With Additional Series Regulator Patents (Class 323/224)
-
Patent number: 12242291Abstract: The disclosure is directed to the use of an externally-supplied control current to control the adjustment of an internal supply voltage generated via voltage regulator circuitry, which may be identified with an integrated circuit (IC) chip. The configuration of the voltage regulator circuitry functions to establish a linear relationship between the control current and the internal voltage supply. This configuration enables setting the control current to a predetermined value, causing the supply voltage to deviate in a predictable and controllable manner, and thus facilitating verification of the IC chip's internal voltage supply test circuitry. Furthermore, because the control current used for this purpose is relatively small (e.g. on the order of microamps), existing on chip test architecture, which may accommodate such low level currents, may be re-used for the selective routing of the control current for such IC testing.Type: GrantFiled: September 16, 2022Date of Patent: March 4, 2025Assignee: Infineon Technologies AGInventors: Veikko Summa, Manfred Bresch
-
Patent number: 12231104Abstract: A variable attenuator circuit is disclosed. The variable attenuator circuit comprises a plurality of varactor diodes configured to attenuate an RF signal between an RF input and an RF output; a reference voltage input, and a control voltage input configured to vary the attenuation of the variable attenuator circuit based upon a control voltage. A radio frequency module and wireless device comprising said variable attenuator are also provided.Type: GrantFiled: March 8, 2023Date of Patent: February 18, 2025Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Gordon Glen Rabjohn, Anatoli Pukhovski, Pietro Natale Alessandro Chyurlia
-
Patent number: 12212220Abstract: A programmable switch converter controller for a power stage with a switch, an inductor, and a diode, includes a pulse-width modulator. The pulse-width modulator is configured to: generate an on-time interval (Ton) that is fixed or proportional to a demand signal proportional to a load adapted to be coupled to an output of the power stage; generate an off-time interval (Toff) that is inversely proportional to the product of a voltage across the inductor while the switch is off and a demand signal proportional to the load; initiate Ton when Toff elapses; and initiate Ton responsive to an external trigger signal.Type: GrantFiled: September 27, 2023Date of Patent: January 28, 2025Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Isaac Cohen
-
Patent number: 12099389Abstract: An electronic device includes a die, one or more power stages, and one or more sensors electrically coupled to the one or more stages and to determine data associated with a temperature of the die. The electronic device includes one or more off-die power stages external to the die and processing circuitry configured to cause the one or more off-die power stages to activate based on the data indicating that the temperature is greater than a temperature threshold.Type: GrantFiled: May 10, 2022Date of Patent: September 24, 2024Assignee: Apple Inc.Inventors: Mark A Yoshimoto, Mark D Mesaros
-
Patent number: 12094542Abstract: The present disclosure is directed to an integrated circuit that includes a non-volatile memory (NVM). The integrated circuit includes a bias generator that produces stable wordline and bitline voltages for a reliable read operation of the NVM. This disclosure is directed to low voltage memory operations of memory read, erase verify, and program verify. The present disclosure is directed to non-volatile memory circuits that can also operate at low supply voltages in digital voltage supply range.Type: GrantFiled: December 3, 2021Date of Patent: September 17, 2024Assignee: STMicroelectronics International N.V.Inventors: Vikas Rana, Neha Dalal
-
Patent number: 12074556Abstract: The invention relates to a cascade activation method and mechatronic system for simultaneous generation and consumption. The system includes a non-return diode connected to an electric generator; a first voltage regulator connected to a microcontroller; a voltage converter; and an actuator, which has an activation voltage greater than the first activation voltage of the first voltage regulator. The actuator is configured to simultaneously consume a portion of the electrical energy generated by the electric generator. The method includes the steps of listing the elements of the mechatronic system that require power; calculating the activation sequence of the elements based on the minimum activation voltage and the activation time interval; selecting the electric generator based on the energy/power that needs to be provided to the mechatronic system; and programming the microcontroller with the activation sequence.Type: GrantFiled: December 21, 2022Date of Patent: August 27, 2024Assignee: OJMAR, S.A.Inventors: Jon Zabala Zabaleta, Aketza Élices Ruiz
-
Patent number: 12062982Abstract: A boost converter comprises a comparator circuit including: a first input port configured to receive an off-time sawtooth voltage a second input port configured to receive an on-time sawtooth voltage, the comparator circuit comparing the off-time sawtooth voltage and on-time sawtooth voltage to generate trigger signal including a differential ripple voltage that is output by an output port to a power stage circuit. The boost converter further comprises a reference voltage source that provides a reference voltage to the first input port and a feedback circuit that provides the on-time sawtooth voltage to the second port, wherein the differential ripple voltage emulates an inductor current or voltage of an output capacitor of the power stage circuit.Type: GrantFiled: March 11, 2022Date of Patent: August 13, 2024Assignee: NXP B.V.Inventor: Henricus Cornelis Johannes Buthker
-
