With Voltage Pulse Time Control Patents (Class 318/810)
  • Patent number: 10090792
    Abstract: A powertrain includes a first and second switch coupled in parallel to drive an electric machine and a gate driver. The gate driver may be configured to, in response to a transition request while a first temperature of the first switch exceeds a second temperature of the second switch, inject a current onto a gate of the second switch to drive rates of change of current through the first and second switch to the electric machine to a same value.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: October 2, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Fan Xu, Yan Zhou, Shuitao Yang, Mohammed Khorshed Alam, Lihua Chen
  • Patent number: 9998046
    Abstract: The invention relates to a turbine and to the implementation method thereof, said turbine comprising a blade mounted such that it can rotate about a central axis and an electromagnetic synchronous machine arranged with the blade in such a way as to modify the angular rotation speed of the blade in order to optimize the mechanical efficiency of the blade as a function of the speed of the incident fluid acting on the blade.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: June 12, 2018
    Assignee: SAVE INNOVATIONS
    Inventor: Bernard Perriere
  • Patent number: 9994215
    Abstract: A hybrid vehicle includes an engine, a first rotating electrical machine, a second rotating electrical machine, a pair of power lines, a first inverter, a second inverter, a battery, a converter, a voltage sensor, and an electronic control unit. The electronic control unit is configured to determine that the voltage sensor is normal and perform a first evacuation running control when an output of the voltage sensor changes by the predetermined value or more while a voltage change process is carried out. The electronic control unit is configured to control the converter to a gate shutoff state, control a motive power of the engine in such a manner as to rotate the first rotating electrical machine and put the first rotating electrical machine into a regeneration state, and control the second rotating electrical machine to a power running state, as the first evacuation running control.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: June 12, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shikoh Takakura, Shinichiro Minegishi
  • Patent number: 9581978
    Abstract: An apparatus includes: a media; a head over the media; a head actuation motor (HAM) coupled to the head; control circuitry, coupled to the head actuation motor, including: a system-on-chip (SOC) configured to manage a control of the head actuation motor, a pulse width modulation (PWM) code bus, coupled to the SOC, configured to communicate the control of the HAM, and a power integrated circuit (PIC), coupled to the PWM code bus, configured to drive a HAM control signal.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 28, 2017
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventor: Lance Flake
  • Patent number: 9209679
    Abstract: In one aspect of the teachings herein, a self-commutated current source converter is operated in a manner that compensates for the reactive power consumption and/or harmonics generation of a line-commutated current source converter used in the transfer of electrical power between an AC power system and a DC power system. In this regard, the line-commutated current source converter is operated as a first converter in a hybrid converter apparatus and the self-commutated current source converter is operated as a second converter in the hybrid arrangement. According to one example, the first and second converters are stacked, such that each shares a portion of the DC voltage on the DC side of the hybrid converter apparatus, while in another example, the second converter is not used for power conversion and instead is used solely for compensation with respect to the first converter.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: December 8, 2015
    Assignee: ABB Technology AG
    Inventors: Jyoti Sastry, Tomas U. Jonsson, Jiaqi Liang, Alireza Nami, Frans Dijkhuizen
  • Patent number: 9018889
    Abstract: A generator system includes a generator and a generator control unit (GCU). The GCU is connected to monitor and regulate the generator output voltage. The GCU includes a protection signal processor that receives monitored generator voltages and executes software to detect an overvoltage condition. The GCU further includes redundant, hardware based overvoltage detection that detects a peak voltage value associated with the monitored generator voltage and includes a fast overvoltage detection circuit that generates a first overvoltage fault signal if the peak voltage value is greater than a first threshold value and includes an inverse overvoltage detection circuit that generates a second overvoltage fault signal if the peak voltage value is greater than a second threshold value for a duration of time that varies with a magnitude of the peak voltage value.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 28, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Daxesh K. Patel
  • Patent number: 9013137
