To Obtain Localized Resonance Within A Sample Patents (Class 324/309)
  • Patent number: 11187770
    Abstract: Method for eliminating aliasing artifacts in a magnetic resonance image, comprising the steps of obtaining a first and a second starting image (100a,100b) obtained by a determined acquisition sequence and using, respectively a phase encoding for columns, and a phase encoding for rows. Both the first and the second starting image (100a,100b) are organized in according to a matrix structure (m·n) comprising a plurality of portions (101a,101b) arranged according to m rows and n columns, each of which is associated to a respective numerical value corresponding to the light intensity of the portion. The method provides a translation step for translating at least one between the first and the second starting image (100a,100b) with respect to a respective reference system, in such a way to minimize the differences among the numerical values of the homologous portions of the first and of the second starting image due to the fact that the first and the second starting image are obtained by a different encoding phase.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: November 30, 2021
    Inventor: Andrea Dell'Orso
  • Patent number: 11181595
    Abstract: Systems and methods are provided for acquiring imaging data from one or more resonance species that simultaneously produce individual magnetic resonance signals in a plurality of different slices. The data is acquired by simultaneously exciting, using a pTX RF coil array, a plurality of different slices such that at least some of the plurality of different slices are excited by transmitting RF energy from a subset of transmit channels in the pTX RF coil array. The method also includes comparing the data to a dictionary of signal evolutions to determine quantitative values for two or more parameters of the resonant species based, at least in part, on matching the data to a set of known signal evolutions stored in the dictionary. The method includes producing an image for each of the plurality of different slice locations, at least in part, on the quantitative values.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 23, 2021
    Assignee: Case Western Reserve University
    Inventors: Bhairav Bipin Mehta, Simone Coppo, Michael Twieg, Mark A. Griswold
  • Patent number: 11181596
    Abstract: A storage medium, a magnetic resonance apparatus, and a method for obtaining an operating parameter of a magnetic resonance apparatus are disclosed herein. The method includes generating of at least one echo train, wherein the generation of an echo train includes: setting a given set of parameters; applying at least one radio frequency excitation pulse; and applying a dephasing gradient in readout direction; and reading out the echo train having at least two echo signals, wherein a readout gradient is applied while reading out the echo signals. The method further includes acquiring at least two echo signals, wherein the set of parameters differs in at least one parameter being used for different echo signals; processing the echo signals line by line to projections; and obtaining the operating parameter using the projections.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: November 23, 2021
    Assignee: Siemens Healthcare GmbH
    Inventor: Mario Zeller
  • Patent number: 11175363
    Abstract: The disclosed embodiments provide a method for acquiring MR data at resolutions down to tens of microns for application in in vivo diagnosis and monitoring of pathology for which changes in fine tissue textures can be used as markers of disease onset and progression. Bone diseases, tumors, neurologic diseases, and diseases involving fibrotic growth and/or destruction are all target pathologies. Further the technique can be used in any biologic or physical system for which very high-resolution characterization of fine scale morphology is needed. The method provides rapid acquisition of signal at selected values in k-space, with multiple successive acquisitions at individual k-values taken on a time scale on the order of microseconds, within a defined tissue volume, and subsequent combination of the multiple measurements in such a way as to maximize SNR.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: November 16, 2021
    Assignee: BIOPROTONICS, INC.
    Inventors: Kristin James, Timothy W. James
  • Patent number: 11175362
    Abstract: A flexibly and universally applicable method for simultaneous multi-slice nuclear spin tomography is provided. Thereby, a pulse space region to be sampled is specified by means of a processor, wherein a first pulse space dimension (ky) is assigned to a first phase-encoded axis and a second pulse space dimension (kz) is assigned to a second phase-encoded axis and the second phase-encoded axis corresponds to a slice axis. An undersampling scheme is specified by means of the processor, wherein along the second pulse space dimension (kz), an incomplete sampling is provided. Then, a magnetic resonance scan is carried out within the pulse space region to be sampled according to the undersampling scheme and according to respective phase-encodings of the first and second phase-encoded axis.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 16, 2021
    Assignee: Siemens Healthcare GmbH
    Inventor: Thorsten Feiweier
  • Patent number: 11171684
    Abstract: An NMR measurement apparatus includes a transmitting antenna including a transmitter coil, a capacitor, a dissipating component and a restricting component, and a receiving antenna physically separated from the transmitting antenna. A processor is configured to apply a drive signal at a first voltage level to generate a transmission signal having a selected transmission frequency, where the receiving antenna is deactivated during generation, connect the dissipating component to the transmitter coil to dissipate stored energy in the transmitter coil, connect the restricting component to the transmitter coil to restrict the transmitting antenna to a second voltage level smaller than the first voltage level and based on a voltage of NMR signals from the sensitive volume, activate the receiving antenna and detect a NMR signal, where the restricting component is connected to the transmitter coil and restricts the transmitting antenna during the activating and the detecting.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: November 9, 2021
    Assignee: BAKER HUGHES OILFIELD OPERATIONS LLC
    Inventors: Quming Zhou, Stanislav Forgang, Marc Stephen Ramirez
  • Patent number: 11163026
    Abstract: A magnetic resonance imaging system (100) comprising a main magnet (104) for generating a main magnetic field within an imaging zone (108); a radio frequency, RF, antenna (114), comprising an RF input terminal (300) and an RF output terminal (302); an RF system for supplying radio-frequency power to the RF input terminal (300) to energize the antenna (114), the antenna (114) being further adapted for picking up magnetic resonance signals (144) from the imaging zone (108); a data acquisition system (126) for receiving the magnetic resonance signals (144) from the RF output terminal (302); wherein the RF input terminal (300) is in galvanic connection to the antenna (114) and the RF output terminal (302) is inductively coupled to the antenna (114).
