Linear Movement Motors Patents (Class 318/687)
  • Patent number: 9966894
    Abstract: The invention discloses a real-time vibration state monitoring system. The system includes a linear motor, a signal generating module for driving the linear motor to vibrate, a working parameters feedback module, a calculating module, an initial position recording module, and a signal control module. The system can control the amplitude of the vibrator by monitoring the vibration state of the vibrator in the linear motor and adjusting the drive signal; therefore, the effect to normal working or reliability of the linear motor due to oversized amplitude can be avoided. A monitoring method is also provided.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: May 8, 2018
    Assignee: AAC TECHNOLOGIES PTE. LTD.
    Inventors: Huan Ge, Lijian Ye, Rongguan Zhou
  • Patent number: 9915260
    Abstract: A control method and a system for controlling the piston of a resonant linear compressor including at least one electronic control unit, the electronic control unit including at least one observing electronic circuit and at least one control circuit associated to each other. The observing electronic circuit is configured for: measuring at least one electric magnitude of the electric motor; estimating at least one set of electric parameters and at least one set of mechanical parameters of the resonant linear compressor; and estimating and providing at least one control parameter of the system for the control circuit based on the measured electric magnitude measured and on the estimated set of electric and mechanical parameters. The control circuit is configured for actuating the electric motor from the at least one control parameter.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: March 13, 2018
    Assignees: Whirlpool S.A., Fundacao Universidade do Estado de Santa Catarina-UDESC
    Inventors: Paulo Sergio Dainez, Jose de Oliveira, Ademir Nied
  • Patent number: 9890778
    Abstract: A method for operating a linear compressor includes measuring a current induced in a motor of the linear compressor and calculating an observed current of the motor of the linear compressor using at least an electrical dynamic model for the linear compressor and a robust integral of the sign of the error feedback. The method also includes detecting a head crash within the linear compressor if an error between the observed current of the motor of the linear compressor and the measured current induced in the motor of the linear compressor is greater than a crash threshold.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: February 13, 2018
    Assignee: Haier US Appliance Solutions, Inc.
    Inventors: Srujan Kusumba, Gregory William Hahn, Michael Lee McIntyre, Mohammad Taghi Mohebbi
  • Patent number: 9518578
    Abstract: A control method and a system for controlling the piston of a resonant linear compressor including at least one electronic control unit, the electronic control unit including at least one observing electronic circuit and at least one control circuit associated to each other. The observing electronic circuit is configured for: measuring at least one electric magnitude of the electric motor; estimating at least one set of electric parameters and at least one set of mechanical parameters of the resonant linear compressor; and estimating and providing at least one control parameter of the system for the control circuit based on the measured electric magnitude measured and on the estimated set of electric and mechanical parameters. The control circuit is configured for actuating the electric motor from the at least one control parameter.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: December 13, 2016
    Assignee: Whirlpool S.A.; Fundacao Universidade de Estado de Santa Catarina—UDESC
    Inventors: Paulo Sergio Dainez, José de Oliveira, Ademir Nied
  • Patent number: 9248533
    Abstract: In a production system general-purpose cell for general-purpose use in processing and transportation of a received workpiece in a production system of processing and delivering the workpiece, the production system general-purpose cell includes a base unit having a planar shape of quadrangle and supporting at least a robot for use in transportation of the workpiece such that the robot is movable on the planar area of quadrangle, a parts supply unit for supplying parts of the workpiece to the robot supported by the base unit, and a processing area extending outside the base unit. The robot supported by the base unit having a motion range set in a range from inside to outside the base unit in a form including at least part of the processing area.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: February 2, 2016
    Assignee: Seiko Epson Corporation
    Inventors: Masatoshi Ono, Christoph Meyerhoff
  • Patent number: 9202719
    Abstract: Displacement devices comprise a stator and a moveable stage. The stator comprises a plurality of coils shaped to provide pluralities of generally linearly elongated coil traces in one or more layers. Layers of coils may overlap in the Z-direction. The moveable stage comprises a plurality of magnet arrays. Each magnet array may comprise a plurality of magnetization segments generally linearly elongated in a corresponding direction. Each magnetization segment has a magnetization direction generally orthogonal to the direction in which it is elongated and at least two of the magnetization directions are different from one another. One or more amplifiers may be connected to selectively drive current in the coil traces and to thereby effect relative movement between the stator and the moveable stage.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 1, 2015
    Assignee: The University of British Columbia
    Inventors: Xiaodong Lu, Irfan-Ur-Rab Usman
  • Patent number: 9195129
    Abstract: The substrate holding device of the present invention includes a holding unit that adsorbs and holds the substrate, a measuring section that measures a physical quantity relating to a adsorption force of the holding unit with the substrate mounted on the holding unit; and a control section that carries out a first determination based on a first condition and a measurement result obtained by the measuring section and a second determination based on a second condition that is different from the first condition and a measurement result obtained by the measuring section to select one of at least three preset operations based on the result of first and second determinations to thereby execute processing depending on the selected operation.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: November 24, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masatoshi Endo
