With Torque Or Load Determination (e.g., By Calculation, Detection, Or Estimation, Etc.) Patents (Class 318/400.15)
  • Patent number: 8928262
    Abstract: A system and method of controlling an electric motor using a motor controller are provided. The system includes an electric motor controller configured to be coupled to an electric motor and to control the electric motor to produce approximately constant average torque. The controller includes a rectifier configured to convert an AC input voltage to a pulsing DC voltage, a DC link electrically coupled to the rectifier, an inverter electrically coupled to the DC link and configured to generate a three phase AC voltage to drive the electric motor, and a controller configured to receive a measurement of a motor current value for the motor, estimate a torque generated in the electric motor using the measurement of the instantaneous motor current value, and generate a real-time current demand signal using the estimated torque value, the real-time current demand signal compensating the motor controller to produce a substantially constant average motor output torque.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 6, 2015
    Assignee: Regal Beloit America, Inc.
    Inventor: Ludovic Andre Chretien
  • Publication number: 20150002063
    Abstract: An exterior rotor switched reluctance machine includes a stator, a rotor adjacent the stator and adjacent a housing, the housing connected to the stator. The stator further includes a back iron, a set of stator poles connected to the back iron and a set of windings disposed between the set of stator poles. The rotor, connected to a shaft and rotatively coupled to the stator, further includes a set of rotor segments. The set of windings includes a set of phases, each phase experiencing a flux linkage that varies with an angular position of the rotor. The apparatus operates as a motor in response to selectively energizing the set of phases with a set of current pulses. The apparatus operates as a generator in response to rotating the shaft.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Applicant: The Board of Regents, The University of Texas System
    Inventors: Babak Fahimi, Wei Wang, Chenjie Lin
  • Patent number: 8922146
    Abstract: An apparatus for estimating rotor time constant of induction motor, the apparatus being such that d-axis and q-axis current commands are received to output q-axis voltage command, to output q-axis voltage estimate, to output a changed value of rotor time constant, which is a difference between the q-axis voltage command and the q-axis voltage estimate, and to add the changed value of the rotor time constant to a rotor time constant, whereby the changed rotor time constant is outputted.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: December 30, 2014
    Assignee: LSIS Co., Ltd.
    Inventor: Sun Woo Lee
  • Publication number: 20140375234
    Abstract: A method of compensating for a friction torque of a permanent magnet synchronous motor may include: receiving input of a motor current and a rotor speed of the permanent magnet synchronous motor; estimating a motor torque based on the input motor current; acquiring a first friction torque corresponding to the input rotor speed and the estimated motor torque by using a lookup table of friction torques; compensating for a second friction torque of the permanent magnet synchronous motor based on the first friction torque, wherein the compensating is in response to a first torque command input to control driving of the permanent magnet synchronous motor and outputs a second torque command that compensates for the second friction torque; and/or controlling the driving of the permanent magnet synchronous motor based on the second torque command.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Inventors: Hyun-bae KIM, Jung-hyo LEE, Jei-hoon BAEK, Kyu-bum HAN
  • Publication number: 20140375237
    Abstract: Methods of providing a control band for a hysteresis controller are presented. A method can determine a control band analytically to avoid the time and costs associated with manual calibration of a hysteresis controller. By way of example, a method can include modeling a machine output, such as stator flux or machine torque, modeling the variation rate for the machine output, and providing a control band based on the variation rate modeling.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Chiang-jiang Wang, Michael Degner
  • Publication number: 20140346985
    Abstract: An inverter, which drives an electric motor installed in a road vehicle, includes sensors, a storage apparatus, a power calculator, a torque calculator, a deviation calculator, and a torque corrector. The sensors measure at least one voltage and at least one current within the inverter. The storage apparatus records values measured during an electric revolution of the motor. Following the electric revolution, the power calculator calculates a mean electric power based on the recorded values. From the mean electric power and a rotational speed of the motor during the electric revolution, the torque calculator calculates a torque produced on an output shaft of the motor, The deviation calculator determines a deviation between the torque produced on the output shaft and a setpoint torque of the inverter. When an absolute value of the deviation is greater than a predetermined threshold, the torque corrector makes a torque correction.
