With Motor In Control Circuit Patents (Class 323/260)
  • Patent number: 8934258
    Abstract: A motor controller comprising multiple types of interfaces assigned automatically, including a mother circuit board and a daughter circuit board. The daughter circuit board is plugged into the mother circuit board to form electric connection. The mother circuit board has a power circuit, a microprocessor unit of the mother circuit board, a rotor position sensing unit, a power inverter unit, and an analog sensing unit. The daughter circuit board includes a signal interface circuit. The mother circuit board further has a serial digital communication unit. The signal interface circuit includes a microprocessor of the daughter circuit board, and a serial digital communication unit of the daughter circuit board. The microprocessor unit of the mother circuit board communicates with the microprocessor of the daughter circuit board via the serial digital communication unit of the mother circuit board and the serial digital communication unit of the daughter circuit board.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: January 13, 2015
    Assignee: Zhongshan Broad-Ocean Motor Co., Ltd.
    Inventor: Yong Zhao
  • Patent number: 8738301
    Abstract: The present invention relates to a method for quantitatively analyzing gases as a monitor for on-load tap changers. The general inventive concept lies in selecting particular characteristic gases allowing an indirect subsequent association and a dimension for aging effects, excessive discharge, and/or heating of the on-load tap changer; measuring said characteristic gases, formed during the operation of the tap changer in the insulating oil thereof, at particular time intervals; forming indicative quotients from the measured values of the defined gases, said quotients allowing direct conclusions about aging effects, excessive discharge, and/or heating; displaying trends from a comparison of the currently derived value of each quotient to the most recently derived value for the same quotient; and inferring warnings for aging effects, excessive discharge, and/or heating if the corresponding quotients tend to change significantly over time or in the course of the switch changes made.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: May 27, 2014
    Assignee: Maschinenfabrik Reinhausen GmbH
    Inventors: Rainer Frotscher, Ralf Hartwig
  • Patent number: 8692525
    Abstract: The invention relates to an electrical power tool, particularly an electric hand power tool, for operating with alternating current, having an electric motor, and electronic control device, and an electrical power switch for actuating the electric motor, wherein the electronic control device comprises a bias voltage output and a detection input, connected to each other by means of a voltage divider comprising a summation point and to the side of the power switch facing the electric motor, and the control device is further designed such that the potential at the detection input is monitored after actuating the power switch and used for checking whether the power switch is conducting, and that it is actuated again if the power switch was not conducting or returned to the non-conducting state during the monitoring, and that said checking and any renewed actuation of the power switch is repeated within a half-wave of the alternating voltage.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: April 8, 2014
    Assignee: Metabowerke GmbH
    Inventor: Bernd Wiesner
  • Patent number: 8614555
    Abstract: An actuator control system includes a controller and a buck-boost circuit. The controller is configured to direct power from a power source to an actuator. The actuator is coupled to a control device to apply a force related to operation of a vehicle. The buck-boost circuit is configured to direct excess power generated by the actuator to an energy storage device when an actuator power level satisfies an anticipated power level.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 24, 2013
    Assignee: The Boeing Company
    Inventors: James J. Sheahan, Jr., Thomas W. Omohundro, James L. Peck, Jr.
  • Patent number: 8547072
    Abstract: A phase control apparatus includes a first transistor whose source or emitter is connected to one end of an AC power supply and whose drain or collector is connected to one end of a load, a second transistor whose source or emitter is connected to the other end of the AC supply and whose drain or collector is connected to the other end of the load, a diode bridge that rectifies an AC voltage of the AC supply, and a parallel circuit of a zener diode and a capacitor. The parallel circuit generates a high potential relative to a bridge negative output terminal potential, or generates a low potential relative to a bridge positive output terminal potential. First and second transistor control terminal potentials are switched between the high and the bridge negative output terminal potentials, or between the low and the bridge positive output terminal potentials.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: October 1, 2013
    Assignee: Maeda Metal Industries, Ltd.