  • Patent number: 9130486
    Abstract: Provided is a motor position detecting unit that includes a first computing element configured to output three-phase back-electromotive foreces (back-EMFs) based on a linear computation; a second computing element configured to output three-phase back-EMF based on a non-linear computation; and a computing controller configured to receive a control signal, three-phase voltage and current, and selecting any one of the first and second computing elements based on the received control signal, the received three-phase voltages and currents, wherein the control signal includes information on operation modes of an external motor.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: September 8, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jung Hee Suk, Jimin Oh, Minki Kim, Yil Suk Yang
  • Patent number: 9107984
    Abstract: A device (1) for assembly of a pharmaceutical application aid (51), particularly a pen, is proposed. The device (1) is characterized by a holding device (3) for fixation of a first housing sleeve (5) that accommodates a pharmaceutical container, particularly a carpule (23), and by a stop (43) for limiting a displacement of a second housing sleeve (35) relative to the first housing sleeve (5).
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: August 18, 2015
    Assignee: Arzneimittel GmbH Apotheker Vetter & Co. Ravensburg
    Inventors: Guenter Kavallar, Hubert Goederle, Janosch Steib
  • Patent number: 9024548
    Abstract: In a linear motor used for a driving axis of a large-size machine tool having a very long driving stroke, pole position correction values at a plurality of stroke positions are stored in a memory. A pole position correction value corresponding to an actual stroke position of a slider is calculated based on the stored pole position correction value. A corrected electrical angle offset value derived based on the calculated pole position correction value is used to control the linear motor.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: May 5, 2015
    Assignee: OKUMA Corporation
    Inventors: Fumiki Yamaoka, Yoichi Kawai
  • Patent number: 9018887
    Abstract: An ultrasonic electro-mechanical resonant system and instrument that provides improvements in the design and implementation of a feedback system. The disclosed configuration and orientation of coils enhance the motional or velocity feedback signals while minimizing the effects of transformer coupling. A two coil and a three coil approach is disclosed that takes advantage of non-homogeneous magnetic fields. An asymmetrical arrangement enables velocity signals to be coupled into the coils without requiring additional signal conditioning or capacitive elements.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: April 28, 2015
    Assignee: Westdale Holdings, Inc.
    Inventor: Richard H. Paschke
  • Patent number: 9018864
    Abstract: A Rebound-Effector is a mechanism which runs a weight forth and back, by high acceleration. As the weight accelerates, a rebound force is built up. This force is proportional to the product of the weight and the acceleration, and is in opposite direction to the acceleration vector. The Rebound-Effector has four operational phases. The energy inserts into the system, during the first phase, accelerates the weight to the same direction as the movement, being converted into kinetic energy. This kinetic energy is taken back during the second phase, while slowing down the weight, and stored. During the third phase, the stored energy accelerates the weight to the same moving direction, being converted into kinetic energy. This kinetic energy is taken back during the fourth phase, while slowing down the weight, and stored.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: April 28, 2015
    Inventor: Hadar Magali
  • Patent number: 9000692
    Abstract: A linear electrodynamic-type motor, for compressing a fluid circulating in a cryocooler notably using a Stirling cycle, includes a translationally movable induction coil; a power-supply circuit adapted to deliver, to at least one induction coil, an AC power-supply current; a movable mass adopting a translational movement; an induction coil arranged so as to move a respective movable mass between a first position and a second position where the movable mass can compress the fluid; and a secondary circuit arranged to connect the terminals of at least one induction coil in short-circuit. The secondary circuit comprises a compensation component for producing a phase shift between the power-supply voltage and the power-supply current, so as to reduce the phase difference that the inductance of the induction coil produces.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: April 7, 2015
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Gerald Aigouy, James Butterworth, Benoit Debray, Jean Christophe Rey
  • Patent number: 8994315
    Abstract: The present invention provides a motor controller for controlling a DC motor according to a reference signal. The motor controller includes a compensator, a pulse width modulation unit, and a motor driving unit. The compensator generates a control signal according to the reference signal and a sensing signal from the DC motor. The pulse width modulation unit generates a motor control signal by comparing the control signal and a ramp signal having a varying frequency. The motor driving unit receives the motor control signal and drives the DC motor according to the motor control signal.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: March 31, 2015
    Assignee: Richtek Technology Corporation
    Inventors: Wei-Hsu Chang, Jo-Yu Wang, Jen-Hung Chi
  • Patent number: 8926296
    Abstract: A linear compressor (100) applicable to a cooling system (20) includes a piston (1) driven by a linear motor (10), the piston (1) having displacement range controlled by means of a controlled voltage (VM), the controlled voltage (VM) having a voltage frequency (?P) applied to the linear motor (10) and adjusted by a processing unit (22), the range of piston (1) displacement being dynamically controlled in function of a variable demand of the cooling system (20), the linear compressor (100) having a resonance frequency, the processing unit (22) adjusting the range of piston (1) displacement, so that the linear compressor (100) will be dynamically kept on resonance throughout the variations in demand of the cooling system (20).
