With Threshold Detection Patents (Class 323/284)
  • Patent number: 11075577
    Abstract: A power supply includes a reference voltage generator circuit, a ramp generator circuit, and control circuitry. During operation, the reference voltage generator circuit compares a magnitude of a received output voltage feedback signal to a received reference voltage. Based on the comparison, the reference voltage generator circuit produces a varying reference voltage and outputs it to the ramp generator circuit. As its name suggests, a magnitude of the varying reference voltage varies over time. The ramp generator circuit produces a ramp voltage signal, a magnitude of which is offset by the varying reference voltage. To maintain an output voltage of the power supply within regulation, the control circuitry receives the varying reference voltage and controls activation of a power converter circuit to power a load based on a comparison of the ramp voltage signal and the output voltage feedback signal of the power supply.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: July 27, 2021
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Danny Clavette, Kang Peng, Keng Chen, Mark A. Crowther
  • Patent number: 11068005
    Abstract: A power factor correcting method for correcting a power factor in an alternating current power supply includes detecting zero-crossing points of an input voltage VAC of the AC power supply to obtain a period T of the input voltage VAC; generating a half-wave symmetric periodic function f(t) by using the period T; implementing a recursive low-pass filter y(t) by using the half-wave symmetric periodic function f(t), so that an output of the recursive low-pass filter y(t) matches a target reactive current Ixcap(t) flowing through an X-capacitor; generating a reference current I?ref(t) for correcting the power factor by using a given reference current Iref(t) and the recursive low-pass filter y(t); and correcting the power factor by using the reference current I?ref(t). Accordingly, the reactive current of the EMI capacitor can be compensated in a high code efficiency manner.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: July 20, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Hungpiu Poon
  • Patent number: 11043896
    Abstract: A voltage regulator has a switching circuit and a control circuit. The switching circuit receives an input voltage and provides an output voltage and an output current. The control circuit provides a control signal to the switching circuit, such that the output voltage is maintained at a clamp voltage level when the output current is lower than a transition current level, and the output voltage decreases as the output current increases when the output current is higher than the transition current level.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: June 22, 2021
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Ting Ge, Daocheng Huang
  • Patent number: 11034367
    Abstract: There are provided a power supply system for a diesel multiple-unit train, a diesel multiple-unit train including the power supply system, and a traction control method for a diesel multiple-unit train. The power supply system includes: a diesel power pack, a traction inverter connected to a traction motor, and an auxiliary inverter connected to a train load. The power supply system further includes a direct current chopper and a supercapacitor. A high-voltage side of the direct current chopper is connected to the diesel power pack, and a low-voltage side of the direct current chopper is connected to the supercapacitor. The supercapacitor is connected to the traction inverter and the train load.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: June 15, 2021
    Assignee: CRRC ZHUZHOU LOCOMOTIVE CO., LTD
    Inventors: Ying Yang, Ande Zhou, Yunlong Li, Bin Liu, Aijun Chen, Libing Fan
  • Patent number: 11038426
    Abstract: Circuits and methods for operating a programmable load circuit that includes a plurality of sub-circuits connected in parallel between an input and an output. Each sub-circuit may include an inductor, a load, and a switch coupled to the inductor. Each switch may be configurable in a first state and a second state, wherein the inductor is either connected to the output through the load or connected to the output through a connection that bypasses the load. The switches of the plurality of first sub-circuits may be programmable to periodically switch between the first state and the second state according to a duty cycle, and the switches may be out of phase with each other by a predetermined amount. The duty cycle may be programmable to tune the load of the programmable load circuit.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: June 15, 2021
    Assignee: National Instruments Corporation
    Inventor: Chin-Hong Cheah
  • Patent number: 11025167
    Abstract: A system having a load that generates an EMF energy, comprising: a controller; a switch having a control terminal coupled to the controller and a second terminal coupled to the load; a recycling circuit coupled to the load and the second terminal of the switch, the recycling circuit including a capacitor and a converter coupled to the capacitor, a voltage source and the load; and wherein the capacitor is operable to store the EMF energy.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: June 1, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ingolf Edgar Frank, Lars Lotzenburger, Matthieu Etienne Chevrier
  • Patent number: 11018605
