With A Magnetron Patents (Class 315/5.13)
  • Patent number: 11393662
    Abstract: A method of plasma processing comprises generating electrons in a source chamber, generating an electric potential gradient between the source chamber and a processing chamber by applying a first negative direct current (DC) voltage to the source chamber and a ground voltage to the processing chamber, accelerating the electrons from the source chamber through a dielectric injector and into the processing chamber using the electric potential gradient, and generating an electron-beam sustained plasma (ESP) in the processing chamber using the electrons from the source chamber.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: July 19, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Zhiying Chen, Joel Blakeney, Megan Carruth, Peter Ventzek, Alok Ranjan, Kazuya Nagaseki
  • Patent number: 11205562
    Abstract: Embodiments of hybrid electron beam and RF plasma systems and methods are described. In an embodiment a method of using a hybrid electron beam and RF plasma system may include forming a field of electrons a first region of a wafer processing structure. Such a method may also include forming a processing plasma in a second region of the wafer processing structure, the second region of the wafer processing structure being coupled to the first region of the wafer processing structure, the processing plasma being maintained by a combination of energy from a radiant energy source and from an electron beam formed from electrons in the field of electrons. Additionally, the method may include controlling a radical composition and ions of the processing plasma by setting a ratio of the energy supplied to the processing plasma from the electron beam and the energy supplied to the processing plasma from the radiant energy source.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: December 21, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Zhiying Chen, Peter Ventzek, Alok Ranjan
  • Patent number: 9786392
    Abstract: Illustrative embodiments provide methods and systems for migrating fuel assemblies in a nuclear fission reactor, methods of operating a nuclear fission traveling wave reactor, methods of controlling a nuclear fission traveling wave reactor, systems for controlling a nuclear fission traveling wave reactor, computer software program products for controlling a nuclear fission traveling wave reactor, and nuclear fission traveling wave reactors with systems for migrating fuel assemblies.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: October 10, 2017
    Assignee: TerraPower, LLC
    Inventors: Ehud Greenspan, Roderick A. Hyde, Robert C. Petroski, Joshua C. Walter, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Patent number: 9035707
    Abstract: The switching element is provided in a state of being electromagnetically coupled to the cavity resonator of the high frequency oscillator; the bias voltage applying terminal is connected to one electrode of the switching element; another electrode of the switching element is electrically connected to the cavity resonator (the anode shell in FIG. 1); the metal plate having a size enough for reflecting an electric wave to be transmitted before and after the switching element in a high-frequency manner is provided at any one end of the switching element; and by applying a bias voltage to the switching element and varying that, a reactance of the switching element is changed and a resonance frequency of the cavity resonator is varied. By this method, an oscillation frequency can be varied greatly relative to a small change in a bias voltage.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: May 19, 2015
    Assignee: NEW JAPAN RADIO LTD
    Inventor: Hideyuki Obata
  • Publication number: 20150060052
    Abstract: A microwave energy tool including a sheet beam klystron that includes a tube body for carrying an electron sheet beam that has a plurality of cavities and a magnetic solenoid wound directly on the tube body.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 5, 2015
    Inventor: George Caryotakis
  • Publication number: 20140339980
    Abstract: In a plasma reactor for processing a workpiece, an electron beam is employed as the plasma source, and a remote radical source is incorporated with the process chamber.
    Type: Application
    Filed: June 18, 2014
    Publication date: November 20, 2014
    Inventors: Ming-Feng Wu, Leonid Dorf, Shahid Rauf, Ying Zhang, Kenneth S. Collins, Hamid Tavassoli, Kartik Ramaswamy, Steven Lane
  • Patent number: 8823263
    Abstract: An electron tube includes: a microwave structure having an evacuated envelope including two ends, the microwave structure being at a reference potential, an electron gun including a cathode for providing a beam of electrons, along an axis, at one end of the evacuated envelope, an electron collector for gathering electrons of the beam at the other end of the evacuated envelope, and at least one high-voltage power supply for applying to the cathode a negative high-voltage potential with respect to the reference potential. The tube includes between the cathode and the microwave structure a device for extracting the positive ions including at least one electrode carried to a negative potential with respect to the reference potential so as to extract positive ions from the evacuated envelope, these positive ions being produced by the impacting of the electrons of the electron beam with molecules of residual gas in the evacuated envelope. The invention has application to microwave electron tubes, klystron TWT etc.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: September 2, 2014
    Assignee: Thales
    Inventor: Frédéric Andre
  • Patent number: 8450951
    Abstract: A system to regulate gyrotron power is configured to raise the filament voltage of a gyrotron to a standby voltage, then set the filament voltage to the normal standby voltage plus a current offset voltage before pulsing the gyrotron. The system is further configured to increase the filament voltage to a boost voltage that is higher than the standby voltage, thereby inducing a temperature increase in the cathode that offsets the cooling effect of radiating. The system is also configured to analyze a beam power of the gyrotron and adjust the filament voltage to bring a beam current within a range, and reduce the filament offset to zero such that the filament voltage is equal to the standby voltage.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: May 28, 2013
    Assignee: Raytheon Company
    Inventors: Larry Andrew Booker, John Walter Gerstenberg
  • Patent number: 8389962
    Abstract: A system and method for noise compensation of a charged particle beam location includes one or more sensors that are spaced apart from each other for sensing magnetic noises within at least one predefined frequency band thereby to provide magnetic noise measurements with synchronous detection of the location of a charged particle beam. Based on the magnetic noise measurements and on relationships between values of the magnetic noises and particle beam location errors, magnetic noise compensations signals are generated. An object is then scanned by a particle beam in response to a desired particle beam scan pattern and the magnetic noise compensation signals.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 5, 2013
    Assignee: Applied Materials Israel, Ltd.