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: January 6, 2015
    Assignee: Whirlpool, S.A.
    Inventors: Paulo Sergio Dainez, Dietmar Erich Bernhard Lilie, Márcio Roberto Thiessen
  • Patent number: 8928258
    Abstract: A vibration control device and method, wherein the vibration control device includes a first driving unit for vibrating the vibration control device up and down, a second driving unit for moving the vibration control device left or right, and a control unit for controlling the first driving unit and the second driving unit, upon an occurrence of an event. The controller controls the second driving unit to move the vibration control device at a time when the first driving unit vibrates the vibration control device off of a surface.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-joon Choi, Yeo-jun Yoon, Ka-won Cheon, Sung-bin Kuk, Dong-jin Eun
  • Patent number: 8912737
    Abstract: A linear actuator driving device is provided. The linear actuator driving device includes an electromagnetic driving unit which makes a moving element reciprocate in response to a driving command and an offset correcting unit which corrects the driving command to carry out offset energization to make the center of reciprocation of the moving element be moved in the direction in which deviation between the center of reciprocation of the moving element and the center of the movement possible range is eliminated. The offset correcting unit is configured such that the amplitude information is acquired and, with respect to the amplitude value corresponding to the acquired amplitude information, if the movable amplitude is in a movable area insufficient condition, correction of the driving command is performed and, on the other hand, if the movable amplitude is not in the movable area insufficient condition, correction of the driving command is released.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 16, 2014
    Assignee: Sinfonia Technology Co., Ltd.
    Inventors: Hideaki Moriya, Takenori Motoori, Takeo Ito
  • Patent number: 8872449
    Abstract: A distributed-arrangement linear motor in which stators are arranged in a distributed manner and a method of controlling the distributed-arrangement linear motor are provided. The linear motor 1 is a linear motor in which a stator and a movable member are relatively movable, wherein the stator and the movable member respectively have periodic structures in which plural kinds of poles of the stator and the movable member (12a, 12b, 12c) (22a, 22b, 22c) which magnetically act each other and arranged periodically subsequently in an order according to the arrangement in a direction of the relative motion therebetween; a plurality of stators are arranged in a distributed manner in the direction of the relative motion; a distance D1, D2 between adjacent stators is not more than a length Lmv of the movable member; the pole of the stator is formed of a coil 11; and a current control unit that controls current to be supplied to the coil based on the distance between the stators is provided.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: October 28, 2014
    Assignee: THK Co., Ltd.
    Inventors: Toshiro Tojo, Toshiyuki Aso, Yuki Nomura, Akihiro Unno
  • Patent number: 8860354
    Abstract: The control circuit of an electric motor, which has at least one phase supplied with high voltage and has a defined high-voltage zone, is provided with a control for the supply current of the phase with a setpoint-value current, and has devices for measuring the supply current which generate a first analog signal whose value corresponds to the measured current, an electronic control unit being disposed in a low-voltage zone, and having an analog-to-digital converter for converting the first analog signal or another analog signal acting as the first analog signal, into a corresponding digital signal which is supplied to the electronic control unit. The measuring devices are formed by a bleeder resistor, which is disposed in series with the phase, as well as by a differential amplifier whose two inputs, respectively, are connected to two contacts of the bleeder resistor.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: October 14, 2014
    Assignee: Etel S.A.
