Using A Three Or More Terminal Semiconductive Device Patents (Class 323/223)
  • Patent number: 10176951
    Abstract: The constant voltage supplying circuit for a circuit breaker according the invention comprises: a first switching device; a constant current source configured to supply a constant current; a feedback circuit section commonly connected to an output terminal of each of the first switching device and the constant current source; a constant voltage source connected to the feedback circuit section, and configured to supply a constant voltage; a current adjusting circuit section connected to the output terminal of the first switching device, and configured to adjust an output current of the first switching device; and a divided voltage resistor section including a first resistor and a second resistor, and configured to provide a divided voltage of an output voltage of the constant voltage supplying circuit, to the feedback circuit section, through a connection node between the first resistor and the second resistor.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: January 8, 2019
    Assignee: LSIS CO., LTD.
    Inventor: Jongkug Seon
  • Patent number: 10148099
    Abstract: A power supply circuit is provided that includes first and second power sources coupled in parallel, a first circuit path that provides reverse current blocking and reverse polarity protection associated with positive terminals of the respective first and second power sources, a second circuit path that bypasses current blocking of the first circuit path, a third circuit path that provides reverse polarity protection associated with negative terminals of the respective first and second power sources, and a bypass control circuit that controls the second circuit path based on determination of a predetermined condition.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: December 4, 2018
    Assignee: Carrier Corporation
    Inventors: Kimmo A. Kyllonen, John A. Seliski
  • Patent number: 10122255
    Abstract: Various embodiments of apparatuses, systems and methods for regulating the currents provided by a DCDC buck converters to an LED unit are provided. In accordance with at least one embodiment, a device includes a time-off module configured to output a time-off signal when an output voltage of a power supply reaches a predetermined threshold; a timer module configured to determine a first duration, and after waiting a second duration, output a measured time signal; and a control module, coupled to each of the timer module and the time-off module, configured to output a set signal during a current cycle of the power supply, wherein the “on” slate for the current cycle occurs while the control module outputs the set signal and ends when the control module receives the measured time signal.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: November 6, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Pavel Horsky, Jean-Paul Eggermont, Jan Plojhar, Martin Musil, Paul Andrem Decloedt
  • Patent number: 10075076
    Abstract: A voltage converter circuit includes a high side transistor, a high side driver coupled to a control input of the high side transistor, a low side transistor coupled to the high side transistor at a switch node, and a current steering circuit coupled to the control input of the high side and to the switch node. During transition of the high side transistor to an on state, a current from the high side driver initially divides between the control input of the high side transistor and the current steering circuit, and as a voltage on the switch node increases, less of the current from the high side driver flows through the current steering circuit and more of the current from the high side driver flows to the control input of the high side transistor.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: September 11, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Preetam Tadeparthy, Brian Carpenter, Nitin Agarwal
  • Patent number: 10037075
    Abstract: Voltage regulation techniques for electronic devices are described. In one embodiment, for example, an apparatus may comprise an electronic element comprising one or more integrated circuits, a voltage regulator to regulate an input voltage of the electronic element, the voltage regulator to source an output current comprising at least a portion of an input current of the electronic element, the voltage regulator to operate in a current-limiting mode to limit the output current when the input current exceeds a threshold current, and a capacitor bank comprising one or more capacitors, the capacitor bank to source a supplemental current to supplement the output current of the voltage regulator when the voltage regulator operates in the current-limiting mode. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 2, 2016
    Date of Patent: July 31, 2018
    Assignee: INTEL CORPORATION
    Inventors: Brian J. Griffith, Viktor D. Vogman
  • Patent number: 9979294
    Abstract: A DC-DC converter includes an output power stage and a driver circuit. The output stage switches an input voltage to a switch node using a first transistor in response to a top-gate signal received at a top-gate node, and the switch node to ground using a second transistor in response to a bottom-gate signal received at a bottom-gate node. The driver circuit that provides the top- and bottom-gate signals in response to high- and low-side switch signals, respectively, activates the top-gate signal by actively regulating the top-gate node to a first voltage between a threshold voltage and a breakdown voltage of the first transistor using charge from the bottom-gate node, and activates the bottom-gate signal by actively regulating a second voltage provided to the bottom-gate node between a threshold voltage and a breakdown voltage of the second transistor using charge from the top-gate node.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: May 22, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Paul Jay Harriman, Andrea Bonelli, Dominique Romeo
  • Patent number: 9948190
    Abstract: A power control module for an electronic converter is disclosed. The electronic converter includes a power stage comprising two input terminals for receiving a first power signal and two output terminals for providing a second power signal. The electronic converter includes, moreover, a control circuit configured to control operation of the power stage as a function of a feedback control signal. In particular, the power control module includes a pre-elaboration module configured to generate a reference signal as a function of the feedback control signal and a first signal being representative of a voltage applied to the two input terminals. An error amplifier is configured to generate a modified control signal as a function the reference signal and a second signal being representative of a current flowing through the two input terminals.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: April 17, 2018
    Assignee: STMicroelectronics S.r.l.