Patent number: 12046920Abstract: A wireless power relay can include a first wireless power receiver (Rx1) configured to receive power from a first wireless power transmitter (Tx1) in another device and a second wireless power transmitter (Tx2) configured to deliver power to a second wireless power receiver (Rx2) in another device. Rx1 may be configured to communicate with Tx1 via a first communication link, and the Tx2 may be configured to receive communication from Rx2 via a second communication link, both employing modulation of the wireless power signal. The relay may further include a power converter with its input coupled to Rx1 and its output coupled to Tx2 and a constant power controller configured to isolate modulated communication between the communication links. Additionally or alternatively, the relay may include circuitry configured to introduce a jamming signal preventing Tx1 from detecting and improperly interpreting signals from the second communications link.Type: GrantFiled: May 3, 2021Date of Patent: July 23, 2024Assignee: Apple Inc.Inventors: Jukka-pekka J. Sjoeroos, Antoin J. Russell, Zaki Moussaoui
-
Patent number: 12010982Abstract: An electrical transmission line cable suited for a variety of applications, including as a fishing line in a video fishing system. The electrical transmission line cable has a first conductor and a second conductor forming an electrical transmission line; a jacket containing the first conductor and the second conductor; and a transmission line primary dielectric element separating the first conductor and the second conductor, wherein the primary dielectric element is at least one of textile yarns, fiber yarns, or monofilaments. The electrical transmission line may be in a balanced configuration or an unbalanced configuration.Type: GrantFiled: July 30, 2023Date of Patent: June 18, 2024Assignee: ReelView Fishing, Inc.Inventor: Dustin Alinger
-
Patent number: 12003179Abstract: A power supply includes a storage component to store an output current value representative of a magnitude of output current supplied by an output voltage of a power converter to power a load. The power supply further includes an offset reference generator and a controller. The offset reference generator produces an offset reference signal, the output current value being offset by the offset reference signal. The controller controls generation of the output voltage of the power converter as a function of the offset output current value with respect to a threshold signal (value). Additionally, the controller is configured to detect a startup mode of a power converter operative to convert an input voltage into an output voltage. During the startup mode, the controller: i) produces a threshold signal having a magnitude that varies over time, and ii) controls operation of switches in the power converter as a function of the threshold signal while the power converter is operated in a diode emulation mode.Type: GrantFiled: October 8, 2021Date of Patent: June 4, 2024Assignee: Infineon Technologies Austria AGInventors: Keng Chen, Min Chen, James R. Garrett, Danny Clavette, Charles P. Amirault
-
Patent number: 11996765Abstract: A current limit control circuit and a switched-mode power supply chip incorporating the current limit control circuit are disclosed. The current limit control circuit includes an output current sampling module, a first voltage comparator module, a hysteresis comparator module, a logic control module, a capacitor charging/discharging module and a current limit control module. The capacitor charging/discharging module is configured to charge/discharge a capacitor and thus change its output voltage, and the hysteresis comparator module is configured to produce a current limit control signal which allows the switched-mode power supply to output a high current for a specified period of time. Upon elapse of the period, the power transistor is controlled to cause a low current to be output. This ensures that the demand of a load for a transient current is satisfied while ensuring safe and stable operation of the chip for a long time.Type: GrantFiled: July 9, 2021Date of Patent: May 28, 2024Assignee: SHANGHAI XINLONG SEMICONDUCTOR TECHNOLOGY CO., LTDInventors: Ruiping Li, Jinlong Xu, Bin Liu, Wei Chi
-
Patent number: 11979052Abstract: A power source device includes a step-up circuit, a diode for backflow prevention, and an electrolytic capacitor. The step-up circuit is connected to a power source on an input side thereof and is connected to a first load and a second load in parallel on an output side thereof. The diode for backflow prevention is connected between the step-up circuit and the first load. The electrolytic capacitor is connected between the diode for backflow prevention and the first load.Type: GrantFiled: September 8, 2020Date of Patent: May 7, 2024Assignee: DENSO TEN LimitedInventor: Tomoyuki Minami
-
Patent number: 11909309Abstract: Stable switching is disclosed for a power factor correction boost converter using an input voltage and an output voltage. In one example, a boost converter control system includes a gate driver coupled to a switch of a boost converter to generate a drive signal to control switching of the switch, wherein a period of the drive signal is adjusted using a current adjustment signal. A current control loop is coupled to the gate driver to receive a sensed input current from the boost converter and a desired input current and to generate the current adjustment signal to the gate driver. A current limiter is coupled to the gate driver and the current control loop to determine a duty cycle of the switch, to determine a maximum input current in response to the duty cycle, and to restrict the desired input current to below the maximum input current.Type: GrantFiled: September 17, 2021Date of Patent: February 20, 2024Assignee: NXP USA, Inc.Inventors: Remco Twelkemeijer, Wilhelmus Hinderikus Maria Langeslag
-
