Abstract: A power system that supplies electrical power to at least one load is disclosed. The power system may include an electrical power generator, current sensors configured to provide current signals representative of currents output from the electrical power generator to the load, and voltage sensors configured to provide voltage signals representative of voltages output from the electrical power generator to the load. The power system may also include a controller configured to receive the current signals and the voltage signals, compare the current signals and the voltage signals to a predetermined map, determine whether a short circuit exists inside the electrical power generator based on the comparison, and send a command to turn off the electrical power generator when the short circuit exists inside the electrical power generator.
Type:
Grant
Filed:
December 20, 2012
Date of Patent:
January 6, 2015
Assignee:
Caterpillar Inc.
Inventors:
Paul Curtis Pawelski, Ryan Christopher Byrd
Abstract: A driving device for a hatch in a vehicle, with a housing tube connected to a base part or to a movable structural component part, a protective tube connected to the movable structural component part or to the base part, a spindle drive having a threaded spindle and a spindle nut arranged on the threaded spindle by which the housing tube and the protective tube are movable axially relative to one another. A rotary drive drives the spindle drive in rotation includes at least one electric motor. The driving device has a safety circuit that causes a braking effect on the rotary drive when the rotary drive is deactivated and when extraneous forces are introduced into the driving device from the outside.
Abstract: An axial flux electric motor comprising a rotor and a first and second stator. The first and second stators have a first and second air gap located between the first and second stators and the rotor, respectively, and the second air gap is greater than the first gap. In one embodiment, the coils of the first stator and the coils of the second stator are in parallel. The motor further comprises switches which alternatingly energize the coils of the first stator and of the second stator based upon required torque and required speed of the motor. In a second embodiment, the coils of the first stator and the coils of the second stator are in series and the motor further comprises switches which selectively bypass the coils of the second stator in order to reduce the back EMF of the motor and increase the maximum speed of the motor at a given input voltage.
Abstract: Methods and systems for detecting a motor shorting relay failure. Exemplary embodiments include methods and systems for determining a motor shorting relay failure in a motor, the motor having first phase winding in a first leg of the motor, a second phase winding in a second leg of the motor, and a third phase winding in a third leg of the motor, the method including applying a first voltage signal to the first leg, applying a second voltage signal to the second leg, applying a test voltage to a test circuit electrically coupled to the third leg, measuring a third voltage signal in the third leg at a first predetermined time in response to the application of the first and second voltage signals and determining a motor shorting relay in the motor, based on the amplitude of the third voltage signal.
Abstract: An axial flux electric motor comprising a rotor and a first and second stator. The first and second stators have a first and second air gap located between the first and second stators and the rotor, respectively, and the second air gap is greater than the first gap. In one embodiment, the coils of the first stator and the coils of the second stator are in parallel. The motor further comprises switches which alternatingly energize the coils of the first stator and of the second stator based upon required torque and required speed of the motor. In a second embodiment, the coils of the first stator and the coils of the second stator are in series and the motor further comprises switches which selectively bypass the coils of the second stator in order to reduce the back EMF of the motor and increase the maximum speed of the motor at a given input voltage.