    Inventors: Konstantine Chirko, Alon Litman, Yoav Nachum
  • Patent number: 8390200
    Abstract: A coaxial cavity gyrotron with two electron beams includes an electron gun (magnetron injection gun, “MIG,” with two beams), a coaxial beam-wave interaction cavity and an outer magnetic field tube. The coaxial beam-wave interaction cavity consists of two parts: an outer conductor and an inner conductor. The two hollow electron beams produced by the MIG are located between the outer conductor and the inner conductor. The MIG includes inner and outer anodes, with a single cathode located between the anodes. The cathode further includes two emitter rings which produce the two hollow electron beams. The entire gyrotron is immersed in the magnetic field tube such that the magnetic field profile is the same or similar to that for a coaxial gyrotron with one electron beam.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: March 5, 2013
    Inventors: Shenggang Liu, Chaoyu Liu
  • Publication number: 20120025703
    Abstract: The invention relates to a device for generation of microwaves comprising a coaxial virtual cathode oscillator (1) with an outer cylindrical tube forming a cathode (2) and connected to a transmission line (8) for feeding the cathode (2) with voltage pulses, and an inner cylindrical tube, at least partially transparent for electrons, forming an anode (3) and connected to a transmission device (8) for outputting microwave radiation generated by the formation of a virtual cathode (4) inside an area enclosed by the anode. Through the introduction of a centre conductor (5) arranged to coincide with the centre axle (19) for the cathode's (2) outer cylindrical tube and in electrical connection with the tube a device for generation of microwaves is obtained having improved energy efficiency and better broadband performance.
    Type: Application
    Filed: May 31, 2007
    Publication date: February 2, 2012
    Inventors: Magnus Karlsson, Fredrik Olsson
  • Publication number: 20110266951
    Abstract: An electron tube includes: a microwave structure having an evacuated envelope including two ends, the microwave structure being at a reference potential, an electron gun including a cathode for providing a beam of electrons, along an axis, at one end of the evacuated envelope, an electron collector for gathering electrons of the beam at the other end of the evacuated envelope, and at least one high-voltage power supply for applying to the cathode a negative high-voltage potential with respect to the reference potential. The tube includes between the cathode and the microwave structure a device for extracting the positive ions including at least one electrode carried to a negative potential with respect to the reference potential so as to extract positive ions from the evacuated envelope, these positive ions being produced by the impacting of the electrons of the electron beam with molecules of residual gas in the evacuated envelope. The invention has application to microwave electron tubes, klystron TWT etc.
    Type: Application
    Filed: August 24, 2009
    Publication date: November 3, 2011
    Applicant: THALES
    Inventor: Frederic Andre
  • Publication number: 20080258625
    Abstract: An output circuit for a microwave tube is provided that has generally high interaction impedance for good efficiency, has high average power capability, and is physically large for a given operating frequency. The output circuit is designed to operate in conjunction with an off-axis, bunched electron beam. Electromagnetic fields are applied to the region in which the electron beam propagates to impart an azimuthal velocity to the bunched electron beam. The electron bunches then interact synchronously with a resonant output structure to excite radio-frequency modes from which energy can be extracted and applied to a load.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 23, 2008
    Inventors: Richard Donald KOWALCZYK, Mark Frederick Kirshner, Craig Bisset Wilsen, Chad Daniel Marchewka
  • Publication number: 20080116807
    Abstract: A magnetron has a cylindrical cathode portion, an anode portion surrounding the cathode portion concentrically, and a resonator circuit connected to the anode portion. Fine modifying portions are periodically formed on the anode portion in an azimuthal direction to encourage electrons in bunching, thereby reducing a start-oscillation time and noise signals.