Patent number: 11899486Abstract: A current mode control type switching power supply device includes a first switch having a first terminal connected to a first application terminal to which an input voltage is applied, and a second switch having a first terminal connected to a second terminal of the first switch and a second terminal connected to a second application terminal to which a predetermined voltage lower than the input voltage is applied. A current sensor is configured to sense current flowing in the second switch. A controller configured to control the first switch and the second switch, wherein the controller is configured to control the first switch and the second switch independently of a difference between the input voltage and an output voltage and in addition in accordance with the current sensed by the current sensor.Type: GrantFiled: February 23, 2022Date of Patent: February 13, 2024Assignee: Rohm Co., Ltd.Inventor: Yuhei Yamaguchi
-
Patent number: 11901806Abstract: A disconnect switch for a power converter is disclosed. An apparatus includes an inductor coupled between an input power supply node and a switch node, and a converter circuit configured to generate a particular voltage level on a boost node using a voltage level of the switch node. An output circuit is configured to provide the particular voltage level on the regulated power supply node using a voltage level of the boost node. In response to a determination that the regulated power supply node has been shorted to ground, the output circuit is configured isolate the boost node from the regulated power supply node. In response to a detection of a regulation event, the output circuit is configured to reduce the voltage level of the boost node to generate a reduced voltage on the regulated power supply node.Type: GrantFiled: September 24, 2021Date of Patent: February 13, 2024Assignee: Apple Inc.Inventors: Giovanni Saccomanno, Bogdan-Eugen Matei, Yesim Inam
-
Patent number: 11881783Abstract: An electronic device has a power rail that is driven by voltage regulators and provides a rail voltage. Each voltage regulator has an output interface electrically coupled to the power rail to deliver up to a predefined regulator current to the power rail. In each voltage regulator, a voltage regulator controller has an input coupled to the output interface by a feedback path and controls a drive path coupled to the output interface. A bypass unit is coupled to the drive path and voltage regulator controller and operates in a standby mode or an operational mode. In the standby mode, the bypass unit bypasses the feedback path and the respective voltage regulator does not deliver current to the power rail, while in the operational mode, the bypass unit does not bypass the feedback path and the respective voltage regulator delivers up to the predefined regulator current to the power rail.Type: GrantFiled: March 1, 2022Date of Patent: January 23, 2024Assignee: QUALCOMM IncorporatedInventors: Peng Zou, Xijian Lin, Gang Ren, Joseph Dibene, Syrus Ziai
-
Patent number: 11881771Abstract: A controller for a half-bridge power circuit includes a measurement circuit, a controller circuit, a high-side delay circuit, and a low-side delay circuit. The measurement circuit connects to the half-bridge node, measures the half-bridge voltage, and generates a multi-bit status signal indicative of the measured half-bridge voltage. The controller circuit connects to the measurement circuit, and receives the status signal therefrom. The controller circuit generates at least a delay control signal based on the status signal. The high-side delay circuit connects to the controller circuit to receive the delay control signal. The high-side delay circuit provides a high-side control signal in response to the delay control signal, to switch on/off the high-side switch. The low-side delay circuit connects to the controller circuit to receive the delay control signal. The low-side delay circuit provides a low-side control signal in response to the delay control signal, to switch on/off the low-side switch.Type: GrantFiled: February 1, 2022Date of Patent: January 23, 2024Assignee: NXP USA, INC.Inventors: Bo Fan, Meng Wang, Pengcheng Lin
-
Patent number: 11881846Abstract: To prevent deterioration of current detection accuracy due to a difference in deterioration between a main MOS and a sense MOS. The load drive device includes a main MOS (101) for supplying a load current to a load, a sense MOS (102) to be used for detection of the load current, and an equalizer circuit (110) and a switch (120) which are provided in parallel between the source terminal of the main MOS and the source terminal of the sense MOS. The drain terminal of the main MOS and the drain terminal of the sense MOS have a common connection, and when a current is detected, the terminal voltage of the main MOS and the terminal voltage of the sense MOS are equalized by the equalizer circuit, and the switch is opened. When a current is not detected, the equalizer circuit is stopped and the switch short-circuits the source terminal of the main MOS and the source terminal of the sense MOS.Type: GrantFiled: September 26, 2019Date of Patent: January 23, 2024Assignee: Hitachi Astemo, Ltd.Inventors: Keishi Komoriyama, Yoichiro Kobayashi
-
Patent number: 11817778Abstract: An apparatus for electric power conversion includes a converter having a regulating circuit and switching network. The regulating circuit has magnetic storage elements, and switches connected to the magnetic storage elements and controllable to switch between switching configurations. The regulating circuit maintains an average DC current through a magnetic storage element. The switching network includes charge storage elements connected to switches that are controllable to switch between plural switch configurations. In one configuration, the switches forms an arrangement of charge storage elements in which at least one charge storage element is charged using the magnetic storage element through the network input or output port. In another, the switches form an arrangement of charge storage elements in which an element discharges using the magnetic storage element through one of the input port and output port of the switching network.Type: GrantFiled: October 6, 2022Date of Patent: November 14, 2023Assignee: pSemi CorporationInventor: David M. Giuliano