    Abstract: In a system for driving an inverter, a superimposing element superimposes, on an output voltage of the inverter. The high-frequency voltage signal is correlated with a measured high-frequency component value of a current flowing in the rotary machine. A calculating element calculates a rotational angle of the rotary machine based on the measured high-frequency component value. A dead-time compensating element shifts a start edge and an end edge of an on duration for each of first and second switching elements of the inverter by a preset same time to compensate for an error due to dead time. A current manipulating element manipulates a current flowing in the rotary machine to maintain an accuracy of calculation of the rotational angle.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: April 21, 2015
    Assignee: Denso Corporation
    Inventors: Yasuaki Aoki, Hiroko Yoneshima, Tomoya Takahashi
  • Patent number: 8975846
    Abstract: A control device performs voltage conversion control on a voltage conversion circuit between a power supply and motor control circuits which control a plurality of motors. The control device includes sampling units for sampling a DC voltage after voltage conversion, target voltage setting units for setting target voltages VHT1 and VHT2 of the plurality of motors, selection unit for selecting a target voltage VHT to be converted by the voltage conversion circuit from a plurality of target voltages VHT1 and VHT2, generating unit for generating a sampling timing TS on the basis of a gate signal GS1 or GS2 of one of the motors with the target voltage which has not been selected, and control unit for performing the voltage conversion control using the DC voltage sampled by the sampling units at the sampling timing TS in response to each sampling timing request DS in the voltage conversion control.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: March 10, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masashi Kobayashi
  • Patent number: 8947031
    Abstract: A method for operating a direct current (DC) motor is shown and described. The method includes using pulse width modulated (PWM) DC output to control the speed of the DC motor. The method further includes sensing current output to the motor. When the sensed current exceeds a threshold, the method holds the PWM DC output off.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: February 3, 2015
    Assignee: Johnson Controls Technology Company
    Inventors: Russell W. Diamond, Gary A. Romanowich, David R. Fuhr
  • Patent number: 8896261
    Abstract: The excitation overcurrent detection unit for the doubly-fed electric machine is provided with a function to determine an excitation current magnitude relationship among three phases. The firing pulse is held to on-state or off-state to cause the largest-current phase and the second-largest-current phase to charge the DC capacitor by the operation of diodes. The conduction ratio of the third-largest-current phase or minimum current phase is controlled according to the detected current value to protect against a possible short-circuit across the DC capacitor. When the voltage of the DC capacitor exceeds a preset value, the voltage is suppressed by operating active or passive power devices.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: November 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Akira Bando, Masaya Ichinose, Yasuhiro Kiyofuji, Yasuaki Nakayama
  • Patent number: 8872464
    Abstract: A motor control method comprises: inputting a PWM signal into a control unit for the control unit to obtain a direction command and a speed command by an identification rule, and generating a control signal according to the direction and speed commands by the control unit; and generating a driving signal according to the control signal by the driving unit for driving a motor to operate according to the direction and speed commands.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: October 28, 2014
    Assignee: Sunonwealth Electric Machine Industry Co., Ltd.
    Inventors: Tung-An Chen, Chieh-Feng Lee, Deng-Shan Jian, Wen-Chieh Lin
  • Patent number: 8853990
    Abstract: An inverter device of a rotating electrical machine drives a multiphase rotating electrical machine having the variable number of rotations using a switching element provided for each phase. An example of the inverter device of the rotating electrical machine includes: a frequency setting unit for determining and setting a carrier frequency of a carrier signal for use in driving the switching element for each phase depending on the state of each phase of the rotating electrical machine for each specified electrical angle obtained by equally dividing a cycle of an electrical angle; and a signal generation unit for generating a drive signal for drive of the switching element of each phase using the carrier signal of the carrier frequency set for each phase by the frequency setting unit. The carrier frequency of each phase is an integral multiple of the phase voltage frequency at the specified electrical angle.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: October 7, 2014
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Ryuji Takano, Yohei Yamada, Tomohiro Ohba, Shigeki Ikeda
  • Patent number: 8829830