    Inventor: Takayoshi Obatake
  • Patent number: 8324876
    Abstract: A low dropout (LDO) voltage regulator with unconditional frequency compensation is presented. The low dropout voltage regulator is implemented using a two-stage operational amplifier. The first stage amplifier has two input transistors, each of which is connected to a diode-connected transistor. A transistor is connected in parallel to the diode-connected transistors to increase the gain of the first stage amplifier. The LDO voltage regulator has a compensation capacitance input between the first stage amplifier and the second stage amplifier and a voltage on the compensation capacitance input adjusts the current through the diode-connected transistors, as well as the gain of the first stage amplifier. The second stage amplifier receives output from the first stage amplifier, and a compensation capacitor is connected between the compensation capacitance input of the operational amplifier and the output node of the LDO voltage regulator.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: December 4, 2012
    Assignee: Altera Corporation
    Inventors: Thien Le, Ping-Chen Liu
  • Patent number: 7580805
    Abstract: A circuit for regulating power is disclosed. The present invention provides circuits and methods for current sensing variations, static droop settings, mismatched phase outputs, and temperature variations in a multiphase power regulator. The circuits may include a calibration controller that senses and regulates both a current sensing circuit and the droop in a power regulator over a range of temperatures thus equalizing phase outputs. The present invention includes the schematic organization and implementation of the circuit, the circuit's calibration, its use, and implementation. This invention advantageously provides circuits and methods to properly power a processor or IC chip according to the unique power specifications of the processor or chip.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: August 25, 2009
    Assignee: Nupower Semiconductor, Inc.
    Inventors: Fereydun Tabaian, Hamed Sadati, Ali Hejazi, Ahmad Ashrafzadeh
  • Patent number: 7323852
    Abstract: A load tap changer (LTC) having a plurality of windings is coupled to one of the primary and secondary of a power transformer in order to regulate the output voltage of the transformer. The LTC includes a plurality of taps physically and electrically connected to and along the windings and a contacting element is selectively moved along the taps to increase or decrease the output voltage of the transformer. The power transformer and the LTC windings are placed in a main tank and the taps are placed in an LTC tank. The temperature in the main tank and the temperature in the LTC tank are monitored by means of first and second temperature probes whose outputs are used to sense the temperature differential (TDIFF) between the main tank and the LTC tank and to determine if the LTC tank temperature exceeds the main tank temperature for a period of time exceeding a specified time period. Also included is circuitry for sensing the rate of change of TDIFF and determining if it exceeds a predetermined value.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: January 29, 2008
    Inventor: Gary R. Hoffman
  • Publication number: 20070170900
    Abstract: A power supply device supplying power to various electric devices or inverters of a DC motor. The power supply device can detect an over-voltage which is applied to various electric devices or inverters of a DC motor from an external power source or an over-voltage caused by defects of power lines. The power supply device can break power, such that power supply circuits or systems can be protected against damage and malfunction thereof. The power supply device includes a rectifier rectifying power from an external AC power source, a smoothing unit, and an over-voltage protection circuit determining whether the rectified voltage includes an over-voltage, and breaking the over-voltage before the over-voltage is applied to the smoothing unit if the determination is positive.
    Type: Application
    Filed: November 30, 2006
    Publication date: July 26, 2007
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Sang Taek Lee
  • Patent number: 6664771
    Abstract: A power regulation system is coupled to an AC power source outputting an input voltage. The system has a first transformer to receive the input voltage and generate a control voltage. The system also has a second transformer that has a primary coil and a secondary coil. The primary coil and secondary coil of the second transformer are electromagnetically coupled to each other and so arranged that when the control voltage from the first transformer is applied to the primary coil, an output voltage is generated between a first end and a second end of the secondary coil, wherein the output voltage is substantially 180° out of phase from the input voltage so as to generate an effective voltage applied to the load, and wherein the effective voltage is less than the input voltage and substantially equals to the difference between the input voltage and the output voltage, resulting a reduction in power consumption of the load.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: December 16, 2003
    Assignee: PowerTec International
    Inventors: Robert L. Scoggins, Anythony D. Sheaffer, Michael A. Fulton, James O. Crompton, Jr.
  • Patent number: 6486641
    Abstract: A power regulation system is coupled to an AC power source outputting an input voltage. The system has a first transformer to receive the input voltage and generate a control voltage. The system also has a second transformer that has a primary coil and a secondary coil. The primary coil and secondary coil of the second transformer are electromagnetically coupled to each other and so arranged that when the control voltage from the first transformer is applied to the primary coil, an output voltage is generated between a first end and a second end of the secondary coil, wherein the output voltage is substantially 180° out of phase from the input voltage so as to generate an effective voltage applied to the load, and wherein the effective voltage is less than the input voltage and substantially equals to the difference between the input voltage and the output voltage, resulting a reduction in power consumption of the load.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: November 26, 2002
    Assignee: PowerTec International
    Inventors: Robert L. Scoggins, Anthony D. Sheaffer, Michael A. Fulton, James O. Crompton, Jr.