    Abstract: According to an example aspect of the present invention, there is provided a DC to DC converter module for use between an electric power source and an electric motor. The DC to DC converter module having: a DC to DC converter; input terminals configured to provide a source voltage to the DC to DC converter from the electric power source; output terminals connected to outputs of the DC to DC converter and configured to provide an output voltage of the DC to DC converter module to the electric motor; and control circuitry connected to the DC to DC converter, the control circuitry having an input for receiving a signal indicative of a desired electric motor performance. The control circuitry being configured to control the DC to DC converter in order to adjust the output voltage based at least partially on the signal indicative of a desired electric motor performance.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: May 25, 2021
    Assignee: L7 Drive Oy
    Inventor: Daniel Salonen
  • Patent number: 11018584
    Abstract: A switching regulator includes a high side transistor coupled to an input voltage node. The switching regulator also includes a low side transistor coupled to the high side transistor at a switch node. An adaptive on-time control circuit is also included and is configured to cause the high side transistor to turn on for an adaptive period of time based on a ratio of an output voltage from the switching regulator to input voltage. The adaptive period of time is configured to occur responsive to a current through an inductor falling below a predetermined threshold.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: May 25, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jiancong Ruan, Runqin Tan
  • Patent number: 11002563
    Abstract: A first amplifier has an input to receive a Hall-signal output current from a first Hall element and has an output to output feedback current in response to the received Hall-signal output current. The Hall-signal output current is impeded by an impedance of the first Hall element. The feedback current is coupled to counterpoise the Hall-signal output current at the input, and a voltage at the output is an amplified Hall output signal. A second amplifier generates a high-frequency portion output signal in response to a difference between the amplified Hall output signal and a Hall-signal output signal from a second Hall element. A filter reduces high-frequency content of the high-frequency portion output signal and generates an offset correction signal. A third amplifier generates a corrected Hall signal in response to a difference between the amplified Hall output signal and the offset correction signal.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: May 11, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Arup Polley, Srinath Ramaswamy, Baher S. Haroun, Rajarshi Mukhopadhyay
  • Patent number: 10998818
    Abstract: A multi-level buck converter is provided with seamless transitions back and forth from synchronous to asynchronous low dropout modes of operation.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: May 4, 2021
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: John Kesterson, Aravind Mangudi, James Steele, Mark Mercer
  • Patent number: 10990149
    Abstract: An information handling system includes first and second power supplies. The first power supply unit provides power to a power rail to power a load of the information handling system, and is configured to provide the power to the power rail at a first peak current level and at a first constant current level. The second power supply unit provides power to the power rail, and is configured to provide the power to the power rail at a second peak current level and at a second constant current level. The second peak current level is greater than the first peak current level, and the second constant current level is greater than the first constant current level.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: April 27, 2021
    Assignee: Dell Products L.P.
    Inventors: Mark A. Muccini, Guangyong Zhu, John J. Breen
  • Patent number: 10992131
    Abstract: A power supply system includes at least two power supply apparatuses that supply current to one load. Each power supply apparatus includes a converter that supplies current to the load, a FET connected in series between the converter and the load, a current detection unit that detects current flowing between the converter and the load, and a droop characteristic controller that causes output voltage of the converter to droop at a droop rate determined based on the magnitude of load current flowing from the converter towards the load. The droop rate is greater when the load current is included in a first current section than when the load current is included in each of a second current section and a third current section. The second current section includes smaller current than the first current section. The third current section includes larger current than the first current section.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: April 27, 2021
    Assignee: Yokogawa Electric Corporation
    Inventors: Kei Fukuhara, Iwao Nakanishi
  • Patent number: 10976375
    Abstract: There is implemented an on-board controller including a single ground terminal, which can accurately detect a disconnection fault of a ground wire while avoiding erroneous detection due to a temporary voltage abnormality or current abnormality. A voltage at the positive electrode of a smoothing electrolytic capacitor is monitored. In addition, a current flowing through a shunt resistor is also monitored. Based on the monitored current value, there is calculated a voltage range (voltage threshold) at the positive electrode of the smoothing electrolytic capacitor in the case of disconnection of a ground wire. Thus, it is determined whether the ground wire has been disconnected by comparing the calculated voltage threshold with the monitored positive-side voltage described above.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: April 13, 2021