    Abstract: A control command generator that generates an armature interlinkage flux command and a torque current command by a torque command, a rotation speed, and an operation target command, includes a first flux command generator generating a first flux command by the toque command or the torque current command, a second flux generator generating a second flux command by the torque command or the torque current command and the rotation speed of the synchronous machine, a command allocation setting unit setting an allocation coefficient equivalent to an allocation ratio of the two first and second flux commands by the operation target command, a flux command adjuster outputting an armature interlinkage flux command by the two flux commands and the allocation coefficient, and a torque current command generator generating the torque current command by the torque command and the armature interlinkage flux command.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: September 9, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takahiko Kobayashi, Kiyoharu Anzai, Noriyuki Wada, Daiki Matsuura
  • Patent number: 8829846
    Abstract: A method for driving a motor is provided. Pulse width modulation (PWM) signals are generated from a voltage signal and a commanded angle signal, which drives a motor with multiple phases. A motor current from a motor is measured with a single shunt and converted into a digital signal. Based on the digital signal and the commanded angle signal, direct-axis and quadrant-axis currents for the motor can be determined, and the voltage signal and the commanded angle signal can be adjusted based at least in part on the direct-axis and quadrant-axis currents.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: September 9, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Ling Qin
  • Patent number: 8810182
    Abstract: Power conversion systems with active front end converters for example motor drives and power generation systems for distributed energy sources are presented with adaptive harmonic minimization for grid-tie converters for minimized or reduced total harmonic distortion in the line current spectrum including the source harmonic current, the load harmonics and the PWM harmonics.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: August 19, 2014
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Hua Zhou, Zhongyuan Cheng, Navid Zargari
  • Patent number: 8796975
    Abstract: A motor driving apparatus is disclosed herein and includes a control unit, a soft-start unit and an output unit. When power-up or lock release situation, an external PWM driving signal is inputted to the soft-start unit, the soft-start unit generates an internal PWM driving signal and a power-up initial signal; after the power-up initial signal is generated, the control unit transmitting a motor rotation signal to the soft-start unit; when the soft-start unit counts a plurality of the motor rotation signal, the soft-start unit selects the external PWM driving signal or the internal PWM driving signal to output to the output unit.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: August 5, 2014
    Assignee: Amtek Semiconductor Co., Ltd.
    Inventors: Teng-Hui Lee, Kuo-Yung Yu, Chen-Pin Lo
  • Patent number: 8791664
    Abstract: A system includes a target speed module and a pulse-width modulation (PWM) control module. The target speed module is configured to provide a first waveform based on a first speed setting for a motor. A start of a first cycle of the first waveform corresponds to at least one of a first current or a first voltage. The PWM control module is configured to shift a phase of the first waveform by a torque angle adjustment value to generate a second waveform. A start of a first cycle of the second waveform corresponds to at least one of a second voltage or a second current. The second voltage is greater than the first voltage, and the second current is greater than the first current. The PWM control module is configured to control the motor based on the second waveform.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 29, 2014
    Assignee: Marvell World Trade Ltd.
    Inventors: Ravishanker Krishnamoorthy, Edy Susanto, Cheng Yong Teoh, Foo Leng Leong
  • Patent number: 8766588
    Abstract: A method for pulse width modulation control of a multiple phase drive includes identifying at least one phase from the plurality of phases for the drive as eligible for clamping to one of a plurality of extreme power supply voltages, selecting a phase of the eligible phases having a largest magnitude driving current, determining a first offset signal as a difference between a control signal level for the selected phase and an extreme control signal level corresponding to one of the extreme power supply voltages, limiting a rate of change of the first offset signal to form a second offset signal, and determining a modified control signal for each of the phases for the drive including forming for each of a plurality of the phases a combination of the second offset signal and a control signal level for the phase to determine the modified control signal for the phase.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: July 1, 2014
    Assignee: Bose Corporation
    Inventors: Manoel Soares, Michael Nussbaum
  • Patent number: 8760106
    Abstract: A method for pulse width modulation control of a multiple phase drive includes identifying at least one phase from the plurality of phases for the drive as eligible for clamping to one of a plurality of extreme power supply voltages, including excluding from the eligible phases those phases with intermediate control signal levels and excluding phases according to a proximity criterion on the control signal levels. A phase is selected from the eligible phases. An offset signal is determined as a difference between a control signal level for the selected phase and an extreme control signal level associated with one of the plurality of extreme power supply voltages. A modified control signal is determined for each of the phases, by forming a combination of the offset signal and a control signal level for each phase to determine the modified control signal for each phase.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: June 24, 2014