    Inventors: Didier Blanc, Ralph Coleman, Jean-Marc Vaucher, Claude Froidevaux
  • Patent number: 8810181
    Abstract: A control apparatus for controllably driving a drive mechanism which displaces a movable member, includes: an electric-current detecting unit configured to detect electric current for driving the drive mechanism; a speed control unit configured to set a target electric-current according to a drive speed at which the drive mechanism is caused to drive the movable member; and an electric-current control unit configured to multiply, by an integral gain and a proportional gain, an electric-current deviation between a target electric-current and a detection electric-current detected by the electric-current detecting unit to set output electric-current to be output to the drive mechanism, wherein the current control unit changes at least one of the integral gain and the proportional gain according to the drive speed of the drive mechanism.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: August 19, 2014
    Assignee: Mitutoyo Corporation
    Inventors: Tomohiro Usui, Yo Terashita
  • Patent number: 8803467
    Abstract: A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: August 12, 2014
    Assignee: The Keyw Corporation
    Inventor: Xiuhong Sun
  • Publication number: 20140210396
    Abstract: A linear motor device includes a linear motor and a controller that applies pressure to a pressurizing target by moving a needle provided with the linear motor. The controller includes: a speed-change position-setting unit that calculates a deceleration start position, which is a position where a movement speed of the needle starts to be reduced from a first speed to a second speed when the pressurizing target start to be pressurized, based on a distance required to reduce the movement speed of the needle from the first speed to the second speed which is lower than the first speed and at which pressure applied to the pressurizing target when the needle comes into contact with the pressurizing target is equal to or lower than a predetermined pressure; and a position determination unit that drives the needle of the linear motor at the first speed and at the second speed.
    Type: Application
    Filed: September 6, 2012
    Publication date: July 31, 2014
    Applicant: THK CO., LTD.
    Inventors: Shuhei Yamanaka, Yuki Nomura
  • Patent number: 8716959
    Abstract: A linear motion control device for use in a linear control system is presented. The linear motion control device includes a coil driver to drive a coil that, when driven, effects a linear movement by a motion device having a magnet. The linear motion control device also includes a magnetic field sensor to detect a magnetic field associated with the linear movement and an interface to connect an output of the magnetic field sensor and an input of the coil driver to an external controller. The interface includes a feedback loop to relate the magnetic field sensor output signal to the coil driver input.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 6, 2014
    Assignee: Allegro Microsystems, LLC
    Inventors: Paul David, Shaun D. Milano
  • Patent number: 8708662
    Abstract: A linear compressor for adjusting a variable rate of a cooling capacity is provided. The linear compressor may include a fixed member having a compression space formed therein, a movable member linearly reciprocated in the fixed member to compress a refrigerant drawn into the compression space, one or more springs provided to elastically support the movable member in the motion direction of the movable member, a motor unit including a motor connected to the movable member to linearly reciprocate the movable member in the axial direction and a capacitor connected in series to the motor, and a motor control unit controlling an AC voltage applied to the motor to adjust a variable rate of a cooling capacity by the reciprocation of the movable member.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: April 29, 2014
    Assignee: LG Electronic Inc.