    Inventor: Claudio Adragna
  • Patent number: 9935549
    Abstract: In accordance with presently disclosed embodiments, a 5-switch power conversion circuit that improves the power conversion efficiency (PCE) of a DC-DC converter with a double chopper topology is provided. The power conversion circuit adds minimal complexity through an additional switch, while preserving the benefits of a 3-level boost converter topology. The disclosed power conversion circuit uses four switches that are arranged in a 3-level boost converter arrangement, and a fifth switch that is connected in parallel with two of the other switches. The fifth switch helps to reduce the conduction power losses through the DC-DC converter by providing a one-switch ON-state conduction path instead of a two-switch path during part of the DC-DC power conversion cycle.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: April 3, 2018
    Assignee: Toshiba International Corporation
    Inventor: David Martin Westmoreland
  • Patent number: 9912246
    Abstract: The invention describes a bleeder circuit (1) realized for use in a dimmer (2) comprising a main AC switch (20) for switching a supply voltage (LINE) to a light non-linear load (L), which bleeder circuit (1) comprises a bleeder load (11) realized to provide operational assistance to main AC switch (20); wherein the bleeder load (11) is enabled on the basis of a switching signal (T20) of the main AC switch (20). The invention further describes a dimmer (2) comprising such a bleeder circuit (1). The invention also describes an electrical appliance comprising a light non-linear load (L) and such a dimmer (2). The invention further describes a method of dimming a light non-linear load (L).
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: March 6, 2018
    Assignee: PHILIPS LIGHTING HOLDING B.V.
    Inventors: Miroslav Ilic, Lorethus Omambac Bahan, Ratko Milosavljevic
  • Patent number: 9868172
    Abstract: A power supply with a waveform control function is provided. The power supply includes a waveform type selector that selects a desired shape for an output waveform and a setpoint selector that sets an output setpoint for the power supply. The power supply further includes a waveform generator that generates a reference waveform signal. The waveform generator includes a target generation circuit that generates a plurality of target values corresponding to the reference waveform signal. The waveform generator also includes a transition circuit that performs a series of transitions between the plurality of target values to generate the reference waveform signal, and a ramp circuit that controls a ramp speed of at least one transition of the series of transitions based on the desired shape. The generation of a target value corresponding to a peak value of the reference waveform signal is based on at least the output setpoint.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 16, 2018
    Assignee: LINCOLN GLOBAL, INC.
    Inventor: Steven R. Peters
  • Patent number: 9853460
    Abstract: A power conversion circuit includes multiple input-side capacitors connected in series between input terminals; series circuits composed of high-side switching elements and low-side switching elements connected in parallel to the multiple input-side capacitors; and output-side capacitors connected between nodes and a node. The circuit further includes an output-side inductor connected to the node and a controller that alternately turns on and off the high-side switching elements and the low-side switching elements. Each of the low-side switching elements and the high-side switching elements is a MOSFET and causes current to flow from the low side to the high side using a body diode. Accordingly, there is provided a power conversion circuit that has high conversion efficiency and that is capable of realizing reduction in size, a power transmission system, and a power conversion system.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: December 26, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Keiichi Ichikawa, Tatsuya Hosotani
  • Patent number: 9690365
    Abstract: A processing device performs dual-rail power equalization for its memory cell array and logic circuitry. The memory cell array is coupled to a first power rail through a first switch to receive a first voltage level. The logic circuitry is coupled to a second power rail through a second switch to receive a second voltage level that is different from the first voltage level. The processing device also includes a power switch coupled to at least the second power rail and operative to be enabled to equalize voltage supplied to the memory cell array and the logic circuitry.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: June 27, 2017
    Assignee: MediaTek, Inc.