    Type: Application
    Filed: December 19, 2012
    Publication date: November 27, 2014
    Inventors: Pierre Alain Magne, Jean-Louis Linda
  • Patent number: 8896258
    Abstract: A method for starting an electric motor having a rotor, comprising the following steps:—driving the rotor with a first torque in a first rotational direction, wherein a maximum value of the first torque is not higher than a maximum countertorque acting counter to the rotation of the rotor, so that the rotor comes to a standstill in a first stationary position;—driving the rotor starting from the first stationary position in a second rotational direction that is counter to the first rotational direction until the rotor comes to a standstill in a predefined second stationary position; and—starting from the rotor in the first rotational direction starting from the second stationary position.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: November 25, 2014
    Assignee: BSH Bosch und Siemens Hausgeraete GmbH
    Inventors: Falko Abel, Eberhard Weidner
  • Patent number: 8897930
    Abstract: This application describes the software invented to control an electric motor system. The electric motor system is mounted on one or more aircraft main wheels or nose wheels to drive an aircraft independently on the ground without aircraft engines or tow vehicles. The software uses closed-loop control together with several other control laws to operate the drive motor or motors. Knowledge of the current operating state of the drive motor, together with knowledge of the commands given to taxi forward, taxi in reverse, or brake in reverse, is used to configure the motors to optimal operating parameters. The software architecture is described along with the pilot interface and many details of software implementation.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: November 25, 2014
    Inventor: Janice Ilene Bayer
  • Publication number: 20140340012
    Abstract: To suppress a ripple contained in current flowing into a DC power supply during one-pulse control in a motor drive apparatus receiving electric power from the DC power supply. A motor drive apparatus 1 includes an inverter control device (10) provided with a one-pulse control mode in which, during one electrical angle cycle, a positive rectangular pulse voltage and a negative rectangular pulse voltage are applied, as gate drive signals, to a switching element corresponding to each phase. When performing the one-pulse control mode, the inverter control device (10) gradually increases or reduces a duty in a predetermined phase angle width at rising and falling edges of the rectangular wave voltage.
    Type: Application
    Filed: November 8, 2012
    Publication date: November 20, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES AUTOMOTIVE THERMAL SYSTEMS CO., LTD.
    Inventors: Kenichi Aiba, Kyohei Watanabe, Takayuki Takashige
  • Patent number: 8892280
    Abstract: A sprung mass damping control system of a vehicle, which aims to suppress sprung mass vibration generated in a vehicle body of a vehicle provided with at least a motor-generator (first and second motor-generators) as a drive source, includes a sprung mass damping control amount calculating device that sets a sprung mass damping control amount for suppressing the sprung mass vibration, and a drive source control device (a motor-generator control device) that executes sprung mass damping control by controlling a motor-generator control amount of the motor-generator to realize the sprung mass damping control amount.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: November 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Gohki Kinoshita, Koichiro Muta, Toshiya Hashimoto, Eiji Fukushiro, Takanori Aoki, Akihiro Kimura, Shunsuke Oyama, Masaya Yamamoto, Kaiji Itabashi, Yoshitaka Oikawa, Takashi Saito
  • Patent number: 8890452
    Abstract: A control device for an electrically driven door is provided that can enhance the sensitivity of detection of a door pinch state and that can prevent a passenger from being pressed when the door pinch state occurs. The control device includes a driving force instruction value producing unit that outputs a driving force instruction value of the electrically driven door, a state observing unit that estimates a mechanical resistant force to a door driving system, a reference model that determines a dynamic characteristic of the electrically driven door to the mechanical resistant force estimated by the state observing unit, a gain compensator that computes a control compensation value that makes an output of the reference model coincide with an actual speed of the electrically driven door; and an adder that adds the control compensation value computed by the gain compensator to the driving force instruction value.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: November 18, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Satoru Ozaki
  • Patent number: 8872454
    Abstract: In a control unit that controls a control amount of a rotary device by controlling on and off states of switching elements of a power converting circuit, a relative rate predicting section temporally sets operation states of the power converting circuit and predicts a relative rate of a control amount according to each of the temporally set operation states relative to a command value thereof. Each of the operation states is indicated by a voltage vector defined by the on and off states of the switching elements. A determining section determines an operation state of the power converting circuit based on the relative rate predicted by the relative rate predicting section. An operating section operates the power converting circuit to the operation state determined by the determining section.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: October 28, 2014
    Assignee: Denso Corporation
    Inventor: Akihiro Imura
  • Publication number: 20140306627
    Abstract: The rotary drive system includes: a direct voltage source (102); an electric motor (104) having an axis of rotation (A), and including independent phases having directions about the axis of rotation; an inverter (106) for connecting each phase to the direct voltage source (102); and a control device (110) for supplying a command to the inverter (106). The control device includes: elements (118) for selecting a formula from predefined formulas, each predefined formula being intended to calculate either a homopolar voltage set-point, or a homopolar current set-point; elements (124) for determining a set-point intended to apply the selected formula to determine, according to the formula selected, either a homopolar voltage set-point, or a homopolar current set-point, and elements (126) for determining a command intended to determine the command of the inverter (106) based on the set-point determined.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 16, 2014
    Applicants: VALEO SYSTEMES DE CONTROLE MOTEUR, ARTS
    Inventors: Antoine BRUYERE, Xavier KESTELYN, Eric SEMAIL, Paul SANDULESCU, Fabien MEINGUET
  • Publication number: 20140292240
    Abstract: Provided are a low-cost control device and the like for a vehicle generator-motor for minimizing the number of current sensors and the like, and estimating an output torque and a current consumption during drive of the generator-motor. The output torque and the current consumption during the drive of the generator-motor are estimated based on a field current, an rpm, a DC voltage, and a phase of an AC voltage to be supplied of the generator-motor, without providing a current sensor for detecting an input current from a power supply to an inverter device of the generator-motor, and a current sensor for detecting an output current from the inverter device to an armature winding of a rotary electric machine.