-
Patent number: 11774992Abstract: Disclosed is a power supply device including a first direct-current power source that generates a direct-current voltage to be supplied to a device that is a load, and a second direct-current power source that generates a direct-current voltage to be supplied to a sensor that detects a physical quantity. The first direct-current power source is an output variable type power source that generates a direct-current voltage that changes according to a signal from the sensor, and the second direct-current power source is an output fixed type power source that generates a constant direct-current voltage.Type: GrantFiled: May 25, 2021Date of Patent: October 3, 2023Assignee: MITSUMI ELECTRIC CO., LTD.Inventors: Yoichi Takano, Shinichiro Maki, Katsuhiro Yokoyama
-
Patent number: 11777409Abstract: An inductive current simulation circuit of a switching circuit, an inductive current simulation method of the switching circuit, and a switched-mode power supply are provided. The inductive current simulation method includes the following steps: based on an error amplification circuit, performing, by the error amplification circuit, an error amplification on a first sampling signal representing a current of a synchronous rectifier and a second sampling signal representing an inductive current simulation signal when the synchronous rectifier is turned on to obtain an error amplification signal; and reconstructing an inductive current according to the error amplification signal when the synchronous rectifier is turned on and a first current when a main power transistor is turned on to obtain the inductive current simulation signal.Type: GrantFiled: December 7, 2021Date of Patent: October 3, 2023Assignee: JOULWATT TECHNOLOGY CO., LTD.Inventor: Aimin Xu
-
Patent number: 11750094Abstract: A control circuit for a switching converter, where: the control circuit is configured to generate a switching control signal according to an output voltage of the switching converter to control a switching state of a power transistor in the switching converter, and to adjust an output current of the switching converter; and a change trend of a length of a switching period of the power transistor is opposite to a change trend of the output voltage.Type: GrantFiled: July 7, 2021Date of Patent: September 5, 2023Assignee: Silergy Semiconductor Technology (Hangzhou) LTDInventors: Huiqiang Chen, Jianxin Wang
-
Patent number: 11716079Abstract: A method of operating a driver circuit includes receiving a data signal at a first input of an amplification circuit; amplifying, using the amplification circuit, the data signal to produce an output signal through an output pin; attenuating, using a feedback network, the output signal to produce a feedback signal; coupling the feedback signal to a second input of the amplification circuit; detecting, using a control circuit, a fault condition; and decoupling, responsive to detecting the fault condition, the feedback signal from the second input of the amplification circuit. In some embodiments, the driver circuit transmits a fault condition signal to an electronic control unit of an automobile.Type: GrantFiled: December 30, 2021Date of Patent: August 1, 2023Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Michal Olsak, Pavel Baros
-
Patent number: 11695373Abstract: One example includes a differential amplifier, a voltage weighting element, coupled to a voltage source which provides an input voltage, to provide a reference voltage with a constant power limit when the input voltage varies, an error amplifier configured to receive and compare the reference voltage provided from the voltage weighting element and a feedback sensed voltage provided from the differential amplifier to identify whether the sensed voltage exceeds the reference voltage, and a pulse width modulation (PWM) controller, coupled to a power transformer and the error amplifier, that reduces a transformer input current provided to the power transformer based on the comparison of the reference voltage from the voltage weighting element and the feedback sensed voltage from the differential amplifier.Type: GrantFiled: August 24, 2021Date of Patent: July 4, 2023Assignee: Biamp Systems, LLCInventors: David F. Baretich, Simon J. Broadley
-
Patent number: 11695334Abstract: A method includes configuring a switched capacitor converter to operate in a first fixed PWM mode, wherein in the first fixed PWM mode, the switched capacitor converter is configured to charge a battery coupled to an input of the switched capacitor converter, configuring the switched capacitor converter to operate in a second fixed PWM mode, wherein in the second fixed PWM mode, the switched capacitor converter is configured to discharge the battery, and configuring the switched capacitor converter to operate in a skip mode, wherein the switched capacitor converter has automatic transitions among different modes based on comparisons between an output voltage of the switched capacitor converter and a plurality of predetermined voltage thresholds.Type: GrantFiled: October 21, 2021Date of Patent: July 4, 2023Assignee: NuVolta Technologies (Shanghai) Co., Ltd.Inventors: Cheng Liu, Fuchun Zhan, Yushi Liu
-