    Inventors: Jin Seok Hu, Shin Hyun Park, Young Geul Kim, Kyo Lyong Kang
  • Patent number: 8704478
    Abstract: A motor-drive circuit includes: a filter circuit to attenuate a frequency band including a resonance frequency of an actuator in a target-current signal, which is a digital signal indicating a target value of a driving current to be supplied to a voice-coil motor that drives the actuator; a digital-analog converter to convert an output signal of the filter circuit into an analog signal, to be outputted as a current-control signal; and a driving circuit to supply the driving current to the motor in accordance with the current-control signal, the filter circuit including: a digital-notch filter to attenuate a frequency band around the resonance frequency in the target-current signal; and a digital-low-pass filter to attenuate a frequency band greater than or equal to a predetermined frequency in the output signal of the digital-notch filter, the digital-low-pass filter having a sampling frequency higher than a sampling frequency of the digital-notch filter.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 22, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Takeshi Arai
  • Patent number: 8698431
    Abstract: A drive signal generating unit generates a drive signal used to alternately deliver a positive current and a negative current to a coil. A driver unit generates the drive current in response to the drive signal generated by the drive signal generating unit and supplies the drive current to the coil. After the drive termination of a linear vibration motor, the drive signal generating unit generates a drive signal whose phase is opposite to the phase of the drive signal generated during the motor running. The driver unit quickens the stop of the linear vibration motor by supplying to the coil the drive current of opposite phase according to the drive signal of opposite phase.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: April 15, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Tsutomu Murata
  • Patent number: 8686669
    Abstract: A method of controlling a linear motion system has a linear synchronous motor comprising a stator and at least two carrier units moveable in relation to the stator, the stator comprising a number of coil units, each of the at least two carrier units comprising a magnetic unit including an array of alternate-pole magnets having a regular magnet pole-pitch, wherein in order to form a train the at least two carrier units are arranged relative to each other so that the mutual distance between two identically poled magnets of two different magnetic units is an integer multiple of the magnet pole-pitch.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: April 1, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Walrick Dirkx, Wilco Pancras
  • Patent number: 8569990
    Abstract: A block switch controller for a linear motor is disclosed, the linear motor having a plurality of motor blocks, a shuttle which is propelled by the magnetic forces generated by a motor current passing through the motor blocks, a plurality of motor block switches selectively passing the motor current through the motor blocks, and a plurality of position sensors determining the position of the shuttle relative to the motor blocks, wherein the controller comprises a closed loop vector controller that incorporates a delay state having a feedback gain.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: October 29, 2013
    Assignee: Electro Standards Laboratories
    Inventor: Raymond B Sepe, Jr.
  • Patent number: 8550789
    Abstract: The present invention discloses a linear compressor which makes it possible to precisely operate a voltage using a current without having a high-capacity capacitor connected in series to a motor.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: October 8, 2013
    Assignee: LG Electronics Inc.
    Inventors: Jin Seok Hu, Shin Hyun Park, Young Geul Kim, Kyo Lyong Kang
  • Patent number: 8547083
    Abstract: An apparatus (2;3;4;5) for determination of the axial position of the armature (11) of a linear motor comprises at least one pair of magnetically permeable, annular elements (12;20,21;30,31,34,35;40,41,44,45;48;50,51), which are arranged essentially coaxially and at a short distance (dr;db) from one another, such that an air gap (22;32,36;42,46) is formed between them, in which a magnetic field sensor (23;33,37;43,47;Si) for measurement of the magnetic field (B) in the air gap is arranged.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: October 1, 2013
    Assignee: NTI AG
    Inventor: Daniel Ausderau
  • Patent number: 8508177
    Abstract: A stepping motor drive device includes: a first pulse generation circuit that generates pulses at rising or falling edges of a first clock signal; a second pulse generation circuit that generates pulses at rising and falling edges of a second clock signal; a first mask circuit that outputs or masks the output of the first pulse generation circuit depending on whether the second clock signal is normal; a second mask circuit that outputs or masks the output of the second pulse generation circuit depending on whether the first clock signal is normal; a logic circuit that logically combines the outputs of the mask circuits; a step position control circuit that determines the step position of a motor according to the output of the logic circuit; and a motor drive section that supplies a current to the motor according to the output of the step position control circuit.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: August 13, 2013
    Assignee: Panasonic Corporation
    Inventor: Takehiro Yano
  • Publication number: 20130193901
    Abstract: In a linear motor used for a driving axis of a large-size machine tool having a very long driving stroke, pole position correction values at a plurality of stroke positions are stored in a memory. A pole position correction value corresponding to an actual stroke position of a slider is calculated based on the stored pole position correction value. A corrected electrical angle offset value derived based on the calculated pole position correction value is used to control the linear motor.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 1, 2013
    Applicant: OKUMA CORPORATION
    Inventor: OKUMA Corporation
  • Patent number: 8494689
    Abstract: A method of controlling movement of an agent operating within an autonomous system includes determining, using a processing device associated with the agent, a highest attraction point for the agent on a line of optimal transmission between a detected event within an area of surveillance by the autonomous system and a base station within the autonomous system, and calculating an attraction force for the agent, based on the line of optimal transmission and location of the detected event; determining proximity of the agent to one or more additional agents operating within the autonomous system, and calculating a repulsion force for the agent so as to maintain a minimum separating distance between the agent and the one or more additional agents; calculating a resultant force for the agent based on the attraction force and the repulsion force; and changing a direction of the agent based on the resultant force.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: July 23, 2013
    Assignee: Raytheon Company
    Inventor: Geoffrey D. Ashton
  • Publication number: 20130181652
    Abstract: The control circuit of an electric motor, which has at least one phase supplied with high voltage and has a defined high-voltage zone, is provided with a control for the supply current of the phase with a setpoint-value current, and has devices for measuring the supply current which generate a first analog signal whose value corresponds to the measured current, an electronic control unit being disposed in a low-voltage zone, and having an analog-to-digital converter for converting the first analog signal or another analog signal acting as the first analog signal, into a corresponding digital signal which is supplied to the electronic control unit. The measuring devices are formed by a bleeder resistor, which is disposed in series with the phase, as well as by a differential amplifier whose two inputs, respectively, are connected to two contacts of the bleeder resistor.