    Assignee: Bose Corporation
    Inventor: Manoel Soares
  • Patent number: 8742713
    Abstract: Motor control circuits and associated methods to control an electric motor provide a plurality of drive signal channels at the same phase, resulting in reduced jitter in the rotational speed of the electric motor.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: June 3, 2014
    Assignee: Allegro Microsystems, LLC
    Inventor: Chee-Kiong Ng
  • Patent number: 8742712
    Abstract: Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: June 3, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Milun Perisic, Michael H Kinoshita, Ray M. Ransom, Gabriel Gallegos-Lopez
  • Patent number: 8674647
    Abstract: Provided is a drive device for an alternating current motor which performs vector control on sensorless driving of the alternating current motor in an extremely low speed region without applying a harmonic voltage intentionally while maintaining an ideal PWM waveform. A current and a current change rate of the alternating current motor are detected, and a magnetic flux position inside of the alternating current motor is estimated and calculated in consideration of an output voltage of an inverter which causes this current change. The current change rate is generated on the basis of a pulse waveform of the inverter, and hence the magnetic flux position inside of the alternating current motor can be estimated and calculated without applying a harmonic wave intentionally.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: March 18, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Yoshitaka Iwaji, Daigo Kaneko, Kouki Yamamoto
  • Patent number: 8653781
    Abstract: Provided is a variable frequency drive and a rotation speed searching apparatus for an induction motor incorporated therein. The rotation speed searching apparatus is featured by scanning the rotor frequency of the induction motor and determining either the error between a detected DC-bus voltage and a set DC-bus voltage or the error between a detected output current and a set output current, so that the rotation speed of the induction motor can be searched out.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 18, 2014
    Assignee: Delta Electronics, Inc.
    Inventors: Hui-Chung Hsieh, Chi-Lung Hsiao
  • Patent number: 8633668
    Abstract: A device for improving efficiency of an induction motor soft-starts the motor by applying a power to the motor that is substantially less than the rated power of the motor then gradually increasing the power while monitoring changes in current drawn by the motor, thereby detecting when maximum efficiency is found. Once maximum efficiency is found, the nominal motor current is found and operating ranges are set. Now, the phase angle between the voltage and the current to the motor is measured and power to the motor is increasing when the phase angle is less than a minimum phase angle (determined during soft-start) and power to the motor is decreased when the phase angle is greater than or equal to the minimum phase angle as long as the voltage does not fall below a minimum voltage determined during soft-start.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: January 21, 2014
    Assignee: Protective Energy Economizer Technology
    Inventor: Mario Marcelo Marcoccia
  • Patent number: 8629634
    Abstract: A method for is disclosed for using pulse-width modulated (PWM) signals in the control of a plurality of electric motors or of at least one electric motor with multiple windings. The method comprises steps of: measuring the current being drawn by each of said electric motors; transmitting signals corresponding to the current being drawn said plurality of motors to a central controller; transmitting from said central controller signals corresponding to the amount of current to be drawn by each motor, whereby the relative phases and durations of said signals are distributed according to a predetermined protocol; and repeating steps (a) through (c) while said electric motors are in operation. The distribution of PWM signals defines the total current drawn from said source of electricity as a function of time.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: January 14, 2014
    Inventor: Yesaiahu Redler
  • Patent number: 8547072
    Abstract: A phase control apparatus includes a first transistor whose source or emitter is connected to one end of an AC power supply and whose drain or collector is connected to one end of a load, a second transistor whose source or emitter is connected to the other end of the AC supply and whose drain or collector is connected to the other end of the load, a diode bridge that rectifies an AC voltage of the AC supply, and a parallel circuit of a zener diode and a capacitor. The parallel circuit generates a high potential relative to a bridge negative output terminal potential, or generates a low potential relative to a bridge positive output terminal potential. First and second transistor control terminal potentials are switched between the high and the bridge negative output terminal potentials, or between the low and the bridge positive output terminal potentials.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: October 1, 2013
    Assignee: Maeda Metal Industries, Ltd.