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventor: Kentarou Jyumonji
  • Patent number: 10978004
    Abstract: Provided is a data driver configured to drive a display unit that includes a two-dimensional matrix of pixels, the data driver including: a resistance circuit to which a plurality of reference voltages with different values are applied, the resistance circuit including a plurality of output nodes configured to output the reference voltages and voltages obtained by dividing the reference voltages; a selector unit configured to select one of the plurality of output nodes in accordance with a value of an input gradation signal, and cause a voltage corresponding to the value of the gradation signal to be output; and a phase difference control unit configured to perform control to delay an output node selection operation by the selector unit in the case where an input gradation signal is included in a predetermined high tonal range or a predetermined low tonal range.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: April 13, 2021
    Assignee: SONY CORPORATION
    Inventor: Takeshi Aoki
  • Patent number: 10971046
    Abstract: A display device includes a display unit including a plurality of pixels, a scan driver applying a scan signal to a plurality of scan lines, a data driver applying a data signal to a plurality of data lines, and a power supply unit supplying a driving voltage to at least one among the display unit, the scan driver, and the data driver. The power supply unit includes an inductor connected between an input terminal to which an input voltage is input and a driving voltage output terminal to which the driving voltage is output, a switch connected between the inductor and a ground, and a switch controller outputting a first ramp pulse having a first frequency at a first load of the display device and outputting a second ramp pulse having a second frequency at a second load of the display device.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: April 6, 2021
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Sang Hyun Lee, Myeong Su Kim, Bo Yeon Kim
  • Patent number: 10965213
    Abstract: A device includes a switch, a controller electrically coupled to the switch, an RC circuit, a diode and a zero current detection circuit. The controller is configured to provide a control signal to control the switch to charge and discharge an inductor between a zero current state and a peak current state to provide a light emitting diode (LED) drive current. The RC circuit includes at least a first resistive element, a second resistive element, and a capacitive element. The diode is electrically coupled in parallel with the RC circuit. The zero current detection circuit has a first input electrically coupled to the RC circuit, a second input electrically coupled to a threshold voltage, and an output electrically coupled to the controller.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: March 30, 2021
    Assignee: Lumileds LLC
    Inventor: Zhihua Song
  • Patent number: 10955464
    Abstract: A method is disclosed use with a circuit device that includes a circuit having a predetermined voltage-current characteristic and a detector configured to detect a voltage-current relation of the circuit. The method includes using the detector to detect the voltage-current relation of the circuit, and indicating if the detected voltage-current relation differs from the predetermined voltage-current characteristic. A circuit device includes a circuit having a predetermined voltage-current characteristic, and a detector configured to detect a voltage-current relation of the circuit. The circuit device is configured to indicate if the detected voltage-current relation differs from the predetermined voltage-current characteristic.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: March 23, 2021
    Inventors: Vincenzo Fiore, Oliver Frank, Helmut Kollmann, Michael Platzer, Thomas Sailer, Jochen O. Schrattenecker
  • Patent number: 10951120
    Abstract: The disclosure relates to a flyback converter, a control circuit and a control method therefor. In the control method, a power stage circuit is controlled at a light load to operate alternatively in a pulse-width modulation mode (e.g., a constant switching frequency mode) and in a constant on time mode, in accordance with a voltage compensation signal. Thus, output energy may decrease rapidly and smoothly, without need for the control circuit to stop working. The flyback converter has increased efficiency at the light load and decreased output voltage ripple.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: March 16, 2021
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventor: Huiqiang Chen
  • Patent number: 10938300