    Inventors: Hugh Thomas Mair, Yi-Te Chiu, Che-Wei Wu, Lee-Kee Yong, Chia-Wei Wang, Cheng-Hsing Chien, Uming Ko
  • Patent number: 9641078
    Abstract: A switching power supply device includes a switching output circuit, an error amplifier, a slope voltage generating circuit, a PWM comparator, a logic circuit, a switch driving circuit, and a reverse current detection circuit. The slope voltage generating circuit increases a slope voltage from a reset level with a gradient corresponding to an input voltage during an on period of the output transistor, and maintains the slope voltage at an offset level corresponding not to the reset level but to an output voltage during an off period of the output transistor.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: May 2, 2017
    Assignee: Rohm Co., Ltd.
    Inventor: Yosuke Fukumoto
  • Patent number: 9601942
    Abstract: Disclosed is a wireless power receiver to transfer power wirelessly received from a wireless power transmitter to a load. The wireless power receiver includes a first reception induction coil coupled with a reception resonant coil to receive AC power; a first rectifying diode to rectify the AC power received through the first reception induction coil; a second reception induction coil connected to the first reception induction coil and coupled with the reception resonant coil to receive the AC power; and a second rectifying diode to rectify the AC power received through the second reception induction coil, wherein the wireless power receiver changes a transferring path of the power provided to the load according to a polarity variation of the AC power received through the first and second reception induction coils.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: March 21, 2017
    Assignee: LG INNOTEK CO., LTD.
    Inventor: Su Ho Bae
  • Patent number: 9537384
    Abstract: To provide a power supply noise reduction circuit and a power supply noise reduction method that do not require circuit elements to be increased in size and do not cause voltage drop in a power supply voltage. A power supply noise reduction circuit 10 that reduces noise included in a constant voltage output that is output from a power supply 2 to a load includes a first resistor 20 that is inserted into a power supply line L1 extending from the power supply 2 to the load, a filter 31 that is coupled to a load terminal of the first resistor 20 and outputs a first voltage that is obtained by reducing the noise from the constant voltage output, and a unity gain amplifier 32 that drives the first voltage output from the filter 31 and outputs the driven first voltage to the load terminal of the first resistor 20.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: January 3, 2017
    Assignee: ADVANTEST CORPORATION
    Inventor: Toshiyuki Sato
  • Patent number: 9391449
    Abstract: Of a wireless communication system, an RF tag which can operate normally even when a communication distance is extremely short, like the case where the RF tag is in contact with a reader/writer, whereby the reliability is improved. The RF tag which communicates data by wireless communication includes a comparison circuit which compares electric power supplied from outside with reference electric power and a protection circuit portion which is operated when the electric power supplied from outside is higher than the reference electric power in the comparison circuit.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: July 12, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Asami Tadokoro
  • Patent number: 9337732
    Abstract: A charge and discharge signal circuit includes: high side transistors connected in series; low side transistors connected in series; high side drive circuits; low side drive circuits; and a drive signal generation circuit, wherein each drive circuit includes: a high side level shifter; a high side capacitor switch string of a capacitor and a switch element connected in series, being connected in parallel with the high side transistor; and a high side drive part, to which an output of the high side level shifter is supplied, and each of the low side drive circuits includes: a low side level shifter; a low side capacitor switch string of a capacitor and a switch element connected in series, being connected in parallel with the low side transistor; and a low side drive part, to which an output of the low side level shifter is supplied.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: May 10, 2016