    Type: Application
    Filed: October 15, 2013
    Publication date: October 2, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Mitsunori TABATA, Masato MORI, Kenichi AKITA
  • Publication number: 20140265957
    Abstract: A method for correcting torque including: presetting rotational speed of each gear by corresponding gear input lines of a microprocessor; providing a mechanism to select one rotational speed set; electing N power points within a range of the rated power, acquiring a set of torque data corresponding to each set of the rotational speed at each power point, and storing a total 2×N sets of torque data; allowing the motor to enter the torque correction mode; recording a steady torque Tadj when the motor operates in a steady state; and comparing the steady torque Tadj with a maximum gear torque Tmax, and selecting the set of torque data to which T[M]max belongs when the steady torque Tadj satisfies the relationship: 110%×T[M?1]max<Tadj?110%×T[M]max, M=1, 2, . . . , N; when M=1, T0max=0.
    Type: Application
    Filed: March 2, 2014
    Publication date: September 18, 2014
    Applicant: Zhongshan Broad-Ocean Motor Co., Ltd.
    Inventors: Ge HU, Wenqing BIAN
  • Publication number: 20140265956
    Abstract: A system and method of controlling an electric motor using a motor controller are provided. The system includes an electric motor controller configured to be coupled to an electric motor and to control the electric motor to produce approximately constant average torque. The controller includes a rectifier configured to convert an AC input voltage to a pulsing DC voltage, a DC link electrically coupled to the rectifier, an inverter electrically coupled to the DC link and configured to generate a three phase AC voltage to drive the electric motor, and a controller configured to receive a measurement of a motor current value for the motor, estimate a torque generated in the electric motor using the measurement of the instantaneous motor current value, and generate a real-time current demand signal using the estimated torque value, the real-time current demand signal compensating the motor controller to produce a substantially constant average motor output torque.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Regal Beloit America, Inc.
    Inventor: Ludovic Andre Chretien
  • Patent number: 8836256
    Abstract: A drive system has a switched reluctance motor (SR motor) and a control system configured to determine an estimated total torque of SR motor as a function of the phase voltages and phase currents of the phases of the SR motor.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 16, 2014
    Assignee: Deere & Company
    Inventors: Zimin W. Vilar, Chris J. Tremel
  • Patent number: 8832944
    Abstract: In an electric hair cutter and a control method for its motor rotational speed, the electric hair cutter includes a main body, a BLDC (brushless DC) motor, a power source, a detecting unit, an electrical energy adjusting unit and a control module. The main body has a cutting unit. The BLDC motor drives the cutting unit. The detecting unit can detect the counter-electromotive force of the BLDC motor. The control module may receive the counter-electromotive force signals detected by the detecting unit and may control the electrical energy adjusting unit according to the counter-electromotive force signals so as to keep the BLDC motor rotating at a fixed RPM.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: September 16, 2014
    Inventor: Yen-Fu Liao
  • Patent number: 8836267
    Abstract: A torque detection device includes: a torsion bar that couples a first shaft to a second shaft; a magnet that is fixed to the first shaft; and a pair of magnetic yokes that are fixed to the second shaft and that are arranged to face each other in an axial direction. Each of the magnetic yokes includes a yoke ring and a plurality of lugs that are arranged in a circumferential direction on the corresponding yoke ring. Each yoke ring includes an extending portion that extends radially outward from base portions of the lugs, and a bent portion that is bent in the axial direction from a radially outer end portion of the extending portion. The outer size of the pair of magnetic yokes in the axial direction is larger than or equal to the length of the magnet in the axial direction.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: September 16, 2014
    Assignee: JTEKT Corporation
    Inventor: Kaname Aoki
  • Publication number: 20140253002
    Abstract: A motor control system is provided. The motor control system includes a motor, a position sensor, a current sensor, and a control module. The motor has a rotor and a stator. The motor generates an output torque based on a phase current applied to the motor. The output torque generated by the motor creates a torque ripple that is within a predefined range. The position sensor monitors the motor to determine a rotor position. The current sensor monitors the motor to determine the phase current. The control module is in communication with the motor, the position sensor, and the current sensor. The control module includes a lookup table that stores values of phase current commands. The control module determines a phase current command from the lookup table based on the rotor position and the phase current.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicants: The University of Akron, Steering Solutions IP Holding Corporation