  • Patent number: 5821716
    Abstract: A tap-changer transformer operated by the step-by-step principle in which its motor drive receives a signal to raise or lower the tap, has a voltage regulator in which the switching delay times and sensitivity values are freed matrix-like the respective tap changes. The actual voltage value of the transformer is compared with the preselected voltage setpoint and, based upon the control deviation, a value pair of delay and sensitivity are read out. This allows asymmetric response of the system as contrasted with the symmetrical response required by earlier systems.
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: October 13, 1998
    Assignee: Maschinenfabrik Reinhausen GmbH
    Inventor: Peter Okanik
  • Patent number: 5703447
    Abstract: A driver for driving a loading motor of a single-unit video camera-recorder. In the driver, a DC voltage supplied from a battery is boosted by a DC/DC converter, and the boosted DC voltage is supplied to the loading motor through a switch unit in which the polarity of the boosted DC voltage is switched.
    Type: Grant
    Filed: April 20, 1995
    Date of Patent: December 30, 1997
    Assignee: Funai Electric Co., Ltd.
    Inventor: Yoshio Higuchi
  • Patent number: 4672298
    Abstract: A power-factor correction system for reactive power control and concomitant power factor correction adapted to cooperate with a line supplying power at a given line voltage from a power generator to an inductive load via a given path, includes a reactive power compensating device in shunt with the line supplying power, and is adapted to be connected in shunt with the inductive load.
    Type: Grant
    Filed: November 18, 1985
    Date of Patent: June 9, 1987
    Inventor: Frederick Rohatyn
  • Patent number: 4622513
    Abstract: A voltage regulator using electronic control of two static switch circuits to permit tap changing without arcing at the switched electrical contacts, without interrupting the load current, and without inducing sizable circulating currents. As a mechanical drive connects a new tap to the auxiliary winding, current through the new winding is blocked by an auxiliary static switch. The drive next opens the main switch delivering current to the load. The opening of the main switch immediately allows the main static switch circuit to "turn on" to prevent arcing and load interruption until the next current zero. The main static switch control senses no current passing through the main switch and ceases gating, and therefore conduction, of the main static switch. Since neither the main static switch nor the auxiliary static switch is conducting current from the auxiliary winding, the load voltage begins dropping and the voltage across the auxiliary static switch begins rising.
    Type: Grant
    Filed: September 28, 1984
    Date of Patent: November 11, 1986
    Assignee: Siemens Energy & Automation, Inc.
    Inventor: Frederick A. Stich
  • Patent number: 4554502
    Abstract: A power factor correcting system for compensating a lagging power factor reactance for an electric load plurality fed from at least one pair of incoming service lines, comprising, in combination: capacitors for producing leading reactive power; a series transformer, having primary and secondary winding, the secondary winding being connected in series with affected power lines; a variable transformer fed from the service lines and feeding the primaries of the series transformer; the capacitor instrumentality being fed from the affected incoming power lines with a voltage which varies in magnitude as needed, being the sum of the power line voltage plus/minus the variable series transformer secondary voltage; with the variable transformer through feeding of the primaries of the series transformer causing the required voltage variability in the series transformer secondary and subsequently in the feeding voltage applied to the capacitor; sensing instrumentality to detect presence of lagging reactive power requiri
    Type: Grant
    Filed: May 6, 1983
    Date of Patent: November 19, 1985
    Inventor: Frederick Rohatyn
  • Patent number: 4438387
    Abstract: A turn-on control system for series variable transformer type voltage drop compensators comprising a voltage corrective variable compensating winding in combination with a voltage sensing main control to sense the voltage deviations of the utility's incoming service line with respect to a given reference voltage and a regulating control which operates the variable compensating winding. Upon occurrence of a power brownout the voltage corrective assumes its highest corrective position. Upon blackout the control system actuates the disconnection of the voltage corrective variable compensating winding and regulating control. Upon return of power the voltage corrective variable compensative winding is first placed at its lowest corrective position and the subsequent reconnecting of the voltage corrective control operation is effected.
    Type: Grant
    Filed: June 8, 1981
    Date of Patent: March 20, 1984
    Inventor: Frederick Rohatin
  • Patent number: 4413189
    Abstract: A circuit for automatically introducing a component of negative resistance line drop compensation into the control circuitry of a conventional voltage regulator to reduce the regulated voltage level on and, consequently, the load current level in a single phase primary electric distribution circuit during periods of peak load. The subject circuit automatically removes the negative resistance component from the regulator control circuitry during off-peak periods when the energy demand or loading on the distribution circuit is relatively low.
    Type: Grant
    Filed: November 9, 1981
    Date of Patent: November 1, 1983
    Inventor: Dudley Bottom, Jr.