    Assignees: FUJITSU LIMITED, FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Masafumi Kondou, Koji Takekawa
  • Patent number: 9263935
    Abstract: A charge and discharge signal circuit includes: high side transistors connected in series; low side transistors connected in series; high side drive circuits; low side drive circuits; and a drive signal generation circuit, wherein each drive circuit includes: a level shifter; a capacitor switch string connected in series, being connected in parallel with the transistor; and a drive part, to which an output of the level shifter is supplied, at least one pair of neighboring ones of the level shifters are commonly formed, and two neighboring ones of the drive parts receive a same output from the common shifters.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: February 16, 2016
    Assignee: FUJITSU LIMITED
    Inventor: Masafumi Kondou
  • Patent number: 9225199
    Abstract: Systems for harvesting energy from a variable output energy harvesting apparatus are disclosed. The systems include an energy harvesting apparatus for providing energy input to a switched mode power supply and a control loop for dynamically adjusting energy harvesting apparatus input to the switched mode power supply, whereby system output power is substantially optimized to the practical. Exemplary embodiments include systems for harvesting energy using solar cells in boost, buck, and buck-boost configurations.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: December 29, 2015
    Assignee: TRIUNE IP, LLC
    Inventors: Ross E. Teggatz, Wayne T. Chen, Brett Smith, Eric Blackall
  • Patent number: 9226349
    Abstract: A semiconductor light source lighting circuit is provided with: a switching regulator that generates a drive current of a semiconductor light source using a switching element; and a control circuit that controls ON/OFF of the switching element. The control circuit is provided with: a comparator that compares the drive current and a target value; a counter that counts a digital value in a count direction determined by a comparison result of the comparator; a digital-analog converter that converts the digital value into an analog signal; and a drive circuit that controls the ON/OFF of the switching element based on the analog signal. The counter counts the digital value at a speed determined by an ON/OFF cycle of the switching element.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: December 29, 2015
    Assignee: KOITO MANUFACTURING CO., LTD.
    Inventors: Satoshi Kikuchi, Takanori Namba, Masayasu Ito
  • Patent number: 8994468
    Abstract: A modulation method is provided. The modulation method includes the steps of receiving multiple sinusoidal signals, obtaining the maximum value of the sinusoidal signals, obtaining the median value of the sinusoidal signals, and obtaining the minimum value of the sinusoidal signals within a period to generate a difference between the maximum value and the minimum value, generating a difference according to an upper limit and a lower limit of a predetermined comparison value, and comparing the two differences to generate an optimized modulation signal.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: March 31, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Hsiang Chien, Yong-Kai Lin, Chin-Hone Lin
  • Patent number: 8994342
    Abstract: A switching apparatus is disclosed that includes a first loop circuit configured to include a switching element, an inductive component and a capacitor; and a second loop circuit configured to share the inductive component with the first loop circuit, wherein the capacitor is inserted in series with the inductive component in the first loop, wherein the switching apparatus controls respective currents flowing through the first loop circuit and the second loop circuit in an alternating manner by turning on/off the switching element in order to control the current flowing through the inductive component, and wherein a first magnetic flux generated by the current flowing through the first loop circuit as the switching element is being turned on and a second magnetic flux generated by the current flowing through the second loop circuit as the switching element is being turned off head in the same direction.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: March 31, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Visteon Global Technologies, Inc.