    Inventors: Rajib Mikail, Mohammad S. Islam, Yilmaz Sozer, Iqbal Husain
  • Patent number: 8796960
    Abstract: A control device for a motor drive system including an AC motor having a magnet in a rotor, a converter, and an inverter generates a step-up command value for the converter based on a torque command value for the AC motor. The control device determines whether or not to carry out field-weakening control for increasing a current in a direction weakening force of a magnet that is supplied from the inverter to the AC motor, based on the step-up command value and a state of drive of the AC motor. When field-weakening control should be carried out and when an absolute value of the torque command value is smaller than a threshold value, the control device further increases the generated step-up command value. By doing so, an amount of a field-weakening current can be decreased and therefore efficiency of the motor drive system can be improved.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: August 5, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaki Okamura, Naoyoshi Takamatsu
  • Patent number: 8786221
    Abstract: A method for controlling a permanent magnet synchronous motor includes detecting an absolute angular position and using the angular position to calculate a rotational speed of the motor; detecting a voltage of a battery as a power source; calculating a compensated speed from a rotational speed of the permanent magnet synchronous motor based on a torque command, the rotational speed of the permanent magnet synchronous motor, and the battery voltage; generating a d-axis current command and a q-axis current command corresponding to the torque command and the compensated speed; calculating a d-axis voltage command and a q-axis voltage command based on the d-axis current command and the q-axis current command; converting the d-axis voltage command and the q-axis voltage command into three-phase voltage commands based on the detected absolute angular position; and controlling the operation of the permanent magnet synchronous motor based on the three-phase voltage commands.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: July 22, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Bum Sik Kim, Young Kook Lee, Jin Hwan Jung
  • Patent number: 8779712
    Abstract: A motor control device including: a following control unit that calculates a pre-correction torque command based on a difference between an operation command signal for commanding an operation of a motor and a detection signal resulting from detecting an operation of the motor; an adder that outputs a post-correction torque command by adding the pre-correction torque command to a correction torque command; and an electric-current control unit that outputs a drive current driving the motor based on the post-correction torque command, wherein the motor control device executes control so that the detection signal matches the operation command signal, and further including: a reference-periodic-signal computation unit; an amplitude/phase estimation unit; and a correction-torque computation unit, so that the correction torque command is updated such that a difference between the correction torque command and the post-correction torque command becomes smaller.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: July 15, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Akira Tanabe, Hiroyuki Sekiguchi, Hidetoshi Ikeda
  • Patent number: 8773053
    Abstract: A method and device for determining the motor moment constant kM of an electric motor by measuring motor parameters on the running motor. For reduction of the previously considerable measuring effort it is proposed that firstly the generator voltage UEMK produced by the motor is measured, and in that the motor moment constant kM is calculated by division of the generator voltage UEMK and the speed of rotation fMot of the motor, taking into consideration at least one further constant. The method and the device are suitable for DC motors and for 3-phase synchronous motors.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: July 8, 2014
    Assignee: Kaltenbach & Voigt GmbH
    Inventors: Richard Buerk, Thomas Bischof
  • Patent number: 8773056
    Abstract: A control system for a switched reluctance (SR) machine is provided. The control system may include a converter circuit that is operatively coupled to the SR machine, and a controller in communication with the converter circuit. The controller may be configured to execute two or more processes in parallel, wherein the processes include generating a torque command based on one or more of bus voltage, machine current, rotor speed and rotor position, determining a first set of current control parameters based on the torque command and the rotor speed, determining a second set of current control parameters based on one or more of the torque command, the rotor speed and the rotor position, selecting one of the first and second sets of current control parameters based on the rotor speed, and operating the gates according to the selected set of current control parameters.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: July 8, 2014
    Assignee: Caterpillar Inc.