    Type: Application
    Filed: July 26, 2011
    Publication date: July 18, 2013
    Inventors: Didier Blanc, Ralph Coleman, Jean-Marc Vaucher, Claude Froidevaux
  • Patent number: 8471502
    Abstract: A vibration damping apparatus including reference wave production section that produces a reference wave; a fundamental order adaptive algorithm block that calculates fundamental order adaptive filter factors from a vibration detection signal and the reference wave and produces a fundamental order vibration damping current instruction; an amplitude detection section that calculates a peak current value of the fundamental order vibration damping current instruction; and a fundamental order current excess detection section that derives a fundamental order current upper limit value from the fundamental frequency to produce a fundamental order current upper limit excess signal that is output to the fundamental order adaptive algorithm block, which revises the fundamental order adaptive filter factors in a direction in which the vibration damping current instruction is limited within a range.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: June 25, 2013
    Assignee: Sinfonia Technology Co., Ltd.
    Inventors: Hideaki Moriya, Takeshi Tomizaki, Takeo Ito, Yasushi Muragishi, Takayoshi Fujii
  • Patent number: 8436560
    Abstract: A system for actuating a dispensing device includes an apparatus for holding and actuating the dispensing device that includes a linear motor including a stator component and a forcer component and a frame that orients components of the linear motor relative to each other and relative to the dispensing device. The system further includes a controller configured to control the linear motor and a device that interfaces with the controller and provides a user interface for control of the system. The controller is configured to generate control signals that cause the apparatus to perform at least one actuation cycle specified by an operator. The device that communicates with the controller generates a command sequence based on the at least one actuation cycle specified and the controller generates signals based on the command sequence that cause the system to perform the at least one actuation cycle.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: May 7, 2013
    Assignee: InnovaSystems, Inc.
    Inventors: John J. Waters, Thomas J. Speelman
  • Patent number: 8415915
    Abstract: An article of manufacture is provided having computer readable program code embodied therein which implements modeling of a system (e.g., an electromagnetic aircraft launch system) having at least a linear motor and a block switching controller. The computer readable program code implements the following steps: (a) generating a model of the system, the model having a plurality of sub-models, the plurality of sub-models comprising at least a sub-model of the linear motor and a sub-model of the block switching controller; (b) inserting at least one simulation artifact (e.g., a capacitive element) into the system model between two sub-models, the simulation artifact creating a virtual voltage state; and (c) simulating the operation of the system using the generated model. The insertion of a simulation artifact into the model between sub-models can enable the sub-models to be independently modeled in different reference frames (e.g., the stator abc-reference frame and the dq-reference frame).
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: April 9, 2013
    Assignee: Electro Standards Laboratories
    Inventor: Raymond B Sepe, Jr.