    Inventors: Takayuki Naito, Takashi Imai, Koichi Mizutani, Kouichi Yamanoue, Shigeki Yamamoto
  • Patent number: 8963517
    Abstract: A transistor includes a gate, a source, and a drain, the gate is electrically connected to the source or the drain, a first signal is input to one of the source and the drain, and an oxide semiconductor layer whose carrier concentration is 5×1014/cm3 or less is used for a channel formation layer. A capacitor includes a first electrode and a second electrode, the first electrode is electrically connected to the other of the source and the drain of the transistor, and a second signal which is a clock signal is input to the second electrode. A voltage of the first signal is stepped up or down to obtain a third signal which is output as an output signal through the other of the source and the drain of the transistor.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: February 24, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroyuki Miyake, Masashi Tsubuku, Kosei Noda
  • Patent number: 8933704
    Abstract: A device for testing capacitive loads of a power supply includes a controller, a power supply switching circuit, a capacitive load switching circuit, and a current sampling circuit. The power supply switching circuit selects one of output voltages of the power supply to be electronically connected to the capacitive load switching circuit and the current sampling circuit. The current sampling circuit samples an output current of one output of the power supply selected by the controller. The controller turns on and off switches of the capacitive load switching circuit for matching an output current of the power supply with a reference current until the output current equals to the reference current. The controller outputs a total magnitude of the capacitive loads.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: January 13, 2015
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Yun Bai, Fu-Sen Yang, Song-Lin Tong
  • Patent number: 8933678
    Abstract: A buck voltage converting apparatus is disclosed. The buck voltage converting apparatus includes a first transistor, a second transistor, an inductor, a controller and a switch. The first transistor receives an input voltage. A first terminal of the inductor is coupled to the first and second transistors. A second terminal of the inductor is coupled to an output terminal of the buck voltage converting apparatus for generating an output voltage. The controller receives the output voltage, and generates a detection voltage according to voltage amplitude of the output voltage. The switch is coupled between a first terminal of the first transistor and a control terminal of the second transistor. The switch is turned on or off according to the detection voltage.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: January 13, 2015
    Assignee: Excelliance MOS Corporation
    Inventors: Pao-Chuan Lin, Su-Yuan Lin, Hung-Che Chou
  • Patent number: 8928301
    Abstract: A control circuit adjusts the duty cycle of a PWM control signal. An analog processing component within the control circuit receives an analog feedback input signal and compares it to an analog reference signal to generate a pre-processed signal. A sigma-delta modulator within the analog processing component generates a quantized signal based on the pre-processed signal. A digital processing component stores a value. The controller then adjusts the duty cycle of the PWM signal to correspond to the value. A clock keeps the system synchronized.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: January 6, 2015
    Assignee: Atmel Corporation
    Inventor: Andreas Schubert
  • Patent number: 8916764
    Abstract: An output ripple voltage average amplitude of a switch mode DC-DC converter is dynamically maintained. The converter has a switch and an output filter. By varying a switching period (TPERIOD) of the switch, VRIPPLE is maintained at a substantially constant value over a first range of converter input voltages and a second range of switch duty cycles. Where the output filter includes an inductor having inductance (L) and a capacitor having capacitance (C) the average amplitude of VRIPPLE is dynamically maintained by varying TPERIOD with respect to switch duty cycle (D) and input voltage (VIN) so as to approximately satisfy the following relationship: TPERIOD=(VRIPPLE*8*L*C)0.5/(VIN*(D?D2)).5.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: December 23, 2014
    Assignee: Xandex, Inc.
    Inventor: Steven P. Weir
  • Patent number: 8917066
    Abstract: A system for managing shunt utilization among multiple power converters sharing a common DC bus is disclosed. Each power converter includes a shunt device, typically one or more power resistors, configured to dissipate power from the DC bus. The power converter is configured according to an initial set of configuration parameters to selectively connect the shunt device to the DC bus. Each power converter monitors the amount of power being dissipated from the DC bus via the shunt device connected to that power converter and determines a utilization rate for the shunt device. As the utilization rate increases, the configuration parameters are modified to less frequently connect the shunt device to the DC bus. As the utilization rate decreases, the configuration parameters are modified to more frequently connect the shunt device to the DC bus.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: December 23, 2014
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Gerry M. Nagel, Ryan J. Jwanouskos
  • Patent number: 8912768
    Abstract: An apparatus provides a soft-switched voltage clamp tapped-inductor step-up boost converter that is capable of reducing voltage stress on a switch and a diode of the boost converter without using a dissipative snubber and that is capable of reducing a switching loss while maintaining a high input-to-output boost ratio.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: December 16, 2014
    Assignee: Inter. M Corporation
    Inventor: Soon Koo Cho
  • Patent number: 8866451
    Abstract: A power supply apparatus includes a first power factor correction circuit, a second power factor correction circuit and a control circuit that includes a first switching control unit that outputs a first switching signal for controlling a first switching element of the first power factor correction circuit generated in accordance with a detected result by an output voltage of the first power factor correction circuit and a current flowing through the first switching element, and a second switching control unit that outputs a second switching signal for controlling a second switching element of the second power factor correction circuit generated in accordance with a detected result by an output voltage of the second power factor correction circuit and a current flowing through the second switching element.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: October 21, 2014
    Assignee: Ricoh Company, Ltd.