    Inventors: Jesse Gerdes, James Siegle, Mark Hartman, Aaron Luther Thomas, Jackson Wai
  • Publication number: 20140176028
    Abstract: The controller estimates torque output by the motor and controls the current supplied to the motor in such a manner that a torque estimate of the motor obtained by the estimation corresponds to the torque command value. A torque estimation calculator 120 estimates the torque output by the motor. A phase error command calculator 125 calculates a command value of a phase error from the deviation between the torque estimate and a torque command value. A speed estimation calculator 130 outputs a speed estimate in such a manner that a phase error estimate corresponds to the command value of the phase error.
    Type: Application
    Filed: August 10, 2012
    Publication date: June 26, 2014
    Inventors: Kazuaki Tobari, Kazuya Sekine
  • Patent number: 8754601
    Abstract: The controller of the synchronous motor of the present invention includes: an allowable energy value acquisition unit (4) which acquires an allowable energy value until which a dynamic brake resistor, which is for short-circuiting the input terminal of the synchronous motor at a time of failure, can bear; an inertia estimation unit (6) which estimates inertia of a driven object based on a speed value and an electric current value; an allowable maximum speed calculation unit (5) which calculates an allowable maximum speed value of the synchronous motor from the inertia and the allowable energy value; and a speed control unit (2) which controls the amplifier for operating the synchronous motor at a predetermined commanded speed, in which the speed control unit (2) acquires the allowable maximum speed value from the allowable maximum speed calculation unit (5), and limits the commanded speed to the allowable maximum speed value or lower.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: June 17, 2014
    Assignee: Fanuc Corporation
    Inventors: Naoto Sonoda, Yasusuke Iwashita
  • Publication number: 20140156144
    Abstract: A motor control apparatus that is capable of making the whole control system robust not only with respect to motor parameter variations such as the temperature variation and the manufacturing unevenness but also with respect to disturbances while using a cheap and compact one-shunt type current detecting circuit and simultaneously diagnosing an estimation error and an electric power steering apparatus provide with the motor control apparatus.
    Type: Application
    Filed: March 28, 2013
    Publication date: June 5, 2014
    Applicant: NSK LTD.
    Inventors: Yuzuru Hoshi, Toru Sakaguchi, Sachio Nakayama, Masahiro Maeda, Kenji Mori, Yousuke Imamura
  • Patent number: 8744794
    Abstract: One embodiment of the method includes setting up a testing architecture where the testing architecture includes a test IPM machine having an output shaft coupled to an output shaft of a secondary speed control machine. The method further includes controlling the secondary speed control machine to drive the output shaft of the test IPM machine at a first desired speed, determining a pair of desired direct and quadrature axis currents for each of a plurality of peak current magnitudes, and recording characterization data associated with each pair of desired direct and quadrature axis currents. The controlling, determining and recording steps for each of a second through nth desired speeds may be repeated. Control lookup tables for operation of an IPM machine may be generated from the characterization data.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: June 3, 2014
    Assignee: Deere & Company
    Inventors: Long Wu, Robert Shaw
  • Patent number: 8729843
    Abstract: To suppress torque variation including various frequency components, a lot of measuring and adjusting operations are necessary, and this takes much time and trouble. An electronic apparatus includes a selection unit configured to select, on the basis of a threshold value relating to speed variation of the mechanism and threshold values relating to a plurality of frequencies that constitute the speed variation, a frequency to be measured and a frequency to be suppressed, from the plurality of frequencies, a generation unit configured to generate a periodic signal including the frequency to be suppressed that is selected by the selection unit, and an acquisition unit configured to output the periodic signal generated by the generation unit to the control unit and to acquire a parameter relating to the frequency included in the periodic signal.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: May 20, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yasuhiro Iwadate
  • Patent number: 8723465
    Abstract: The invention relates to a blade pitch controlling drive for a wind turbine, comprising an electrical converter, an electric motor that is electrically coupled to the converter, a monitoring unit operable to monitor an electric output current supplied by the converter to the electric motor and determine a state of the load on the converter as a function of the electrical output current, a current limiting unit operable to reduce a maximum possible output current to a nominal current when the state of the load is an overload state when the nominal current when in a non-overload state, and a peak current control unit that can be activated. When activated, the peak current may be provided as the maximum possible output current, regardless of the load state of the inverter at the time of the activation.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: May 13, 2014
    Assignee: SSB Wind Systems GmbH & Co. KG
    Inventors: Hermann Kestermann, Josef Upsing, Norbert Wibben
  • Publication number: 20140125258
    Abstract: A method for controlling a specific electric machine includes receiving with a controller a back electromotive force (BEMF) coefficient for the specific electric machine. The controller is configured to control operation of an inverter coupled to the electric machine where the inverter is configured to provide or receive multi-phase electricity to or from the electric machine in motor mode or generator mode, respectively. The method further includes receiving with the controller an input related to a selected torque to be applied by or a selected power to be removed from the electric machine. The method further includes determining a first electrical parameter the inverter is to apply to in motor mode or a second electrical parameter the inverter is to convert power to in generator mode using the BEMF coefficient, and applying the first electrical parameter to the electric machine or converting the received power to the second electrical parameter.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: REMY TECHNOLOGIES, L.L.C.