    Type: Application
    Filed: December 30, 2004
    Publication date: May 22, 2008
    Inventors: Jung-Il Kim, Jong-Hyo Won, Gun-Sik Park
  • Patent number: 6803726
    Abstract: A noise filter of a high frequency generator reduces noise of a certain frequency band leaked from the high frequency generator using a structure in which a first core inductor, an air-core inductor and a second core inductor are connected in series to each other. The first and second core inductors have high frequency-energy absorbing members inserted thereinto, and the air-core inductor is not provided with a high frequency-energy absorbing member therein. The high frequency-energy absorbing member is made of one of iron oxide, tin alloy and ferrite. The high frequency-energy absorbing member is also provided with a sectional area in which noise of a frequency band of 400 MHz to 900 MHz is attenuated.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: October 12, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sung-Chol Yang
  • Patent number: 6791268
    Abstract: A noise filter for a high frequency generator maximizes a frequency band in which noise is attenuated by adjusting a spacing between winding turns of core inductors provided in the noise filter. The noise filter includes a coke coil having a first winding unit having a first spacing between turns thereof, a second winding unit having a second spacing between turns thereof and a third winding unit having a spacing the same as the first spacing between turns thereof. The first, second, and third winding units are connected in series to each other. The noise filter also includes a high-frequency energy absorbing member inserted into the choke coil. The high-frequency energy absorbing member is made of one of iron oxide, tin alloy and ferrite, and includes a sectional area to attenuate noise in a frequency band ranging from 30 MHZ to 1000 MHz.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: September 14, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sung-Chol Yang
  • Publication number: 20040140770
    Abstract: A noise filter for a high frequency generator maximizes a frequency band in which noise is attenuated by adjusting a spacing between winding turns of core inductors provided in the noise filter. The noise filter includes a choke coil having a first winding unit having a first spacing between turns thereof, a second winding unit having a second spacing between turns thereof and a third winding unit having a spacing the same as the first spacing between turns thereof. The first, second, and third winding units are connected in series to each other. The noise filter also includes a high-frequency energy absorbing member inserted into the choke coil. The high-frequency energy absorbing member is made of one of iron oxide, tin alloy and ferrite, and includes a sectional area to attenuate noise in a frequency band ranging from 30 MHZ to 1000 MHz.
    Type: Application
    Filed: May 23, 2003
    Publication date: July 22, 2004
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Sung-Chol Yang
  • Patent number: 6720733
    Abstract: An emission element enclosed inside an electrodeless lamp 5 is excited by an electromagnetic field of a microwave irradiated from a magnetron 2 for emitting light from the electrodeless lamp 5. A soft-starting method is provided such that an electric power enough to drive the magnetron 2 is gradually increased. The soft-starting method is to prevent the magnetron from being destroyed by self-heating due to a reflected wave of the microwave. The soft-staring method is used when a light begins to be emitted from the electrodeless lamp 5. Accordingly, the electrodeless lamp system is provided such that breakage of the magnetron caused by the self-heating due to the reflected wave of the microwave can be prevented.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: April 13, 2004
    Assignee: Orc Manufacturing Co., Ltd
    Inventors: Akio Suzuki, Takeshi Tada, Taisei Kato
  • Patent number: 6650057
    Abstract: A magnetron including a cathode terminal of a magnetron main body and an inductor connected to the cathode terminal to constitute a filter, wherein the inductor includes an air-core coarse inductor and a cored inductor connected in series, the air-core coarse inductor being connected to the cathode terminal side, and the air-core coarse inductor includes a large pitch winding provided on the cathode terminal side and a small pitch winding provided on the opposite side.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: November 18, 2003
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Noriyuki Murao, Kazuki Miki, Setsuo Hasegawa, Noriyuki Okada, Satoshi Nakai
  • Publication number: 20020105276
    Abstract: A lighting apparatus which uses microwave energy which includes a microwave generator disposed inside a casing for generating microwave energy, a waveguide for transmitting the microwave energy, a resonator for covering an outlet of the waveguide, a bulb placed inside a resonator for generating light by the microwave energy transmitted through the waveguide, a conduction block in contact with the microwave generator for receiving heat generated in the microwave generating process, a heat transfer unit connected between the conduction block and the casing for transmitting heat from the conduction block to the casing and a radiating unit installed at the end of the heat transfer unit for radiating heat transmitted from the conduction block to the casing or outside of the casing.
    Type: Application
    Filed: January 31, 2002
    Publication date: August 8, 2002
    Inventor: Yong Seog Jeon
  • Patent number: 6420821
    Abstract: A cathode for a magnetron having concave/convex portions on a surface of a cylindrical base metal with thermionic emitting materials being fixedly attached to concave portions from among the concave/convex portions. The convex portions of the concave/convex portions are arranged to be inclining. It is enabled to effectively protect thermionic emitting materials from inverse impulse of electrons or ions and from oscillation to thereby restrain consumption and omission of these thermionic emitting materials and to decrease higher harmonics of radiation.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: July 16, 2002
    Assignee: New Japan Radio Co., LTD
    Inventors: Kiyoshi Kishiki, Yukio Torikai, Toshihiko Yamashita, Hideyuki Obata