    Inventor: Takayoshi Obatake
  • Publication number: 20130241463
    Abstract: The excitation overcurrent detection unit for the doubly-fed electric machine is provided with a function to determine an excitation current magnitude relationship among three phases. The firing pulse is held to on-state or off-state to cause the largest-current phase and the second-largest-current phase to charge the DC capacitor by the operation of diodes. The conduction ratio of the third-largest-current phase or minimum current phase is controlled according to the detected current value to protect against a possible short-circuit across the DC capacitor. When the voltage of the DC capacitor exceeds a preset value, the voltage is suppressed by operating active or passive power devices.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 19, 2013
    Applicant: Hitachi, Ltd
    Inventors: Akira Bando, Masaya Ichinose, Yasuhiro Kiyofuji, Yasuaki Nakayama
  • Patent number: 8525464
    Abstract: A rotation detecting apparatus for detecting a rotational state of a direct-current motor includes a driving device, a control device, an energization detecting device, an alternating-current component detecting device, and a rotational state detecting device. An impedance between brushes of the motor changes periodically in accordance with rotation of the motor. The alternating-current component detecting device detects change of an alternating-current component of electric current that is supplied to the motor based on an electrical quantity. The change of the alternating-current component is caused by change of the impedance caused in accordance with the rotation. The rotational state detecting device detects at least one of a rotation angle, a rotational direction, and a rotational speed of the motor based on a detection result of the alternating-current component detecting device.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: September 3, 2013
    Assignees: DENSO CORPORATION, Nippon Soken, Inc.
    Inventors: Ken Tanaka, Yasuhiro Fukagawa, Masaru Touge
  • Patent number: 8513911
    Abstract: A power converter that interfaces a motor requiring variable voltage/frequency to a supply network providing a nominally fixed voltage/frequency includes a first rectifier/inverter connected to a stator and a second rectifier/inverter. Both rectifier/inverters are interconnected by a dc link and include switching devices. A filter is connected between the second rectifier/inverter and the network. A first controller for the first rectifier/inverter uses a dc link voltage demand signal indicative of a desired dc link voltage to control the switching devices of the first rectifier/inverter. A second controller for the second rectifier/inverter uses a power demand signal indicative of the level of power to be transferred to the dc link from the network through the second rectifier/inverter, and a voltage demand signal indicative of the voltage to be achieved at network terminals of the filter to control the switching devices of the second rectifier/inverter.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: August 20, 2013
    Assignee: Converteam Technology Ltd.
    Inventors: Rodney Jones, Christopher Newton
  • Patent number: 8502489
    Abstract: A motor control device, which receives at least two emergency stop signals, includes an LSI, a PWM signal transmission circuit, a drive circuit, and an inverter circuit. The LSI generates PWM signals. The PWM signal transmission circuit transmits the PWM signals. The drive circuit generates inverter drive signals. The inverter circuit includes a P-side power switching device and an N-side power switching device. The drive circuit includes a P-side drive circuit for driving the P-side power switching device, and an N-side drive circuit for driving the N-side power switching device. One of the emergency stop signals is inputted to the P-side drive circuit and the PWM signal transmission circuit. The other emergency stop signal is inputted to the N-side drive circuit and the PWM signal transmission circuit. In response to the receipt of an emergency stop signal, the PWM signal transmission circuit stops transmitting the PWM signals, and the drive circuit stops outputting the inverter drive signals.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 6, 2013
    Assignee: Panasonic Corporation
    Inventors: Hisashi Ooto, Taro Kishibe, Hiroshi Ozaki, Ryuhei Watabe, Satoru Doi
  • Patent number: 8493016
    Abstract: A semiconductor circuit device includes a semiconductor circuit including a switching element, a temperature monitoring unit, and a control unit. The temperature monitoring unit detects or estimates a temperature of a component connected to an inside or an outside of the semiconductor circuit. Here, the temperature of the component changes in accordance with a frequency of a current flowing through the component, and the frequency of the current flowing through the component changes in accordance with a switching frequency of the switching element. The control unit adjusts the switching frequency of the switching element such that the temperature of the component is equal to a target temperature.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: July 23, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Noboru Miyamoto
  • Patent number: 8436558