    Abstract: An apparatus for electric power conversion includes a converter having a regulating circuit and switching network. The regulating circuit has magnetic storage elements, and switches connected to the magnetic storage elements and controllable to switch between switching configurations. The regulating circuit maintains an average DC current through a magnetic storage element. The switching network includes charge storage elements connected to switches that are controllable to switch between plural switch configurations. In one configuration, the switches forms an arrangement of charge storage elements in which at least one charge storage element is charged using the magnetic storage element through the network input or output port. In another, the switches form an arrangement of charge storage elements in which an element discharges using the magnetic storage element through one of the input port and output port of the switching network.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: March 2, 2021
    Assignee: pSemi Corporation
    Inventor: David M. Giuliano
  • Patent number: 10931196
    Abstract: A circuit includes an inductor that receives a switched input voltage to provide an output for driving a load. A driver circuit drives the switched input voltage to the inductor in response to input pulses. A ramp circuit coupled to the inductor generates a ramp signal emulating current of the inductor. A control circuit generates the input pulses to control the driver circuit based on the ramp signal and the output for driving the load. A transient monitoring circuit monitors the output with respect to a predetermined threshold and adjusts the ramp circuit based on the output relative to the predetermined threshold to control the emulated current of the inductor to facilitate jitter and load transient performance.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: February 23, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Song Guo
  • Patent number: 10917007
    Abstract: An apparatus for electric power conversion includes a converter having a regulating circuit and switching network. The regulating circuit has magnetic storage elements, and switches connected to the magnetic storage elements and controllable to switch between switching configurations. The regulating circuit maintains an average DC current through a magnetic storage element. The switching network includes charge storage elements connected to switches that are controllable to switch between plural switch configurations. In one configuration, the switches forms an arrangement of charge storage elements in which at least one charge storage element is charged using the magnetic storage element through the network input or output port. In another, the switches form an arrangement of charge storage elements in which an element discharges using the magnetic storage element through one of the input port and output port of the switching network.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: February 9, 2021
    Assignee: pSemi Corporation
    Inventor: David M. Giuliano
  • Patent number: 10903735
    Abstract: A conventional power supply device has a problem in miniaturization. A power supply device generates a prediction value of an error signal from first and second error signals, and controls an output voltage so that the prediction value lies between first and second threshold values. The first error signal is obtained by converting an error voltage based on the difference between the output voltage and a reference voltage at a first timing. The second error signal is obtained by converting an error voltage based on the difference between the output voltage and the reference voltage at a second timing.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: January 26, 2021
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Ming Liu, Tatsuo Nakagawa, Kenichi Osada
  • Patent number: 10884043
    Abstract: A power converter circuit included in a computer system may charge and discharge a switch node coupled to a regulated power supply node via an inductor. The power converter circuit may generate a reference clock signal using a system clock signal and a voltage level of the switch node. The reference clock signal may be used to initiate a charge cycle, whose duration may be based on generated ramp signals.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: January 5, 2021
    Assignee: Apple Inc.
    Inventors: Michael Couleur, Andrea Acquas, Nikola Jovanovic
  • Patent number: 10879789
    Abstract: A circuit for controlling a power converter includes a transient detector that generates a transient detection signal in response to a feedback signal indicating an output signal of the power converter, a gain selector that generates a gain selection signal in response to the transient detection signal, and an amplifier circuit that generates a comparison signal based on the value of the feedback signal, a value of a reference signal, and a gain value of the amplifier circuit, the gain value being adjusted in response to the gain selection signal. The transient detection signal indicates that a value of the feedback signal is in a first range and a specific condition of the feedback signal is detected.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: December 29, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jintae Kim, Hangseok Choi, Taesung Kim, Sangcheol Moon
  • Patent number: 10862388
    Abstract: A power converter circuit that includes a switch node coupled to a regulated power supply node via an inductor may, during a charge cycle, source current to the regulated power supply node. In response to initiating the charge cycle, a control circuit may generate a control current using a voltage level of the regulated power supply node and a reference voltage level. The control circuit may also halt the charge cycle using results from comparisons of the compensated and uncompensated versions of the inductor current to the control current.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: December 8, 2020
    Assignee: Apple Inc.