    Inventor: David A. Fulton
  • Patent number: 8704469
    Abstract: A periodic disturbance observer determines real part I^An and imaginary part I^Bn of an estimated current including a periodic disturbance, from value of identification identifying a system transfer function of an nth order torque ripple frequency component from a command torque to a detected torque value, with a one-dimensional complex vector having a real part P^An and an imaginary part P^Bn, a cosine coefficient TAn, a sine coefficient TBn, and the real part P^An and imaginary part P^Bn of the system transfer function; subtracts command compensating current IAn* and IBn* obtained through pulsation extracting filter GF, respectively, from the real part I^An and imaginary part I^Bn of the estimated current, and thereby determines estimated periodic disturbance current real part dI^An and imaginary part dI^Bn to cancel the periodic disturbance current.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: April 22, 2014
    Assignee: Meidensha Corporation
    Inventor: Yugo Tadano
  • Publication number: 20140070741
    Abstract: A vehicle comprises an electric machine configured with at least one controller issuing torque commands with the use of a voltage bus. The controller may be configured to respond to a torque requests based on multiple vehicle system inputs including vehicle speed, position of the accelerator pedal and brake pedal, and various other vehicle data. The controller may respond to a torque request that exceeds a threshold value by issuing torque commands for the electric machine based on a speed of the electric machine and a voltage on the bus. Based on the speed of the electric machine and voltage on the bus, the controller may issue a constant torque output by the electric machine as the speed and voltage vary. Calculating a ratio using speed of the electric machine to voltage on the bus to determine torque capability may result as a constant torque when the ratio is constant.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Daniel Luedtke
  • Publication number: 20140062359
    Abstract: A vehicle, including a motor having a rotor, a resolver that detects a rotation angle of the rotor and a control device, and a control method for the vehicle are provided. The control device executes rectangular-wave control over the motor using the rotation angle of the rotor, detected by the resolver, executes zero learning for learning a deviation between an origin of an actual rotation angle of the rotor and an origin of the detected rotation angle of the rotor, corrects the detected rotation angle of the rotor on the basis of a result of the zero learning, and, when the zero learning has not been completed yet, executes avoidance control for avoiding a rapid variation in output of the motor.