    Abstract: An electrically driven mooring winch is provided. The mooring winch includes a winding drum, an AC motor configured to drive the winding drum, a frequency conversion unit connected to the AC motor, and a control unit configured to control the frequency conversion unit on the basis of an indicator for tension of the mooring rope. The control unit is configured to set a reference value of rotational speed of the AC motor to a predetermined value, drive the AC motor in one direction for a predetermined time interval, define a first value of a torque of the AC motor, drive the AC motor in an opposite direction for the predetermined interval, define a second value of the torque of the AC motor, and compute a torque estimate using the first and second values of the torque.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: May 7, 2013
    Assignee: ABB Oy
    Inventors: Mikael Holmberg, Vassili Jung
  • Patent number: 8432116
    Abstract: In a torque motor driving device for wire cut electrical discharge machines, a voltage waveform rectified by a full-wave rectifying circuit, not using a high-capacitance electrolytic capacitor, is applied as an AC voltage to a single-phase torque motor by a bridge circuit including semiconductor switches. A PWM signal whose duty is adjusted so that the current flowing through the torque motor matches an instructed value is generated and the generated PWM signal is used for the operation of the bridge circuit.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: April 30, 2013
    Assignee: Fanuc Corporation
    Inventors: Tomoyuki Furuta, Akiyoshi Kawahara, Masao Murai
  • Patent number: 8421398
    Abstract: An autonomous controller allows an AC induction motor to operate over a broad range of AC power supply frequencies by reducing the amount of current supplied to the motor at lower frequencies. The controller detects the frequency of the power supply and switches the supply current on and off during each AC cycle to limit the RMS current to a value that is related to the detected frequency. Alternatively, the controller switches capacitive reactance into the power supply circuit which reduces the current supplied to the motor at lower AC frequencies.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: April 16, 2013
    Assignee: The Boeing Company
    Inventors: Robert E. Fisher, John T. Paterson
  • Patent number: 8421399
    Abstract: A power control system for an A.C. induction motor is disclosed, comprising a voltage/current phase difference generator for determining a difference in phase between a voltage applied to the motor and a current drawn by the motor, and for generating a phase difference signal as a function of the determined difference in phase, the voltage/current phase difference generator including an integrator, the integrator receiving the phase difference signal and generating an error signal for controlling an amount of power supplied to the motor as a function of the phase difference signal, the integrator being electrically coupled to a potentiometer, the potentiometer providing a bias signal for at least partially controlling the error signal; and a delay circuit for controlling the bias signal provided by the potentiometer so as to cause full available power to be supplied to the motor for a predetermined amount of time.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: April 16, 2013
    Assignee: Energy Innovative Products, LLC
    Inventor: Nicholas Anderson
  • Patent number: 8411804
    Abstract: A digital PWM demodulator includes a first set of delay cells to receive a PWM signal and to propagate the PWM signal in a forward direction for a first interval. Delayed signals obtained at the end of the first interval are propagated in the reverse direction through the delay cells for a second interval. A logic zero feeds into the last cell at the start of the second interval. The output of a last cell in the delay cells at the end of the second interval is indicative of a data value modulated on the PWM signal. The digital PWM demodulator includes a second set of delay cells designed to operate identical to the first set of delay cells. The first set of delay cells and the second set of delay cells in conjunction with additional digital circuitry demodulate alternate periods of the PWM signal.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: April 2, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Karthik Subburaj, Anant Shankar Kamath, Jayawardan Janardhanan
  • Patent number: 8362732
    Abstract: A method of detecting a phase winding fault in a multi-phase electric machine is executable via a motor controller, and includes measuring feedback signals of the machine, including each phase current, and generating reference phase voltages for each phase. The method includes calculating a predetermined voltage value using the feedback signals and reference phase voltages, and comparing the voltage value to a corresponding threshold to determine the fault. A control action is executed when the voltage value exceeds the corresponding threshold. The voltage value is one or more of: a ratio of a normalized negative sequence voltage to a modulation index, an RMS voltage for each phase, and total harmonic distortion of each phase current. An apparatus detects the fault, and includes a motor controller and an algorithm as set forth above. The apparatus may include a voltage inverter for generating a multi-phase alternating current output for powering the machine.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: January 29, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Mohammad N. Anwar, S. M. N. Hasan, Khwaja M. Rahman, Silva Hiti, Steven E. Schulz, Sean E. Gleason
  • Patent number: 8350518