    Inventors: Fabio Gozzini, Jonathan F. Bolus
  • Patent number: 10862321
    Abstract: A power adaptor includes a power input interface, a communication protocol chip, a voltage conversion chip and a power output interface; a first detection terminal of the communication protocol chip is connected to the power input interface, a second detection terminal of the communication protocol chip is connected to the power output interface, a control terminal of the communication protocol chip is connected to the voltage conversion chip; and an input terminal of the voltage conversion chip is connected to the power input interface, and an output terminal of the voltage conversion chip is connected to the power output interface.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: December 8, 2020
    Assignee: SHENZHEN LEGENDARY TECHNOLOGY CO., LTD
    Inventors: Xiaoling Liu, Yulong Wang
  • Patent number: 10845833
    Abstract: A buck voltage converter comprising a high side switch, a low side switch, a capacitor, an inductor, a gate driver circuit having outputs coupled to the gate terminal of the high side switch and the gate terminal of the low side switch, and a separate voltage regulator circuit that powers circuitry internal to the buck voltage converter. The voltage regulator circuit includes a multiplexer having a first multiplexer input coupled to the input voltage source, a second multiplexer input coupled to the buck output of the buck voltage converter, and one or more multiplexer control inputs to select which of the two multiplexer inputs is coupled to a multiplexer output and pass transistor having a first terminal coupled to the multiplexer output of the multiplexer and having a second terminal coupled to the regulator output of the voltage regulator.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: November 24, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Stefan Dietrich, Christian Harder, Emil Cioran
  • Patent number: 10840797
    Abstract: Aspects of the disclosure provide for a circuit. In some examples, the circuit includes a first comparator, a second comparator, and a logic circuit. The first comparator includes a first input terminal coupled to a first node, a second input terminal coupled to a second node, and an output terminal. The second comparator includes a first input terminal coupled to the first node, a second input terminal coupled to a third node, and an output terminal. The logic circuit includes a first input terminal coupled to the output terminal of the first comparator, a second input terminal coupled to the output terminal of the second comparator, and an output terminal. The logic circuit is configured to determine a change in current over time based on analyzing an output signal of the first comparator and an output signal of the second comparator over a plurality of sequential cycles of operation.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: November 17, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Saurav Bandyopadhyay, Thomas Matthew LaBella, Robert Allan Neidorff
  • Patent number: 10833586
    Abstract: The invention proposes a system and method for extending the maximum duty cycle of a step-down switching converter to nearly 100% while maintaining a constant switching frequency. The system includes a voltage mode or current mode step-down converter driven by a leading edge blanking (LEB) signal, which operates at the desired switching frequency. More particularly, the LEB signal is connected to a slope generator and/or a current sensing network. In each switching cycle, the LEB signal forces the slope signal and/or current sensing signal to reinitiate, thereby achieving a constant switching frequency and disassociating the switching frequency of the converter from the error voltage VCOMP. Corresponding methods for how to extend the maximum duty cycle of a step-down switching converter while maintaining a constant frequency are also disclosed.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: November 10, 2020
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR (CAYMAN) LTD.
    Inventor: Youngbok Kim
  • Patent number: 10826482
    Abstract: Aspects of the present disclosure are directed to circuitry to control a gate voltage. As may be implemented in accordance with one or more embodiments, a voltage level is controlled for a field effect transistor (FET) having a floating gate and a target operating voltage above which the FET would be overcharged and around which the FET has a nominal operating range. Pulse circuitry is configured to apply energy to the floating gate in pulses, in operation the applied energy being pulsed low relative to the gate's target operating voltage, and then being changed by adjusting successive pulses until the gate reaches the target operating voltage. A feedback circuit samples a voltage level of, and enables the pulse circuitry to apply pulsed energy to, the floating gate for directing operation of the FET based on the target operating voltage in the nominal operating range.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: November 3, 2020
    Assignee: NXP B.V.
    Inventors: Kenneth Chung Yin Kwok, Suming Lai, Xuechu Li, Fuchun Zhan, Jian Qing
  • Patent number: 10826398
    Abstract: Apparatus and methods for sensing a variable amplitude switching signal from a secondary winding in a power conversion system are disclosed herein. By using a comparator with an adaptable reference, variable amplitude secondary winding signals in phase with primary winding signals may be detected in the presence of ringing. Detection of the in phase secondary winding signals, in turn, allows for secondary side control with power factor correction and discontinuous mode operation.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: November 3, 2020
    Assignee: Power Integrations, Inc.
    Inventors: Zhao-Jun Wang, Qing McIntosh
  • Patent number: 10811977
    Abstract: A controller to regulate a power converter includes a terminal coupled to receive an enable signal including enable events representative of an output of the power converter. A drive circuit is coupled to generate a drive signal to control switching of a power switch to control a transfer of energy from an input of the power converter to the output of the power converter. The drive circuit is coupled to turn on the power switch when an enable event is received in the enable signal. A current limit threshold generator is coupled to the drive circuit to generate a current limit threshold signal. The current limit threshold signal varies each switching cycle of the power switch. A time between consecutive enable events in the enable signal is the switching cycle of the power switch.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: October 20, 2020
    Assignee: Power Integrations, Inc.
