Abstract: Embodiments include a vacuum device, comprising: an enclosure configured to enclose a vacuum, comprising an external base forming at least a portion of the enclosure; an internal base within the enclosure; and at least one thermal dissipative strap assembly, comprising: an internal base thermal conductive base in contact with the internal base, an external base thermal conductive base in contact with the external base, and a flexible thermal dissipative strap coupling the internal base thermal conductive base to the external base thermal conductive base.
Abstract: An electron tube includes: a microwave structure having an evacuated envelope including two ends, the microwave structure being at a reference potential, an electron gun including a cathode for providing a beam of electrons, along an axis, at one end of the evacuated envelope, an electron collector for gathering electrons of the beam at the other end of the evacuated envelope, and at least one high-voltage power supply for applying to the cathode a negative high-voltage potential with respect to the reference potential. The tube includes between the cathode and the microwave structure a device for extracting the positive ions including at least one electrode carried to a negative potential with respect to the reference potential so as to extract positive ions from the evacuated envelope, these positive ions being produced by the impacting of the electrons of the electron beam with molecules of residual gas in the evacuated envelope. The invention has application to microwave electron tubes, klystron TWT etc.
Abstract: A photocathode high-frequency electron-gun cavity apparatus of the present invention is provided with a high-frequency acceleration cavity (1), a photocathode (8, 15), a laser entering port (9), a high-frequency power input coupler port (10), and a high-frequency resonant tuner (16). Here, the apparatus adopts an ultra-small high-frequency accelerator cavity which contains a cavity cell formed only with a smooth and curved surface at an inner face thereof without having a sharp angle part for preventing discharging, obtaining higher strength of high-frequency electric field, and improving high-frequency resonance stability.
Abstract: An optically tunable cavity for an electronic device concurrently achieves high bandwidth (for example, at least about 10 percent, typically greater than about 50 percent) with high DC-RF efficiency (for example, at least about 50 percent, typically greater than about 85 percent). The electronic device may be a vacuum electronic device, including linear-beam and cross-field devices, with either an input circuit or an output circuit, or both, containing a photocapacitance-controlled resonator embedded such that a laser beam can impinge upon a semiconductor gap of the resonator. The laser beam may instantaneously change the resonant mode of the overall loaded cavity, thus allowing for amplification or oscillation of the desired frequency throughout the vacuum electronic device.
Type:
Grant
Filed:
August 10, 2011
Date of Patent:
March 19, 2013
Assignee:
The United States of America as represented by the Secretary of the Navy
Abstract: This invention relates to a microwave tube (3) for generation of an electromagnetic wave with frequency F, the tube comprises mechanical means for varying the frequency F composed of a set of rings (A, B, C, D) defining a periodic structure inside the tube and mechanical means (4, 5, 2, G) for displacing rings with respect to each other while maintaining a periodicity for periodic structure during displacement of the rings.
Abstract: This invention provides tunable devices incorporating the dielectric CaCu3Ti4O12. CaCu3Ti4O12 is especially useful in tunable devices such as phase shifters, matching networks, oscillators, filters, resonators, and antennas comprising interdigital and trilayer capacitors, coplanar waveguides and microstrips.
Abstract: An optically tuned magnetron oscillator employs materials whose electrodynamic properties are altered by the absorption of light. A probe constructed from a leaky dielectric light guide coated with a photoconductive material is inserted into each of the magnetron's cavities. When light is injected into the light guide, it leaks into the coating where it is absorbed, creating free charge carriers whose presence alters the dielectric properties of the material, thereby perturbing the resonant frequency of the cavity. The frequency can be controlled by varying the amount of light injected into each of the optical probes. When no light is present, the resonant frequency of the magnetron cavity will be at one extreme of its operating band; when the light is at full intensity, the change in the properties of the probe will be maximum as will be the change in the resonant frequency.