  • Patent number: 8319469
    Abstract: The brushless electric machine includes a first drive member (30U) having a plurality of permanent magnets (32U); a second drive member (10) having a plurality of electromagnetic coils and capable of movement relative to the first drive member (30U); and a third drive member (30L) disposed at the opposite side from the first drive member (30U) with the second drive member (10) therebetween. The second drive member (10) has magnetic sensors (40A, 40B) for detecting the relative position of the first and second drive members. The third drive member (30L) has at locations facing the permanent magnets of the first drive member (30U) a plurality of magnetic field strengthening members (32L) for strengthening the magnetic field at the location of the second drive member (10) in conjunction with the permanent magnets.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: November 27, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Keshatoshi Takeuchi, Mamoru Sugimoto, Yojiro Okakura
  • Patent number: 8301276
    Abstract: A control device for the position control of a hydraulic cylinder unit has a controller which receives a set and an actual piston position and determines a preliminary manipulated variable based on the difference of the set and actual positions. A linearization unit multiplies the variable with a linearization factor and outputs it to the valve control unit so that the piston is adjusted at an adjustment speed. The linearization unit determines the factor dynamically as a function of the actual piston position and of working pressures that prevail at both piston sides. The linearization factor is determined such that a ratio of the adjustment speed to the difference of the set and actual positions is independent of the actual position and the working pressures. In the specific case where the controller is configured as a P controller, the order of the controller and the linearization unit can be reversed.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: October 30, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Wilfried Tautz, Dietrich Wohld
  • Patent number: 8294396
    Abstract: A compact field programmable gate array (FPGA)-based digital motor controller (102), a method, and a design structure are provided. The compact FPGA-based digital motor controller (102) includes a sensor interface (206) configured to receive sensor data from one or more sensors (104) and generate conditioned sensor data. The one or more sensors (104) provide position information for a DC brushless motor (108). The compact FPGA-based digital motor controller (102) also includes a commutation control (210) configured to create switching commands to control commutation for the DC brushless motor (108). The commutation control (210) generates commutation pulses from the conditioned sensor data of the sensor interface (206). The compact FPGA-based digital motor controller (102) also includes a time inverter (208) configured to receive the commutation pulses.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: October 23, 2012
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventor: Robert P. Wichowski
  • Patent number: 8294391
    Abstract: In a moving body system, a movable element of a linear motor is provided on a moving body, and stationary elements of the linear motor and position sensors are provided on the ground. The stationary elements are arranged between the position sensors to enable determination of a rough position of the movable element based on a change of inductance resulting from interaction with a magnet array. An initial position of the moving body when a power supply for the moving body system is turned on is determined based on the rough position of the movable element relative to the stationary element and a signal from the position sensor.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: October 23, 2012
    Assignee: Murata Machinery, Ltd.
    Inventor: Hideki Kubo
  • Publication number: 20120249042
    Abstract: The invention realizes a method for controlling an electric cylinder and a control system for the cylinder that can prevent a load for pressurizing from significantly exceeding a target load and can shorten the time for the pressurization. A servo controller 17 can set the speed of the rod 11 and a load for stopping Ps that is used for determining whether the rod 11 should be stopped so that the load for pressurizing Pm does not significantly exceed the target load Pt. The servo controller 17 drives the rod 11 under the position control mode and determines whether the load for pressurizing Pm that is detected by a load detector 13 is bigger than or equal to the load for stopping Ps.
    Type: Application
    Filed: September 1, 2010
    Publication date: October 4, 2012
    Inventors: Yoichiro Shirai, Masahiko Nagasaka
  • Patent number: 8248004
    Abstract: A machine tool is provided that has a linear drive by means of which a movement unit connected in motion with a functional unit is movable in two axis directions of a movement plane. The linear drive includes two drive units. The primary parts or the secondary parts of the two drive units are attached to the movement unit. The primary part or the secondary part of the one drive unit is disposed in that case on that side of the movement unit which, perpendicularly to the movement plane of the movement unit, is opposite the side of the movement unit provided with the primary part or the secondary part of the other drive unit.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: August 21, 2012
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventor: Frank Schmauder
  • Patent number: 8193755
    Abstract: An actuator comprising a reversible electric motor, which over a gearing, drives an activation element which can move back and forth. The activation element is of the non-self-locking type. Furthermore the motor and gearing are of a non self locking type. A brake holds the activation element in any position, when the electric motor is inactive, said brake can be released by means of a release mechanism. The motor is used as generator when the brake is released and the generator voltage from it is used to adjust the velocity of the activation element. Thus, a quick release is provided, where the activation element can be disengaged and adjusted evading gear and motor, and where the movement of the activation element, during the disengagement, occurs with a controlled velocity.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: June 5, 2012
    Assignee: Linak A/S
    Inventors: Svend Erik Knudsen Jensen, John Abrahamsen
  • Patent number: 8179080
    Abstract: A reciprocating actuator includes at least one element moving reciprocally relative to a rack, a device for driving the moving element in a driving direction, an element for returning the moving element in an opposite direction, at least one sensor for detecting the position of the moving element, and a servocontrol adapted to deliver, for each displacement cycle of the moving element in the driving direction, at least one correction signal (S5) representative of the difference between the energy imparted on the moving element during at least one preceding cycle, and the nominal energy to be imparted on this moving element to displace it exactly to its extreme set-point position, and to adjust on each cycle the control signal of the driving device according to the correction signal (S5).