    Inventors: Balu Balakrishnan, Roland Sylvere Saint-Pierre, Giao Minh Pham, Lance M. Wong
  • Patent number: 10802517
    Abstract: A voltage regulator circuit includes a bias circuit having an input and an output. The input of the bias circuit is coupled to an input voltage supply rail. A Zener diode has a cathode coupled to the output of the bias circuit. A resistor network is coupled to the output of the bias circuit. The resistor network includes a first circuit path, which includes a first resistor, connected in parallel with the Zener diode and a second circuit path, which includes a second resistor, coupled between the output of the bias circuit and a node. A current control circuit is coupled to the bias circuit and the resistor network. An output stage has an input and an output. The input of the output stage is coupled to the node.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: October 13, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rida Shawky Assaad, Angelo William Pereira, Terry Lee Mayhugh, Jr.
  • Patent number: 10797682
    Abstract: A common signal attenuation circuit may include a sensing block suitable for sensing differential signals to generate sensed differential signals; a common signal generation block suitable for generating an common signal having a common voltage noise by combining the sensed differential signals; and an attenuation block suitable for adjusting the common voltage noise in the original common signal by combining the common signal having the adjusted common voltage noise to the differential signals.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: October 6, 2020
    Assignee: SK hynix Inc.
    Inventors: Gun-Hee Yun, Hyun-Mook Park
  • Patent number: 10790744
    Abstract: This disclosure describes techniques for controlling switching regulator switching operations. The techniques include generating, using an inductor, a plurality of output voltage signals from an input voltage by controlling one or more switches that vary charging operations of the inductor; generating a feedback control signal based on whether the plurality of output voltage signals are within a range of target values corresponding to the plurality of output voltage signals; selecting a second output voltage signal of the plurality of output voltage signals when the feedback control signal indicates that a first output voltage signal exceeds the range of a first target value of the target values that corresponds to the first output voltage signal; and controlling the one or more switches of the switching regulator based on a difference between the selected second output voltage signal and a second target value.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: September 29, 2020
    Assignee: Analog Devices International Unlimited Company
    Inventors: Danzhu Lu, Jie He, Suyi Yao
  • Patent number: 10784701
    Abstract: An electrical power system for regenerative loads may include a DC bus and an electrical actuator load, where back-driving the electrical actuator load generates regenerative electrical energy, and where the electrical actuator load is configured to transmit the regenerative electrical energy to the DC bus. The system may also include at least one additional load, where at least a portion of the regenerative electrical energy is transmitted to the at least one additional load.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: September 22, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Eugene V. Solodovnik, Thomas F. Currier, Mark E. Liffring, Kamiar J. Karimi
  • Patent number: 10784780
    Abstract: A controller circuit for generating a Pulse-Width Modulation (PWM) signal for activating a switching device of a Switched-Mode Power Supply (SMPS) includes gap detection circuitry, Pulse Frequency Modulated (PFM) circuitry, PWM circuitry and logic circuitry. The gap detection circuitry is configured to generate a shift signal based on an indication of a voltage difference between a reference voltage and a feedback voltage corresponding to voltage output by the SMPS. The PFM circuitry is configured to generate a hold signal indicating a target PFM frequency for the PWM signal. The PWM circuitry is configured to shift, based on the shift signal, a pedestal current to generate a shifted pedestal current and to generate, based on the shifted pedestal current, a peak signal indicating a target PWM on time for the PWM signal.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: September 22, 2020
    Assignee: Infineon Technologies AG
    Inventors: Luca Scandola, Stefano Orlandi, Cristian Garbossa
  • Patent number: 10779375
    Abstract: A protection circuit for an LED driver and a DC/DC converter. The LED driver includes a DC/DC converter and a protection circuit. The DC/DC converter is used to convert the input voltage of the DC voltage input terminal into an output voltage, which comprises a high frequency switch and an inductor. The protection circuit comprises a detection module, a trigger module and a locking module. The detection module is coupled to the inductor for detecting the output voltage and outputting the voltage detection signal. The trigger module is used to receive the voltage detection signal and output a voltage trigger signal when the voltage detection signal is a negative voltage and the absolute value of the negative voltage is greater than or equal to the preset value. The locking module is coupled to the trigger module and stops the high frequency switch from operating after receiving the voltage trigger signal.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: September 15, 2020