Patent number: 11689101Abstract: Circuits and methods for adding a Current Mode signal into a Voltage Mode controller for fixed-frequency DC-to-DC power converters. A current-controlled voltage source (CCVS) generates a voltage proportional to the power converter output current, which voltage is combined with a comparison signal generated by comparing a target output voltage to the actual output voltage. The modified comparison signal generates a pulse-width modulation control signal that regulates the power converter output as a function of output voltage and some portion of output current. With the addition of an inductor current signal into the controller Voltage Mode feedback loop, the double pole predominant in constant conduction mode (CCM) mode can be smoothed over to improve stability, while discontinuous conduction mode (DCM) loop response is largely unchanged with or without the added Current Mode signal. Embodiments enable simplified compensation while covering a wider operating range.Type: GrantFiled: November 12, 2020Date of Patent: June 27, 2023Assignee: pSemi CorporationInventors: Brian Zanchi, Tim Wen Hui Yu, Gregory Szczeszynski
-
Patent number: 11671026Abstract: A method involves receiving, at an active clamp controller circuit, an active clamp switch current that passes through an active clamp switch. The active clamp switch is enabled using the active clamp controller circuit in response to determining, based on the active clamp switch current, body-diode conduction of the active clamp switch. The active clamp switch is disabled using the active clamp controller circuit in response to determining, based on the active clamp switch current, a first zero-crossing of the active clamp switch current and a second zero-crossing of the active clamp switch current.Type: GrantFiled: August 16, 2021Date of Patent: June 6, 2023Assignee: Appulse Power Inc.Inventor: Aleksandar Radic
-
Patent number: 11641122Abstract: A pulse charging for a battery includes multi-stage voltage conversion. At first stage, an input voltage from a power supply is divided into a plurality of intermediate voltages. At second stage, one or more of the plurality of intermediate voltage are further down converted to generate one or more portions of a charging pulse to be applied to the battery. The down conversion of the input voltage to the output voltage is accompanied by increase in charging current that is applied to the battery. The higher charging current applied to the battery results in fast charging of the battery. Also, the described multi-stage voltage conversion circuitry has high efficiency which alleviates problem of heat dissipation associated with the voltage conversion for charging of the battery.Type: GrantFiled: June 7, 2018Date of Patent: May 2, 2023Assignee: Gbatteries Energy Canada Inc.Inventors: Oleksandr Tkachenko, Mykola Sherstyuk, Aleksandar Prodic, Timothy McRae, Ivan Radovic, Oleksandr Puzakov
-
Patent number: 11626802Abstract: A DC-DC converter of a synchronous rectification type includes a synchronous rectification transistor and a backflow detection circuit which detects a reverse current based on a voltage across the synchronous rectification transistor. The backflow detection circuit includes a first-stage differential input circuit including a first transistor, a first resistor, a second transistor, a second resistor and a fifth transistor, and a second-stage differential input circuit including a third transistor and a fourth transistor. The fifth transistor is of a same conductive type as the synchronous rectification transistor and contains a drain connected to the other end of the first resistor with respect to an end connected to the first transistor.Type: GrantFiled: July 30, 2021Date of Patent: April 11, 2023Assignee: ABLIC Inc.Inventor: Yoshiomi Shiina
-
Patent number: 11601018Abstract: A control system for a wireless power transfer (WPT) system includes current sampling modules, voltage sampling modules, a logic conversion circuit, and a controller area network (CAN) communication module that are all connected to a microprocessor module; the current sampling module is connected to the logic conversion circuit through a signal isolation circuit, the logic conversion circuit is connected to a pulse-width modulation (PWM) module, the PWM module is connected to an inverter circuit or a DC/DC converter, and the current sampling module and the voltage sampling module are connected to a primary side or a secondary side of the WPT system; transmitter coils on the primary side are spaced apart on the road, a receiver coil on the secondary side is disposed on a chassis of an electric vehicle, and the transmitter coil includes a double rectangular coil, a ferrite core surface, and a shielding aluminum plate.Type: GrantFiled: June 22, 2021Date of Patent: March 7, 2023Assignee: ZHEJIANG UNIVERSITYInventors: Zhitao Liu, Jia Liu, Hongye Su
-
Patent number: 11588388Abstract: A control device of a power supply system includes a processor configured to set a sampling period, at which measurement values of a reactor current flowing through a reactor of a DC-DC converter and measured by an ammeter are sampled, so as to minimize a sum of differences between the length of a first period in a switching cycle of a switching element of the DC-DC converter and an integer multiple of the sampling period and between the length of a second period in the switching cycle and an integer multiple of the sampling period, the reactor current increasing during the first period and decreasing during the second period; sample, at intervals of the sampling period, measurement values of the reactor current measured by the ammeter; and average measurement values sampled in the switching cycle, thereby measuring an average of the reactor current in the switching cycle.Type: GrantFiled: August 4, 2021Date of Patent: February 21, 2023Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Daiki Yaginuma, Masato Nonaka, Keidai Minami, Masaharu Kimura, Tomohiko Kaneko
-