    Type: Application
    Filed: August 12, 2013
    Publication date: March 6, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hichirosai OYOBE, Tetsutaka YAMAMOTO, Hiroyuki OYANAGI
  • Patent number: 8638052
    Abstract: A method of controlling an electric synchronous machine having a stator and a moving part includes operating the machine with a deceleration moment so that a speed of the moving part of the machine is reducing, monitoring the movement of the moving part of the machine, and, upon detection of a direction reversal or a speed of the moving part of approximately zero, transitioning to a holding mode by impressing at least one current pattern of string currents in the stator of the machine. The method also includes maintaining the current pattern until a stable equilibrium of moments between the external moment and a braking moment of the machine is established.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: January 28, 2014
    Assignee: L-3 Communications Magnet-Motor GmbH
    Inventors: Harry Hohn, Lars Lay, Jens Biebach
  • Patent number: 8633663
    Abstract: An estimated torque constant calculation unit calculates an estimated torque constant relating to the permanent magnet synchronous motor from a current representative value and an acceleration representative value acquired from a plurality of current values and a plurality of acceleration values in the same operation state over a plurality of periods of a sinusoidal command signal and a predetermined inertia relating to the permanent magnet synchronous motor. A demagnetization detection unit detects whether or not irreversible demagnetization has occurred in the permanent magnet of the permanent magnet synchronous motor based on a difference between the estimated torque constant and a predetermined torque constant relating to the permanent magnet synchronous motor.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: January 21, 2014
    Assignee: Fanuc Corporation
    Inventors: Naoto Sonoda, Yasusuke Iwashita
  • Publication number: 20140015459
    Abstract: A drive system has a switched reluctance motor (SR motor) and a control system configured to determine an estimated total torque of SR motor as a function of the phase voltages and phase currents of the phases of the SR motor.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Inventors: Zimin W. Vilar, Chris J. Tremel
  • Patent number: 8624543
    Abstract: A method of controlling a motor is provided. The method may determine a speed of the motor, and engage a soft chopping routine on a first switch and a second switch of each phase if the motor speed is relatively low. The first switch may be driven by a first pulse width modulated PWM signal and the second switch being driven by a second PWM signal. The first and second PWM signals may be alternatingly configured such that at least one of the first switch and the second switch is closed at any point during the distributed soft chopping routine and both the first switch and the second switch are never simultaneously open.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 7, 2014
    Assignee: Caterpillar Inc.
    Inventors: Ahmed Khalil, Jackson Wai, Jesse Gerdes, James Siegle, Mark Hartman, Joshua Williams
  • Publication number: 20140001989
    Abstract: A method and device for determining the motor moment constant kM of an electric motor by measuring motor parameters on the running motor. For reduction of the previously considerable measuring effort it is proposed that firstly the generator voltage UEMK produced by the motor is measured, and in that the motor moment constant kM is calculated by division of the generator voltage UEMK and the speed of rotation fMot of the motor, taking into consideration at least one further constant. The method and the device are suitable for DC motors and for 3-phase synchronous motors.
    Type: Application
    Filed: August 29, 2013
    Publication date: January 2, 2014
    Applicant: KALTENBACH & VOIGT GMBH
    Inventors: Richard Buerk, Thomas Bischof
  • Patent number: 8618757
    Abstract: A system and process includes continuously determining an applied armature voltage supplied to a polyphase synchronous machine for which a maximum mechanical load is characterized by a pull-out torque. The armature voltage is supplied from a power source via one of many taps of a regulating transformer. The armature voltage being supplied from the power source to the machine is changed by selecting one of the voltage levels from the taps of the regulating transformer. The tap voltage levels are selected based on the determined applied armature voltage to minimize power consumption of the machine while ensuring based on a predetermined confidence level that the pull-out torque of the machine will not be exceeded.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 31, 2013
    Assignee: Utilidata, Inc.
    Inventor: David Gordon Bell
  • Patent number: 8618761
    Abstract: A method for collecting operational parameters of a motor may include controlling the energization of a phase winding of the motor to establish an operating point, monitoring operational parameters of the motor that characterize a relationship between the energization control applied to the motor's phase winding and the motor's response to this control, and collecting information of the operational parameters for the operating point that characterizes the relationship between the applied energization control and the motor's response. The collected information characterizing the relationship between the applied energization control and the motor's response may be employed by a neural network to estimate the regions of operation of the motor. And a system for controlling the operation of motor may employ this information, the neural network, or both to regulate the energization of a motor's phase winding during a phase cycle.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: December 31, 2013
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Christopher Allen Hudson, Nimal Lobo, Krishnan Ramu
  • Publication number: 20130334994
    Abstract: A method for determining a direction of rotation for an electronically commutated motor (ECM) is described. The motor is configured to rotate a blower and the method comprises rotating the blower using the ECM and determining if the resulting blower rotation is indicative of the desired direction of rotation for the blower.
    Type: Application
    Filed: July 15, 2013
    Publication date: December 19, 2013
    Inventors: Stephen Solan, JR., Brian L. Beifus, Roger C. Becerra
  • Patent number: 8610392
    Abstract: A runout measurement system is proposed for measuring the runout of a moving surface of a device having a rotating body, such as a mass storage device (100) (e.g. a hard disk drive) having a rotor which in use includes a rotating recording medium. A sensor (102) interacting with the moving surface obtains a displacement signal. The displacement signal is sampled by a sampling unit (104) controlled by a unit (109) which initiates sampling based on both a signal indicating a ZCP and the clock signal of a high frequency (e.g. 20 MHz) clock (106). Simultaneously, the same clock (106) is used by a counter 108 to measure the spacing between one or more ZCP times. This permits the correspondence between the sampling times and the angular position of the rotor to be found with a high accuracy which depends upon the clock frequency, and thereby allows calculation of repeatable runout (RRO) and non-repeatable runout (NRRO).