    Assignee: CURRENT LIGHTING SOLUTIONS, LLC
    Inventor: Zhichao Liu
  • Patent number: 10778085
    Abstract: A power converter comprising a first capacitor, a flyback conversion module, a soft-start module, and a feedback control module. The flyback conversion module is coupled with the first capacitor and configured to receive a first control voltage across the first capacitor. The soft-start module is coupled with the first capacitor and is configured to charge the first capacitor during a startup stage, to increase the first control voltage to an expected voltage value at the end of the startup stage. The feedback control module is coupled with the flyback conversion module and is configured to control the flyback conversion module to output a substantially constant voltage or current after the startup stage. Wherein the expected voltage value is a value of the first control voltage when the flyback conversion module outputs a substantially constant voltage or current after the startup stage.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: September 15, 2020
    Assignee: CURRENT LIGHTING SOLUTIONS, LLC
    Inventors: Hongbin Wei, Qian Ni, Longyu Chen, Aling Li
  • Patent number: 10763701
    Abstract: A more efficient solution for a detection of operating conditions in an inductive power transfer system and for improved control of the inductive power transfer system. An operating condition at a secondary side of an inductive power transfer system is detected by measuring at least one electric variable at a primary side of the inductive power transfer system which is dynamically coupled to the operating condition at the secondary side of the inductive power transfer system. Then follows an analysis of the at least one electric variable over time at the primary side of the inductive power transfer system. This allows to detect a change of the operating condition at the secondary side of the inductive power transfer system. Also provided is a control method and related controller apparatus using the detection method.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: September 1, 2020
    Assignee: Wiferion GmbH
    Inventors: Benriah Goeldi, Johannes Tritschler
  • Patent number: 10756725
    Abstract: A load switch circuit implemented on an IC chip includes a first node for coupling to an input voltage, a second node for coupling to an external load, first and second capacitor nodes for coupling to first and second terminals of an external capacitor, and a first PFET coupled between the first node and the second node to control an output voltage to the external load. The load switch circuit also includes a driver circuit having a first NFET that has a drain coupled to the first node and a source coupled to a gate of the first PFET. A slew-rate-control circuit is coupled to a gate of the first NFET and includes the first capacitor node, which is coupled to the gate of the first NFET, and the second capacitor node, which is coupled to the second node.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: August 25, 2020
    Assignee: Texas Instruments Incorporated
    Inventor: Ricky Dale Jordanger
  • Patent number: 10757283
    Abstract: The information processing apparatus according to an embodiment of the present invention includes a power factor correction (PFC) circuit, an interface capable of connecting an optional device, and a power controller capable of turning off the PFC circuit. The power controller does not turn off the PFC circuit while a predetermined optional device is connected to the interface.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: August 25, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventor: Minoru Hashimoto
  • Patent number: 10749486
    Abstract: The technology described in this document can be embodied in an audio power amplifier that includes a pair of switching devices, drive circuitry for driving the pair of switching devices to produce a signal, and an output filter to filter the signal from the pair of switching devices. The output filter is configured to provide the filtered signal to an audio load. The audio power amplifier includes a voltage feedback loop to provide a voltage of the filtered signal to a voltage controller of the audio power amplifier, and a current feedback loop to provide a current of the filtered signal to a current controller of the audio power amplifier.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 18, 2020
    Assignee: Bose Corporation
    Inventor: Zoran Coric
  • Patent number: 10742125
    Abstract: A direct feedback isolated power converter can include a transformer with primary, secondary, and bias windings. A main switch can selectively enable and disable current flow through the primary winding. A controller coupled to the bias winding may be configured to generate a gate drive signal for the main switch responsive at least in part to free ringing of the transformer. The controller may detect the free ringing via the bias winding. An auxiliary switch coupled across the secondary winding may be configured to selectively short circuit the secondary winding, responsive to feedback circuitry, to control when free ringing is established. The feedback circuitry may include a proportional, proportional integral, or proportional-integral-derivative control loop, a hysteretic control loop, or other controller type. The controller may operate at a variable or fixed frequency. The direct feedback isolated power converter may be a flyback converter or other type of isolated converter.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: August 11, 2020
    Assignee: Apple Inc.