Patent number: 11581805Abstract: In a power converter that includes a switched-capacitor circuit connected to a switched-inductor circuit, reconfiguration logic causes the switched-capacitor circuit to transition between first and second switched-capacitor configurations with different voltage-transformation ratios. A compensator compensates for a change in the power converter's forward-transfer function that would otherwise result from the transition between the two switched-capacitor configurations.Type: GrantFiled: August 28, 2020Date of Patent: February 14, 2023Assignee: PSEMI CORPORATIONInventor: Gregory Szczeszynski
-
Patent number: 11575319Abstract: A DC-DC converter includes a high-side switch coupled between a first power supply and an output terminal, a low-side switch coupled between a second power supply and the output terminal, an inductor coupled to the output terminal, and a reverse current monitoring circuit that determines that a reverse current from the inductor to the output terminal occurs when the output terminal becomes a high voltage during a state in which the high-side switch and the low-side switch are in a dead time.Type: GrantFiled: December 30, 2020Date of Patent: February 7, 2023Assignee: RENESAS ELECTRONICS CORPORATIONInventors: Masayuki Ida, Yasuhiko Kokami, Hideyuki Tajima, Hiroyuki Inoue, Noboru Inomata
-
Patent number: 11557969Abstract: A system includes: 1) a battery configured to provide an input voltage (VIN); 2) switching converter circuitry coupled to the battery, wherein the switching converter circuitry includes a power switch; 3) a load coupled to an output of the switching converter circuitry; and 4) a control circuit coupled to the power switch. The control circuit includes: 1) a switch driver circuit coupled to the power switch; 2) a summing comparator circuit configured to output a first control signal that indicates when to turn the power switch on; and 3) an analog on-time extension circuit configured to extend an on-time of the power switch by gating a second control signal with the first control signal, wherein the second control signal indicates when to turn the power switch off.Type: GrantFiled: September 2, 2020Date of Patent: January 17, 2023Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Zejing Wang, Zhujun Li, Songming Zhou, Yu Wang
-
Patent number: 11552561Abstract: A converter circuit. In one aspect, the converter circuit includes an input terminal, a first output terminal and a second output terminal, and first, second, third and fourth capacitors coupled to a plurality of switches, where the plurality of switches are arranged to repetitively cycle the first, second, third and fourth capacitors between a first state and a second state to generate first and a second output voltages, where in the first state, the first and second capacitors are connected in parallel with each other and in series with a third capacitor to apply a first fraction of an input voltage at the first output terminal, and in the second state, the first and second capacitors are connected in series with each other and in parallel with the fourth capacitor to apply a second fraction of the input voltage at the second output terminal.Type: GrantFiled: June 28, 2022Date of Patent: January 10, 2023Assignee: Empower Semiconductor, Inc.Inventor: Trey Roessig
-
Patent number: 11545901Abstract: The present disclosure provides a control system of a buck converter, relating to the field of Internet of Things. The control system of a buck converter provided in an embodiment of the present disclosure includes a first control module, a second control module, and a mode selector. The first control module is turned on and the second control module is turned off through an analog current sensor in the mode selector when an IoT device switches from a transmission mode to a sleep mode or a standby mode, so that the first control module outputs a first voltage pulse to the driving and level shifter module, wherein a frequency of the first voltage pulse is determined by a frequency of a first clock in the first control module, and a width of the first voltage pulse is determined by a frequency of a second clock in the first control module.Type: GrantFiled: July 8, 2021Date of Patent: January 3, 2023Assignee: University of MacauInventors: Wenliang Zeng, Chi Seng Lam, Sai Weng Sin, Weng Keong Che, Rui Paulo Da Silva Martins, Ran Ding
-
Patent number: 11539290Abstract: A power management circuit operable with low battery is provided. The power management circuit is configured to generate a time-variant average power tracking (APT) voltage based on a battery voltage supplied by a voltage source (e.g., battery). In examples disclosed herein, the power management circuit can be configured to remain operable when the battery voltage drops below a low battery threshold. Specifically, the power management circuit maintains the time-variant APT voltage at a constant level in response to the battery voltage dropping below the low battery threshold to thereby avoid drawing a rush current from the voltage source. As a result, a wireless device employing the power management circuit can remain operable with low battery to continue to support critical applications.Type: GrantFiled: March 31, 2021Date of Patent: December 27, 2022Assignee: Qorvo US, Inc.Inventors: Nadim Khlat, Michael R. Kay
-
Patent number: 11509301Abstract: An electronic switch includes a current sensor and a semiconductor switch having two semiconductors configured to carry and disconnect a current in both directions, and a control circuit configured to operate the semiconductor switch by pulse-width modulation and to determine a phase control factor of the pulse-width modulation as a function of measurement values of the current sensor such that in fault-free operation, the electronic switch remains in the ON state and that two limit values exist for protection. The electronic switch is operated by pulse-width modulation when a first one of the two limit values is exceeded, and the electronic switch is switched off when a second one of the two limit values, which is greater than the first limit value, is exceeded. The electronic switch is configured to reduce an edge steepness of a switching edge as the phase control factor decreases.Type: GrantFiled: February 12, 2020Date of Patent: November 22, 2022Assignee: SIEMENS AKTIENGESELLSCHAFTInventor: Markus Matthias Gaudenz