    Abstract: A control apparatus for a series-connected multi-level matrix converter includes each voltage commanding device provided for each of single-phase matrix converters to generate a voltage reference to each of the single-phase matrix converters. The series-connected multi-level matrix converter includes the single-phase matrix converters. Each of the single-phase matrix converters includes a snubber circuit and a DC voltage detecting section configured to detect a DC voltage of the snubber circuit to output a DC voltage detection value. ADC over-voltage detector is configured to output a DC over-voltage signal when the DC voltage detection value exceeds a set voltage value. A voltage modifying device is, when the DC over-voltage signal is outputted, configured to decrease the voltage reference to a corresponding single-phase matrix converter among the single-phase matrix converters based on a deviation between the DC voltage detection value and the set voltage value.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 8, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Yozo Ueda, Kenichi Imanishi, Ryuji Suenaga
  • Patent number: 8339078
    Abstract: This invention relates to an apparatus and method for deriving speed and position information for an electric motor. Apparatus for and a method of controlling a motor 100 are also disclosed. The apparatus for providing information relating to the operation of an electrical motor 100 comprises a sampler 50, 51 for sampling the instantaneous motor current is and a processor 160 for determining the instantaneous rate of change of the motor current and providing information about the motion or position of said motor based on said instantaneous rate of change of the motor current. In this way speed and position information can be provided, at low speeds, and without using a speed sensor.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: December 25, 2012
    Assignee: The City University of Hong Kong
    Inventor: Shu Yuen Ron Hui
  • Patent number: 8339094
    Abstract: Methods, system and apparatus are provided for overmodulation of a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided to optimize voltage command signals that control a five-phase inverter module to increase output voltages generated by the five-phase inverter module.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: December 25, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Milun Perisic, Silva Hiti, Gabriel Gallegos-Lopez
  • Patent number: 8310178
    Abstract: A motor control apparatus for controlling a DC motor includes a detection unit configured to detect an angular speed of the DC motor, and a control unit configured to, when the DC motor is accelerated, increase a control value that controls a driving of the DC motor at a constant rate from a first control value corresponding to an angular speed lower than a target angular speed up to a second control value corresponding to an angular speed higher than the target angular speed, and switch the control value that controls the driving of the DC motor to a control value corresponding to the target angular speed in response to the detection result of the detection unit reaching the target angular speed.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: November 13, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yoritsugu Maeda
  • Patent number: 8294413
    Abstract: A control system is provided for an inverter assembly associated with an induction motor. The system includes a current determination module configured to generate q- and d-axis current commands based on a torque command. The current determination module is further configured to generate the q-axis current command based on an observed flux linkage and a flux linkage command. The system further includes a motor current control module coupled to the current determination module and configured to generate q- and d-axis voltage commands based on the q- and d-axis current commands generated by the current determination module and a PWM modulator coupled to the motor current control module configured to generate duty cycle signals for operating the inverter assembly based on the q- and d-axis voltage commands generated by the motor current control module.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: October 23, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Min Dai, Bon Ho Bae, Leah Dunbar
  • Patent number: 8278865
    Abstract: A control device that controls a plurality of inverters respectively provided corresponding to a plurality of alternating-current electric motors so as to control the plurality of alternating-current electric motors by current feedback. The control device comprises a carrier frequency setting unit that individually selects and sets one of a plurality of carrier frequencies, each of which is a frequency of a carrier for generating switching control signals for the inverter based on a pulse width modulation method, for each of the plurality of inverters, and a switching timing table that specifies a switching timing serving as a permissible timing of switching to a different carrier frequency pair from each of a plurality of carrier frequency pairs each of which is composed of a combination of the carrier frequencies set for each of the plurality of inverters.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: October 2, 2012
    Assignee: Aisin AW Co., Ltd.
    Inventors: Arinori Shimada, Mitsuru Nakamura, Subrata Saha, Ken Iwatsuki
  • Patent number: 8278861
    Abstract: A system includes a power control module, a period determination module, and a control module. The power control module controls current through stator coils of a motor to rotate a rotor. The period determination module determines a first length of time between a first set of induced stator coil voltages and determines a second length of time between a second set of induced stator coil voltages. The control module determines whether an external disturbance disturbs rotation of the rotor based on a difference between the first and second lengths of time.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: October 2, 2012
    Assignee: Marvell World Trade Ltd.