    Inventor: Bogdan T. Bucheru
  • Patent number: 10739800
    Abstract: A power monitor circuit, includes a power delivery path including an input voltage, a first resistor, and a load. The power monitor circuit further includes a comparator to measure a voltage across the first resistor. The comparator includes an inverting input to measure a voltage on a first side of the first resistor, a non-inverting input to measure a voltage on a second side of the first resistor, a threshold input to receive a threshold input voltage level, and an output to generate a trip signal when the voltage across the first resistor meets the threshold input voltage input level. The power monitor circuit further includes a sub-circuit in series with the first resistor, the sub-circuit including a second resistor coupled to a Zener diode, the sub-circuit to feed the input voltage back into the inverting input of the comparator.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: August 11, 2020
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Robert G Mejia, Jim Jensen, Fernando Bolanos
  • Patent number: 10734799
    Abstract: Circuits, methods, and apparatus that may provide power supply voltages in a safe and reliable manner that meets safety and regulatory concerns and does not exceed physical limitations of cables and other circuits and components used to provide the power supply voltages. One example may provide a cable having a sufficient number of conductors to provide power without exceeding a maximum current density for the conductors. Another example may provide a cable having more than the sufficient number of conductors in order to provide an amount of redundancy. Current sense circuits may be included for one or more conductors. When an excess current is sensed, a power source in the power supply may be shut down, the power source may be disconnected from one or more conductors, or both events may occur.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: August 4, 2020
    Assignee: Apple Inc.
    Inventors: Paul J. Costa, Bharat K. Patel, Neal V. Cecil, Timur O. Starobinets, Ruenjou Lu, Dane Oleson, Fei Ni
  • Patent number: 10719096
    Abstract: A reference generator provides a reference output voltage that is continuously available while providing certain efficiencies of a duty-cycled voltage regulator. The reference output voltage is generated by a sample-and-hold circuit that is coupled to a voltage regulator. On command, the sample-and-hold circuit samples a low dropout voltage regulator that may be referenced by a bandgap circuit. During hold periods of the sample-and-hold circuit, the voltage regulator, in particular the bandgap circuit, may be disabled in order to conserve power. A sample cycle by the sample-and-hold circuit may be triggered by a signal received from a configurable finite state machine. The reference generator is effectively duty cycled in a manner that conserves available battery power, while still providing a constant reference output that is always available. The reference generator is especially suited for low-power, battery operated applications.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: July 21, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Murdock, Danielle Griffith, Per Torstein Roine
  • Patent number: 10707872
    Abstract: Circuits and techniques for buffering a digital signal are disclosed. The circuits and techniques allow a digital buffer circuit to accommodate a range of output voltages while maintaining a delay between input and output that is suitable for digital communications. The disclosed circuits and techniques utilize a combination of low voltage switches and high voltage switches. The low voltage switches dominate the buffering process when the buffer drives external circuitry (e.g., a communications bus) having a low voltage then, and the high voltage switches dominate the buffering process when the buffer drives external circuitry having a high voltage. The high voltage and low voltage switches configure themselves automatically based on an operating condition determined by the voltage level of the output with respect to the voltage level of the input.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: July 7, 2020
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Andrei Enache, Anca Mihaela Dragan, Adrian Macarie Tache
  • Patent number: 10707756
    Abstract: The invention provides a method for improving efficiency of a power converter which may include a switch coupled between a power source and a middle node, and may supply an inductor current at the middle node to result in an output voltage and a load current. The method may comprise: during an intermediate mode, controlling the inductor current to ripple with peaks at a peak current threshold and valleys which may vary as the load current varies.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: July 7, 2020
    Assignee: MEDIATEK INC.
    Inventors: Chao-Chang Chiu, Kuo-Chun Hsu
  • Patent number: 10694599
    Abstract: Systems and methods are provided for regulating one or more currents. An example system controller includes: a thermal detector configured to detect a temperature associated with the system controller and generate a thermal detection signal based at least in part on the detected temperature; and a modulation-and-driver component configured to receive the thermal detection signal and generate a drive signal based at least in part on the thermal detection signal to close or open a switch to affect a drive current associated with one or more light emitting diodes. The modulation-and-driver component is further configured to, in response to the detected temperature increasing from a first temperature threshold but remaining smaller than a second temperature threshold, generate the drive signal to keep the drive current at a first current magnitude, the second temperature threshold being higher than the first temperature threshold.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: June 23, 2020
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Xiangkun Zhai, Liqiang Zhu, Qiang Luo