    Inventor: Takeshi Iwata
  • Patent number: 8860385
    Abstract: A system and method for providing a voltage controlled current source for bus regulation is disclosed. A bus current delivered to an electrical bus from a current source is controlled using a synchronous switch according to a PWM duty cycle. Further, the PWM duty cycle is controlled to be proportional to an error signal based on a comparison of a voltage of the electrical bus to a reference voltage.
    Type: Grant
    Filed: January 30, 2011
    Date of Patent: October 14, 2014
    Assignee: The Boeing Company
    Inventor: Robert Matthew Martinelli
  • Patent number: 8847564
    Abstract: A freewheeling MOSFET is connected in parallel with the inductor in a switched DC/DC converter. When the freewheeling MOSFET is turned on during the switching operation of the converter, while the low-side and energy transfer MOSFETs are turned off, the inductor current circulates or “freewheels” through the freewheeling MOSFET. The frequency of the converter is thereby made independent of the lengths of the magnetizing and energy transfer stages, allowing far greater flexibility in operating and converter and overcoming numerous problems associated with conventional DC/DC converters. In one embodiment the freewheeling MOSFET is an N-channel MOSFET with its body connected to circuit ground and not shorted to either its source or its drain.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: September 30, 2014
    Assignee: Advanced Analogic Technologies, Incorporated
    Inventor: Richard K. Williams
  • Patent number: 8829865
    Abstract: The disclosure provides a power factor correcting (PFC) circuit, a power supply and a method of manufacturing a power converter. In one embodiment, the PFC circuit has a positive input terminal, an output terminal and a ground terminal and includes: (1) a power factor inductor coupled in series between the positive input terminal and the output terminal, (2) a main switch configured to periodically connect the power factor inductor to the ground terminal and (3) a clamping capacitor coupled to the power factor inductor and configured to provide zero turn-off loss for the main switch.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventor: Moshe Domb
  • Patent number: 8829866
    Abstract: DC to DC converters are described that include two converters interconnected and operated to mitigate at least some of the effects of low duty cycle operation.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: September 9, 2014
    Assignee: Volterra Semiconductor Corporation
    Inventor: Patrice Lethellier
  • Patent number: 8823336
    Abstract: A bridgeless power factor corrector with a single choke is electrically connected to an AC power source. The bridgeless power factor corrector includes a choke element, a first switch, a second switch, a first diode, a second diode, a capacitor, a first rectify diode, and a second rectify diode. The choke element is electrically connected between the first switch and the second switch. The first switch and the second switch are controlled to be turned on or turned off by a first control signal and a second control signal, respectively, to provide a power factor correction for the AC power source when the AC power source is in a positive half cycle or a negative half cycle. Furthermore, a method of operating the bridgeless power factor corrector is provided.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: September 2, 2014
    Assignee: Chicony Power Technology Co., Ltd
    Inventors: Lieh-Chung Yin, Chia-Hsien Yen
  • Patent number: 8791672
    Abstract: This regulated power supply system with high input voltage dynamics, of the type having a shared inductance buck/boost transformer and having at least two controllable semiconductor switching members, one associated with the buck function of the transformer and the other with the boost function of the transformer, is characterized in that one of the controllable semiconductor switching members is driven by control means as a function of the system's input voltage, and the other is driven continuously by enslavement means on the output voltage.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 29, 2014
    Assignee: Thales
    Inventors: Francois Klein, Christophe Taurand
  • Patent number: 8779732
    Abstract: A step-up circuit includes a capacitor, a transistor connected to the capacitor, and a reference voltage generator circuit configured to supply the transistor with a reference voltage that causes a rate of voltage increase relative to supply voltage to vary in accordance with the supply voltage.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: July 15, 2014
    Assignee: Mitsumi Electric Co., Ltd.