    Inventors: Foo Leng Leong, Edy Susanto, Ravishanker Krishnamoorthy
  • Patent number: 8278857
    Abstract: A motor control device is electrically connected with a motor. The motor control device includes a controller and a driving circuit. The controller has a default value of time and generates a first driving signal and a second driving signal. The driving circuit includes a first switching element and a second switching element, the first switching element and the second switching element receive the first driving signal and the second driving signal respectively, and the first switching element and the second switching element are switched on or switched off alternately according to the first driving signal and the second driving signal respectively, so as to drive the motor to operate.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: October 2, 2012
    Assignee: Delta Electronics, Inc.
    Inventors: Yu-Liang Lin, Ming-Yen Lin, Chia-Wen Kuo, Kuan-Ting Lee
  • Patent number: 8258739
    Abstract: A power converter includes: a determination section which, prior to an actual operation, determines presence/absence of a common mode filter connected to a line for supplying power to a motor, switching elements being driven with a predetermined PWM on/off drive signal corresponding to a carrier frequency prior to the actual operation; and a PWM control method changing/setting section which, during the actual operation, changes and sets a PWM control method in accordance with a result of the determination of the presence/absence of the common mode filter.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: September 4, 2012
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Tsuyoshi Higuchi, Kenji Yamada
  • Patent number: 8248013
    Abstract: A fan device with improved speed control module includes a stator, a rotor, and a speed control module. The stator has a driving unit outputting currents for the stator to generate alternative magnetic fields and thus turn the rotor. The speed control module includes a control unit and a speed adjusting circuit, with the control unit generating a control command for the driving unit and further outputting a state signal for the speed adjusting circuit to control whether a PWM signal enters the control circuit or not.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: August 21, 2012
    Assignee: Sunonwealth Electric Machine Industry Co, Ltd.
    Inventors: Alex Horng, Chun-Yuan Huang, Chung-Ken Cheng, Nguyen Nguyen, Susheela Narasimhan
  • Patent number: 8217597
    Abstract: A drive circuit comprising: a direct current power source; a control unit for supplying control signals; a power switch topology comprising a first switch and a second switch each having an input terminal, an output terminal, and a control terminal, the input terminals being respectively connected to the power source, the control terminals being connected to the control unit for receiving the control signals there from, the output terminals being connected to a node; and an inductance connected with a capacitive load in series between the node and the power source, wherein the control signals control the switches to alternately conduct to thereby cause the node to output a pulse signal.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: July 10, 2012
    Assignee: Johnson Electric S.A.
    Inventors: Chi Ping Sun, Jian Qun Wu, Hai Bo Jiang, Jian Han
  • Patent number: 8207701
    Abstract: A control method of the electromotor comprises: setting a target alternating axis current based on the rotor angular velocity of the electromotor and a target direct axis current based on the torque of the motor; simultaneously detecting three-phase currents and current rotor position angle of the electromotor; converting the three-phase currents to an actual alternating axis current and an actual direct axis current by Park and Clark conversions; inputting the difference between the target current and the actual current to a current loop, outputting the required direct axis current and the required alternating axis current; determining the three phase voltages according to the required direct axis current and alternating axis current and the angle of the electromotor rotor position; obtaining PWM control waveform through three-phase voltages, wherein said PWM control waveform is configured to control the conversion from direct current to alternating current and drives the electromotor.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: June 26, 2012
    Assignee: BYD Company, Ltd.
    Inventors: Xiaohua Tang, Xuguang Zhou, Hongbin Luo, Ming Yu, Nan Liu, Jian Gong, Guangming Yang
  • Patent number: 8198848
    Abstract: A system for compensating the characteristics of a fan, applied to a heat-dissipating fan of an electronic device. This system comprises of an analyzing module for analyzing the relation between the duty ratio of pulse width modulation (PWM) and the rotational speed of the fan to generate analyzing data, and a compensating module for generating compensating data basing on the analyzing data and a specific proportion relation between the temperature and the duty ratio of PWM.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: June 12, 2012
    Assignee: Asustek Computer Inc.
    Inventors: Pai-Ching Huang, Jiang-Wen Huang