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: December 17, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Quan Jiang, Chao Bi, Song Lin
  • Patent number: 8587233
    Abstract: Motors, such as DC motors, and methods and systems for operating a motor, are described. The motor is optionally an electronically commutated motor. The motor comprises one or more electromagnets and a controller device to control the electromagnets. The controller device is configured to calibrate the motor operation in a desired installation to determine the torque needed to achieve a desired operating speed by causing the motor to ramp up to the desired speed, measuring an electric current needed to operate the motor at the desired speed, and setting a value corresponding to a first speed tap using the measured electric current. The controller device is configured to operate the motor in a substantially constant torque mode using the set value at least after the completion of the calibration operation. The motor may be configured for use in a ventilation system, such as an HVACR system.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: November 19, 2013
    Assignee: SNTech, Inc.
    Inventors: Jordan Bass, Louis Sulfstede
  • Patent number: 8587250
    Abstract: A method for the identification without a shaft encoder of magnetomechanical characteristic quantities, in particular the mass moment of inertia J and the permanent magnetic flux ?PM between rotor and stator of a three-phase synchronous motor, comprising:—constant voltage supply U1d in the d flux axial direction;—test signal voltage supply U1q in the q transverse flux axial direction;—measuring signal current measuring I1q of the q transverse flux axial direction;—identification of magnetomechanical characteristic quantities of the synchronous motor on the basis of the test signal voltage U1q and of the measuring signal current I1q; whereby the rotor can execute deflection movements with pre-definable maximal amplitudes. Method use also for control of electrical drives.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 19, 2013
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Patent number: 8587235
    Abstract: A motor driver includes a control portion, for performing variable control on a torque or rotation speed of a motor through a control signal; and an output mode selection circuit, for sending an indication to the control portion when the control signal is abnormal, so that the motor enters an action status corresponding to a selection signal.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 19, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Tetsuo Yamato, Takashi Fujimara
  • Patent number: 8587237
    Abstract: A control device configured with an external input estimator that reduces a vibration component of a rotational speed of the power transfer system at a rotational speed of the rotary electric machine and estimates transfer system input torque on the basis of the rotational speed of the rotary electric machine, and that estimates external input torque by subtracting at least output torque of the rotary electric machine from the transfer system input torque. A low-vibration speed calculator calculates a low-vibration rotational speed on the basis of the external input torque and vehicle required torque. A rotational speed controller calculates feedback command torque that matches the rotational speed of the rotary electric machine with the low-vibration rotational speed. A torque command value calculator calculates an output torque command value on the basis of the vehicle required torque and the feedback command torque.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: November 19, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Yasuhiko Kobayashi, Jin Izawa
  • Patent number: 8564230
    Abstract: A method and a circuit arrangement are provided which enable a mechanical load applied to the motor shaft of a stepper motor (M) or a load angle of the stepper motor to be detected in a sensorless manner. A method and circuit arrangement are also provided which enable the motor current(s) of a stepper motor to be controlled in accordance with the load value such that the load angle is as high as possible without risking step losses, in order to maintain the current consumption of the motor as low as possible. This is achieved according by evaluating the temporal duration of the ON- and the FD-phases during the chopper control of the motor.
    Type: Grant
    Filed: September 6, 2010
    Date of Patent: October 22, 2013
    Assignee: Trinamic Motion Control GmbH & Co. KG
    Inventors: Bernhard Dwersteg, Lars Larsson
  • Publication number: 20130257324
    Abstract: A motor control device includes a torque computing section which computes an output torque of an electric motor which is capable of generating magnetic torque by permanent magnets and reluctance torque, a flux weakening angle computing section which determines an angle of a flux weakening current vector that is added to a reference current vector so that a command torque value and the computed torque value correspond with each other, a voltage acquiring section which acquires a terminal voltage of the motor, a flux weakening amplitude computing section which determines an amplitude of the flux weakening current vector so that the terminal voltage of the motor is not more than a maximum voltage applicable to the motor, and a command current computing section which computes a command current vector by adding the flux weakening current vector to the reference current vector.
    Type: Application
    Filed: March 7, 2013
    Publication date: October 3, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Sari MAEKAWA