-
Patent number: 11507121Abstract: A circuit includes a reference voltage generator circuit and a regulation loop circuit having an output voltage terminal. The regulator circuit further includes a fault detection circuit having a first input terminal coupled to the output voltage regulator terminal of the regulation loop circuit. The fault detection circuit asserts, on an output terminal of the fault detection circuit, a fault flag signal responsive to a voltage on the first input terminal falling below a first threshold. A programmable filter is coupled between the reference voltage generator circuit and the regulation loop circuit and is coupled to the fault detection circuit. The programmable filter has a programmable time constant. The programmable filter responds to an assertion of the fault flag signal by decreasing the time constant.Type: GrantFiled: December 21, 2020Date of Patent: November 22, 2022Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Rohit Phogat, Ramakrishna Ankamreddi, Siddhant Rohela
-
Patent number: 11496047Abstract: An apparatus for electric power conversion includes a converter having a regulating circuit and switching network. The regulating circuit has magnetic storage elements, and switches connected to the magnetic storage elements and controllable to switch between switching configurations. The regulating circuit maintains an average DC current through a magnetic storage element. The switching network includes charge storage elements connected to switches that are controllable to switch between plural switch configurations. In one configuration, the switches forms an arrangement of charge storage elements in which at least one charge storage element is charged using the magnetic storage element through the network input or output port. In another, the switches form an arrangement of charge storage elements in which an element discharges using the magnetic storage element through one of the input port and output port of the switching network.Type: GrantFiled: November 23, 2021Date of Patent: November 8, 2022Assignee: pSemi CorporationInventor: David M. Giuliano
-
Patent number: 11482889Abstract: A wireless power receiver according to some embodiments includes an integrated circuit which includes: a full-bridge rectifier coupled to receive wireless power from a receiver coil; a wireless receiver controller coupled to control the full-bridge rectifier; a pass device coupled between the full-bridge rectifier and an output; and a configurable controller coupled to the switch, the configurable controller configurable as a LDO controller or a Buck controller. A second controller can be coupled to the configurable controller that interfaces to an external Buck low-side transistor if the configurable controller is the Buck controller and provides GPIO if the configurable controller is the LDO controller. A third controller can be coupled to the full-bridge rectifier, which operates as a full-bridge sync rectifier driver multiplexer to select an external driver for one or more of the rectifier transistors. Other features are also provided.Type: GrantFiled: June 11, 2019Date of Patent: October 25, 2022Assignee: INTEGRATED DEVICE TECHNOLOGY, INC.Inventors: Rui Liu, Jiangjian Huang
-
Patent number: 11476843Abstract: The disclosure provides a bias voltage calibration circuit adapted for a signal receiving device. The bias voltage calibration circuit includes a reference voltage generator, a voltage-current converter, and a bias current generator. The reference voltage generator receives a voltage adjustment signal, and adjusts a voltage value of a generated reference voltage according to the voltage adjustment signal. The voltage-current converter is coupled to the reference voltage generator, and converts the reference voltage to generate a reference current. The bias current generator generates a plurality of bias currents according to the reference current, and provides the bias current to an equalization circuit of the signal receiving device in a calibration mode.Type: GrantFiled: May 10, 2021Date of Patent: October 18, 2022Assignee: ALi CorporationInventors: Yen Liang Lin, Ming-Ta Lee
-
Patent number: 11451148Abstract: A voltage-regulating circuit comprising: a voltage regulator, a switch, a first comparing circuit for comparing the amplitude deviation between the input voltage and the output voltage to a first threshold, a second comparing circuit for comparing the amplitude of the output voltage to a second threshold, and a control circuit for commanding the switch to open or close depending on the comparisons made by the first comparing circuit and by the second comparing circuit. Also disclosed is a regulated power-supply module comprising such a voltage-regulating circuit.Type: GrantFiled: September 25, 2020Date of Patent: September 20, 2022Assignee: Schneider Electric Industries SASInventor: Jérôme Brenguier
-
Patent number: 11404966Abstract: The present disclosure provides an isolated multi-phase DC/DC converter with a reduced quantity of blocking capacitors. In one aspect, the converter includes a multi-phase transformer having a primary circuit and a secondary circuit magnetically coupled to the primary circuit, the primary circuit having a first quantity of terminals, and the secondary circuit having a second quantity of terminals; a third quantity of blocking capacitors, each being electrically connected in series to a respective one of the terminals of the primary circuit; and a fourth quantity of blocking capacitors, each being electrically connected in series to a respective one of the terminals of the secondary circuit. The third quantity is one less than the first quantity. The fourth quantity is one less than the second quantity.Type: GrantFiled: November 30, 2020Date of Patent: August 2, 2022Assignee: DELTA ELECTRONICS, INC.Inventors: Jong Woo Kim, Peter Mantovanelli Barbosa