    Inventor: Fumihiro Inoue
  • Patent number: 8766581
    Abstract: There are provided a power factor correction circuit capable of transferring extra power to a ground before performing switching for a power factor correction to thereby reduce a switching loss generated in switching for a power factor correction, and a power supply device and a motor driving device having the same. The power factor correction circuit includes: a main switch switching input power to adjust a phase difference between a current and a voltage of the input power; and an auxiliary switch switched on before the main switch is switched on, to thereby form a transmission path for extra power of the main switch.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: July 1, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Min Gyu Park, Kee Ju Um, Bum Seok Suh
  • Publication number: 20140167710
    Abstract: The present disclosure provides, in one embodiment, a method of shunting a power supply to reduce output ripple. The method includes determining at least one performance parameter of a DC/DC converter circuit; generating a first reference signal, wherein the first reference signal is based on the performance parameter; comparing the first reference signal to the performance parameter; and generating a shunt current from an input power source to an output node of the DC/DC converter circuit based on, at least in part, the comparison of the performance parameter and the first reference signal.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: FAIRCHILD SEMICONDUCTOR CORPORATION
    Inventors: Joseph M. Ingino, JR., Poojan Wagh
  • Patent number: 8729558
    Abstract: According to one embodiment, a nitride semiconductor device includes a semiconductor layer, a source electrode, a drain electrode, a first and a second gate electrode. The semiconductor layer includes a nitride semiconductor. The source electrode provided on a major surface of the layer forms ohmic contact with the layer. The drain electrode provided on the major surface forms ohmic contact with the layer and is separated from the source electrode. The first gate electrode is provided on the major surface between the source and drain electrodes. The second gate electrode is provided on the major surface between the source and first gate electrodes. When a potential difference between the source and first gate electrodes is 0 volts, a portion of the layer under the first gate electrode is conductive. The first gate electrode is configured to switch a constant current according to a voltage applied to the second gate electrode.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: May 20, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masahiko Kuraguchi
  • Publication number: 20140132231
    Abstract: A DC conversion circuit in the disclosure includes a buck-boost converter and a resonant stage circuit. The buck-boost converter has two input ends, a negative output end and a positive output end. The buck-boost converter receives a first DC signal via its two input ends, and outputs a second DC signal via its two output ends. The resonant stage circuit has two input ends and two output ends. The resonant stage circuit receives the second DC signal via its two input ends, converts the second DC signal into energy for power charging, and outputs the energy to a load via its two output ends. Then, the resonant stage circuit converts the energy, which is used for power charging, to form a negative voltage by a resonance effect, and outputs the energy to the load via its two output ends.
    Type: Application
    Filed: July 12, 2013
    Publication date: May 15, 2014
    Inventors: Wen-Tien TSAI, Ching-Ran LEE, Po-Yen CHEN, Ching-Tsai PAN
  • Patent number: 8723488
    Abstract: An energy savings device, system, and method wherein a predetermined amount of voltage below a nominal line voltage and/or below a nominal appliance voltage is saved, thereby conserving energy. Phase input connections are provided for inputting analog signals into the device and system. A volts zero crossing point detector determines the zero volts crossing point of the signal. The positive half cycle and negative half cycle of the signal are identified and routed to a digital signal processor for processing the signal. The signal is reduced by pulse width modulation and the reduced amount of energy is outputted, thereby yielding an energy savings for an end user.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 13, 2014
    Assignee: The PowerWise Group, Inc.
