: November 9, 1999
    Assignee: Thomson Tubes Electroniques
    Inventor: Yvan Raverdy
  • Patent number: 5977705
    Abstract: A novel photocathode and image intensifier tube include an active layer comprised substantially of amorphic diamond-like carbon, diamond, or a combination of both. The photocathode has a face plate coupled to an active layer. The active layer is operable to emit electrons in response to photons striking the face plate.
    Type: Grant
    Filed: April 29, 1996
    Date of Patent: November 2, 1999
    Assignee: Litton Systems, Inc.
    Inventors: Timothy W. Sinor, Joseph P. Estrera, Keith T. Passmore
  • Patent number: 5712490
    Abstract: A photocathode device is disclosed including an active layer, a composition ramp layer and an emission layer including an emission surface. The active layer, ramp layer and emission layer each have both a predetermined material composition and a predetermined doping level for maintaining the conduction band of the device flat until the emission surface which functions to increase the photoresponse of the device.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: January 27, 1998
    Assignee: ITT Industries, Inc.
    Inventor: Arlynn W. Smith
  • Patent number: 5587621
    Abstract: In order to increase the sensitivity of an image intensifier tube, the efficiency with which an electron image is formed from radiation of a first wavelength is increased. Radiation of the first wavelength is converted into radiation of a second wavelength by means of a conversion screen provided with a scintillation layer, and radiation of the second wavelength releases electrons from a photocathode which is sensitive to the second wavelength. Loss of radiation of a second wavelength, incurred because a part of this radiation does not reach the photocathode, is reduced. Radiation of the second wavelength which is not emitted in the direction of the photocathode is recaptured by providing the conversion screen with a metallic reflecting intermediate layer.
    Type: Grant
    Filed: February 8, 1995
    Date of Patent: December 24, 1996
    Assignee: U.S. Philips Corporation
    Inventor: Johannes K. E. Colditz
  • Patent number: 5557167
    Abstract: A photocathode which is responsive to ultraviolet light to release photoelectrons includes a supportive window layer of sapphire and a single-crystal active layer of AlGaN. Interposed between the window layer and the active layer is an interface layer which insures a low population density of crystalline defects at the interface of the interface layer with the active layer and in the active layer itself. Consequently, the photocathode is an effective emitter of photoelectrons in the transmission mode.
    Type: Grant
    Filed: July 28, 1994
    Date of Patent: September 17, 1996
    Assignee: Litton Systems, Inc.
    Inventors: Hyo-Sup Kim, John F. Krueger, Alexander L. Vinson
  • Patent number: 5315103
    Abstract: The disclosure relates to radiological image intensifier tubes, and more particularly to means to improve the image resolution of these tubes and/or correct their brightness curve at output. The image intensifier tube comprises an input screen comprising a scintillator borne by an aluminium substrate. A porous layer of alumina is interposed between the scintillator and the substrate. The alumina layer is dyed so as to absorb the light emitted by the scintillator towards the substrate.
    Type: Grant
    Filed: October 23, 1992
    Date of Patent: May 24, 1994
    Assignee: Thomson Tubes Electroniques
    Inventors: Yvan Raverdy, Christian Marillat, Daniel Gally
  • Patent number: 5302817
    Abstract: An X-ray detector has a transmission type intensifying screen provided on the X-ray incident area of the detector body and a reflection type intensifying screen provided on the inner wall surface of the detector body except for the X-ray incident area. Visible rays from the transmission type intensifying screen and the reflection type intensifying screen are detected by a photomultiplier installed in the detector body. The transmission type intensifying screen and the reflection type intensifying screen use fluorescent materials such as Gd.sub.2 O.sub.2 S:Tb; Gd.sub.2 O.sub.2 S:Tb, Ce; GD.sub.2 O.sub.2 S:Tb, Yb; Gb.sub.2 O.sub.2 S:Pr; BaFCl:Eu; BaFBr:Eu; La.sub.2 O.sub.2 S:Tb; La.sub.2 O.sub.2 S:Tb, Ce; La.sub.2 O.sub.2 S:Tb, Yb; La.sub.2 O.sub.2 S:Pr; Y.sub.2 O.sub.2 S:Tb; Y.sub.2 O.sub.2 S:Tb, Ce; Y.sub.2 O.sub.2 S:Tb, Yb; and Y.sub.2 O.sub.2 S:Pr.
    Type: Grant
    Filed: June 19, 1992
    Date of Patent: April 12, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuto Yokota, Akihisa Saito, Noriaki Yagi
  • Patent number: 4891507
    Abstract: An efficient energy upconversion unit is optically coupled to a photocathode. The upconversion unit receives incident infrared electromagnetic energy of longer wavelengths and emits, in response, electromagnetic energy within a band of shorter wavelengths to which the photocathode is more responsive. Through such energy upconversion, the photoresponse of the cathode is extended to much longer infrared wavelengths.
    Type: Grant
    Filed: December 9, 1988
    Date of Patent: January 2, 1990
    Assignee: Quantex Corporation
    Inventors: Joseph Lindmayer, Charles Y. Wrigley
  • Patent number: 4835379
    Abstract: An X-ray sensitive camera pick-up tube has an input end that has a circular glass surface that has areas of phosphor coating and of bare surface. The area of phosphor coating is a rectangle that fits within the circular glass surface and is limited to the area used for X-ray imaging of a specimen placed in front of the input end.
    Type: Grant
    Filed: February 18, 1988
    Date of Patent: May 30, 1989
    Assignee: Nicolet Instrument Corporation
    Inventor: Ronald E. Carmean
  • Patent number: 4740683
    Abstract: An X-ray image intensifier includes an input surface and an output surface facing the input surface. The input surface has a base and a phosphor layer formed on the base and having a predetermined effective radius. The phosphor layer includes a thickest portion which has a thickness about 105 to 115% of a thickness of a center of the layer and is located in a region spaced from the center toward the periphery of the layer by a distance about 60 to 80% of the effective radius. The phosphor layer is formed so that the thickness is gradually increased from the center to the thickest portion and a region between the thickest portion and the periphery of the layer has a thickness about 50 to 100% of the thickness of the thickest portion.
    Type: Grant
    Filed: March 30, 1987
    Date of Patent: April 26, 1988
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Noji, Shigeharu Kawamura
  • Patent number: 4656392
    Abstract: An electron discharge device, such as a photomultiplier tube, has an evacuated envelope with an alkali-antimonide photoemissive cathode therein. A thermionic emission-reduction coating is disposed within the envelope. The coating alloys with the constituents of the photoemissive cathode to reduce thermionic emission. The thermionic emission reduction coating is formed preferably of indium; however, indium oxide may also be used.
    Type: Grant
    Filed: October 28, 1983
    Date of Patent: April 7, 1987
    Assignee: RCA Corporation
    Inventors: Richard D. Faulkner, Robert E. McHose
  • Patent number: 4645971
    Abstract: The thickness of the layer of luminescent material on the edges of the screen at approximately 1/10.degree. from the edge of the image field is approximately 15 to 25% smaller than its thickness at the center of the screen. Thus the length of the x-ray path within the luminescent material is substantially the same irrespective of the angle of incidence of the x-rays on the screen and, when the x-ray energy varies, the sensitivity at all points of the screen varies substantially in the same manner. The screen in accordance with the invention is primarily employed in digital radiology systems in which the same image is produced several times by utilizing different x-ray energies.
    Type: Grant
    Filed: April 23, 1984
    Date of Patent: February 24, 1987
    Assignee: Thomson-CSF
    Inventor: Jean Ricodeau