-
Patent number: 11385266Abstract: The present invention provides a current detection circuit, semiconductor device, and a semiconductor system suitable for improving a current sensing accuracy. According to one embodiment, the current detection circuit 12 comprises a sense transistor Tr11 through which a first sense current proportional to the current flowing through the drive transistor MN1 flows, an operational amplifier AMP1 for amplifying the potential difference of the voltage of the external output terminal OUT and the source voltage of the sense transistor Tr11 for outputting the first sense current, a transistor Tr12 provided in series with the sense transistor Tr11 and to which the output voltage of the operational amplifier AMP1 is applied to the gate, and a switch SW3 provided between the external output terminal OUT and the source of the sense transistor Tr11 and turned on when the drive transistor MN1 is turned off.Type: GrantFiled: March 16, 2020Date of Patent: July 12, 2022Assignee: RENESAS ELECTRONICS CORPORATIONInventors: Keisuke Kimura, Hideyuki Tajima, Wataru Saito
-
Patent number: 11387731Abstract: A converter system includes a first switch, a sample-and-hold unit configured to provide a comparison signal based on a feedback signal when the first switch is switched off, and hold the comparison signal independent from the feedback signal when the first switch is switched on, and a pulse-width-modulation (PWM) generator, coupled between the sample-and-hold unit and first switch, configured to generate a PWM signal based on the comparison signal, wherein the first switch is configured to be switched on and off based on the PWM signal.Type: GrantFiled: August 21, 2019Date of Patent: July 12, 2022Assignee: Texas Instruments IncorporatedInventors: Weibing Jing, Liang Zhang, Dan Li, Qi Yang
-
Patent number: 11387823Abstract: A PFM control circuit includes a switching circuit, a slope-decision circuit, a flip-flop, a first and a second comparison circuits. The first comparison circuit outputs a first signal according to an output voltage of a power conversion circuit. The switching circuit outputs a switching signal according to an output current of the power conversion circuit. The slope-decision circuit outputs a slope modulation voltage, and determines a slope modulation voltage with a first or a second slope according to the switching signal. The second comparison circuit outputs the second signal according to the slope modulation voltage. The flip-flop outputs a control signal to the power conversion circuit according to the first and the second signals. When the slope modulation voltage has the first or the second slope, the control signal has a first or a second frequency accordingly. The first frequency is higher than the second frequency.Type: GrantFiled: April 17, 2020Date of Patent: July 12, 2022Assignee: REALTEK SEMICONDUCTOR CORPORATIONInventors: Shih-Cheng Wang, Chun-Yu Luo, Shih-Chieh Chen, Liang-Hui Li, Chun-Fu Chang
-
Patent number: 11381223Abstract: A power supply system includes: a first power storage device; a second power storage device having a lower voltage than the first power storage device; a DC-DC converter including a choke coil, a first switching element, a diode connected in parallel with the first switching element, and a second switching element; a semiconductor relay configured to switch a connection state between a second end of the choke coil and the second power storage device; and a controller configured to perform PWM control of the first switching element and the second switching element to control ON and OFF of the semiconductor relay. When an ON time of the second switching element is controlled to become zero and a current flowing out from the second power storage device exceeds a first reference current, the controller reduces a duty ratio of an ON time of the first switching element.Type: GrantFiled: August 23, 2018Date of Patent: July 5, 2022Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Tomohiro Usami, Takuya Yamamoto
-
Patent number: 11362579Abstract: A switching power converter circuit may include output voltage overshoot mitigation circuitry that can modify operation of the converter responsive to an overvoltage condition by switching from a pulse width modulation (PWM) mode to a pulse frequency modulation (PFM) mode. A clamp may be provided to clamp a control voltage or a compensating capacitor voltage of the main output voltage control loop (e.g., a PWM control loop) to a control voltage of the PFM loop. An output pull down circuit may be provided to temporarily apply a load to the converter output.Type: GrantFiled: November 14, 2019Date of Patent: June 14, 2022Assignee: Apple Inc.Inventors: Stephen Hrinya, Di Zhao
-
Patent number: RE50103Abstract: Circuits comprising: an inductor having a first side connected to VIN; a first switch having a first side connected to a second side of the inductor; a second switch having a first side connected to VIN; a first capacitor having a first side connected to a second side of the second switch; a third switch having a first side connected to a second side of the first switch; a fourth switch having a first side connected to a second side of the third switch; a fifth switch having a first side connected to a second side of the first capacitor and to a second side of the fourth switch, and having a second side coupled to a voltage source; and a second capacitor having a first side connected to the first side of the fourth switch, and having a second side connected to the second side of the fifth switch.Type: GrantFiled: January 18, 2022Date of Patent: August 27, 2024Assignee: Lion Semiconductor Inc.Inventors: Alberto Alessandro Angelo Puggelli, Thomas Li, Wonyoung Kim, John Crossley, Hanh-Phuc Le