    Inventor: John L. Lumsden
  • Patent number: 8723498
    Abstract: Systems and methods for increasing power measurement accuracy for power factor correction (PFC) are disclosed. An exemplary method may include providing a PFC circuit for a power supply, the PFC circuit having a bulk capacitor connected to a rectified AC line. The method may also include measuring output load. The method may also include enabling AC wave skipping if the measured output load drops below a threshold value.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: May 13, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: John J. Siegler
  • Patent number: 8675377
    Abstract: A rectifier system for a primary AC electrical power distribution system comprising a PFC circuit connected onto the primary distribution system which delivers a DC power supply and means for storing electrical energy connected to the outputs of the PFC via a switching circuit. This circuit is controlled in such a manner as to effect either the discharge of the electrical energy stored in the storage means onto the DC power supply line, or the charging of the storage means by the DC power supply line. A first control circuit determines the state of operation of the switching circuit by comparing the value of the voltage on the power supply line with a first reference voltage. A second control circuit regulates the power delivered by the PFC over the power supply line by comparing the voltage present at the output of the storage means with a second reference voltage.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: March 18, 2014
    Assignee: Thales
    Inventors: Philippe Thomas, Philippe Le Bas, Philippe Cussac, Henri Foch, Didier Ferrer, Aymeric Lacoste
  • Patent number: 8664923
    Abstract: A buck converter comprising a controller arranged to monitor an output voltage of the converter, the controller comprising: a comparator arranged to compare an output voltage at an output of the buck converter with a reference voltage, and a modification circuit within the comparator or connected to a modification signal input of the comparator and arranged to produce a correction signal to modify the operation of the comparator.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: March 4, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Guillaume De Cremoux, Sergei Slavnov
  • Patent number: 8653801
    Abstract: A boost circuit is used for power factor correction (PFC). In a low power application, transition mode control is utilized. However, switching frequency varies with different input voltages, and over a wide input voltage range, the switching frequency can become too high to be practical. To address this issue, a boost circuit is provided whose effective inductance changes as a function of input voltage. By changing the inductance, control is exercised over switching frequency.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: February 18, 2014
    Assignee: STMicroelectronics, Inc.
    Inventors: Jianwen Shao, Thomas L. Hopkins
  • Publication number: 20140042993
    Abstract: A system for managing shunt utilization among multiple power converters sharing a common DC bus is disclosed. Each power converter includes a shunt device, typically one or more power resistors, configured to dissipate power from the DC bus. The power converter is configured according to an initial set of configuration parameters to selectively connect the shunt device to the DC bus. Each power converter monitors the amount of power being dissipated from the DC bus via the shunt device connected to that power converter and determines a utilization rate for the shunt device. As the utilization rate increases, the configuration parameters are modified to less frequently connect the shunt device to the DC bus. As the utilization rate decreases, the configuration parameters are modified to more frequently connect the shunt device to the DC bus.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 13, 2014
    Inventors: Gerry M. Nagel, Ryan J. Jwanouskos
  • Patent number: 8649194
    Abstract: The present invention provides a circuit of reducing electro-magnetic interference for a power converter. The circuit includes an oscillator, a switching voltage divider, and a sample-and-hold circuit. The oscillator has a terminal for receiving a modulation voltage. The modulation voltage is correlated with an input voltage obtained from an input of the power converter. The switching voltage divider is enabled and disabled by a switch to attenuate the input voltage into a sampled voltage in response to a sampling signal. The sample-and-hold circuit receives the sampled voltage to generate the modulation voltage. A switch of the sample-and-hold circuit controlled by a holding signal conducts the sampled voltage to a capacitor of the sample-and-hold circuit to generate the modulation voltage across the capacitor.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: February 11, 2014
    Assignee: System General Corporation
    Inventor: Ting-Ta Chiang
  • Patent number: 8629663
    Abstract: A first control system for a power supply includes a switch-mode DC-DC converter module and an FET gate drive module. The switch-mode DC-DC converter module receives an input voltage and generates first and second voltages, the first voltage powering a DC-DC control module. The FET gate drive module selectively drives a plurality of FETs of the power supply using the second voltage thereby generating a desired output voltage from the input voltage. A second control system is directed to driving the second voltage to a desired gate voltage, wherein the desire gate voltage is determined based on at least one of a plurality of operating parameters. A third control system includes controlling first and second voltages generated by a SIDO voltage converter based on the first and second voltages and a damping factor, and generating the damping factor based on current flowing through the inductor of the SIDO voltage converter.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 14, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Paul W. Latham, II, Mansur B. Kiadeh, Sudha Durvasula
  • Patent number: 8629666
    Abstract: A power supply controller produces a compensation value based at least in part on: an estimated or known output capacitance of the power supply, a specified rate of changing a magnitude of the output voltage as specified by the voltage setting information, and/or a load-line resistance of the power supply. The power supply controller utilizes the compensation value to adjust a magnitude of the output voltage during a voltage transition in which the output voltage is changed from an initial output voltage setting to a target output voltage setting at a pre-specified rate.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: January 14, 2014
    Assignee: International Rectifier Corporation
    Inventors: Robert T. Carroll, Venkat Sreenivas