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: May 15, 2012
    Assignee: Centre National d'Etudes Spatiales (C.N.E.S.)
    Inventors: Jean-Claude Vannier, Amir Arzande, Gerard Jeanblanc, Isabelle Gibek, Denis Schwander
  • Patent number: 8154226
    Abstract: An operating apparatus including a main body, a movable member, a drive unit having a drive source, and a control unit controlling the drive source to control the position of the movable member relative to the main body. The control unit including a position control system and an acceleration control system. The position control system including a position command portion, a first feedforward compensator outputting a first operation command to the drive source, a second feedforward compensator, a positional-information acquiring device obtaining information related to the position of the movable member, and a first feedback compensator outputting a second operation command to the drive source. The acceleration control system including an acceleration-information acquiring device obtaining information related to an acceleration of the main body, a third feedforward compensator, a second feedback compensator outputting a third operation command to the drive source.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 10, 2012
    Assignees: Fuji Machine Mfg. Co., Ltd., National University Corporation Nagoya Institute of Technology
    Inventors: Hiroshi Sawaragi, Keisuke Nagiri, Takayoshi Kawai, Nobuyuki Matsui, Makoto Iwasaki
  • Patent number: 8115425
    Abstract: A driving apparatus electrically drives first and second components built in an industrial instrument. The first component drives a first element, and the second component drives a second element at a velocity higher than that of the first component. The driving apparatus includes a housing including a supply inlet and an exhaust outlet. A fan forms an air current so that air is taken into the housing through the supply inlet and is exhausted from inside the housing through the exhaust outlet. A driving circuit block is accommodated in the housing so as to be cooled by the air current, and includes a first driving circuit to electrically drive the first component, and a second driving circuit to electrically drive the second component. The second driving circuit is inserted upstream of the first driving circuit along the air current in the housing.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: February 14, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yasuhiro Motegi
  • Patent number: 8109443
    Abstract: An apparatus for positioning a workpiece carrier with respect to a workstation can include a workpiece carrier movable relative to the workstation and having an encoder strip, at least one encoder reader located at the workstation for generating a signal in response to interaction with at least one encoder strip, and a drive engaging the workpiece carrier for moving the carrier relative to the workstation, the drive responsive to the signal from the encoder reader. The encoder reader can be selected from a group consisting of an optical encoder reader, a magnetic encoder reader, and any other absolute positioning encoder reader. A closed loop feedback control system can be provided for receiving the signal from the encoder reader, and for generating an output signal in response to the signal from the encoder reader in accordance with a program stored in memory.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: February 7, 2012
    Assignee: Comau, Inc.
    Inventor: Velibor Kilibarda
  • Patent number: 8093842
    Abstract: A position controlled drive mechanism and a control method for positioning a drive mechanism are introduced. A sensor generates a displacement signal indicative of a displacement of a movable stop driven by an electric motor. A controller controls rotation of the electric motor. The controller also calculates a position of the movable stop based on the displacement signal. The controller includes at least two modes of operation in which the controller controls the electric motor to rotate its shaft to reach a selected position of the movable stop; controls a voltage or current supplied to the electric motor to maintain a current position of the movable stop; controls the electric motor to rotate the rotatable shaft in a selected direction until an external object hinders the rotation of the rotatable shaft; and controls the electric motor to assist an externally initiated rotation movement detected by the sensor.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 10, 2012
    Assignee: Exact Products, Inc.
    Inventors: Bruno Bergeron, Eric Bergeron, Vincent Noel
  • Patent number: RE45388
    Abstract: A compact field programmable gate array (FPGA)-based digital motor controller (102), a method, and a design structure are provided. The compact FPGA-based digital motor controller (102) includes a sensor interface (206) configured to receive sensor data from one or more sensors (104) and generate conditioned sensor data. The one or more sensors (104) provide position information for a DC brushless motor (108). The compact FPGA-based digital motor controller (102) also includes a commutation control (210) configured to create switching commands to control commutation for the DC brushless motor (108). The commutation control (210) generates commutation pulses from the conditioned sensor data of the sensor interface (206). The compact FPGA-based digital motor controller (102) also includes a time inverter (208) configured to receive the commutation pulses.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: February 24, 2015
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventors: Robert Wichowski, Harold J. Hansen, Kevin G. Hawes