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: November 2, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Oliver Lips, Ingo Schmale
  • Patent number: 11163027
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes sequence controlling circuitry and processing circuitry. The sequence controlling circuitry performs a first acquisition and a second acquisition, the first acquisition including executing a preparation module corresponding to a first Echo Time (TE) value and subsequently performing an acquisition sequence, the second acquisition including executing the preparation module corresponding to a second TE value different from the first TE value and subsequently performing the acquisition sequence, the acquisition sequence being a pulse sequence including applying an RF excitation pulse in presence of a gradient magnetic field, and subsequently applying an RF re-focusing pulse in presence of another gradient magnetic field having an opposite polarity to that of the gradient magnetic field. The processing circuitry extracts at least one of a signal related to a first fat and a signal related to a second fat.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: November 2, 2021
    Assignees: CANON MEDICAL SYSTEMS CORPORATION, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Mitsue Miyazaki, Cheng Ouyang, Christine Chung
  • Patent number: 11163030
    Abstract: A system and method include determination of a value of a first biomarker, determination of a value of a first quantitative parameter of a first imaging modality corresponding to the determined value of the first biomarker, determination of a value of a second quantitative parameter of a second imaging modality corresponding to the determined value of the first biomarker, determination of physical characteristics of an imaging phantom associated with the value of the first biomarker, the value of the first quantitative parameter, and the value of the second quantitative parameter, and generation of an instruction to fabricate the imaging phantom based on the physical characteristics.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: November 2, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Yassin Labyed, Andrzej Milkowski
  • Patent number: 11147466
    Abstract: A system is disclosed to simultaneously acquire a magnetic resonance angiography (MRA) image and a plurality of images in which the structure of a tissue other than a blood vessel can be ascertained without performing imaging for the MRA image, and to shorten a time of MR examination. Two or more kinds of physical property dependent images obtained from a nuclear magnetic resonance signal measured in accordance with a predetermined pulse sequence under a plurality of imaging conditions are combined using a predetermined combination function.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: October 19, 2021
    Assignee: Hitachi, Ltd.
    Inventors: Tomoki Amemiya, Suguru Yokosawa, Yo Taniguchi, Hisaaki Ochi, Yoshihisa Sotome
  • Patent number: 11150278
    Abstract: The present disclosure relates to a control system and methods implemented on the control system. The control system includes a tuning/detuning system and a diagnosis system. The tuning/detuning system includes a first voltage source, a second voltage source, one or more coil arrays, and one or more tuning/detuning circuit drivers corresponding to the one or more coils arrays, respectively. The diagnosis system includes a first current sampling circuit and a processor. The first current sampling circuit is configured to obtain a first current. The processor is configured to diagnose the tuning/detuning system based on the first current.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: October 19, 2021
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventor: Xiaolei Guan
  • Patent number: 11143730
    Abstract: A method for reconstructing a full k-space dataset using parallel magnetic resonance (MR) imaging technique is provided. The method includes acquiring, by a plurality of receiver coils, a set of first under-sampled k-space data, receiving a set of second partial or fully-sampled k-space data, respectively performing k-space interpolation of the set of the first under-sampled k-space data respectively acquired by each of the plurality of receiver coils, recovering respectively missing k-space lines of each of the set of first under-sampled k-space data using corresponding second partial or fully-sampled k-space data and corresponding first under-sampled k-space data, forming a plurality of full k-space datasets by respectively combining each of the set of first under-sampled k-space data and corresponding recovered missing k-space lines for each of the plurality of receiver coils, obtaining a plurality of fully-sampled images from the plurality of full k-space datasets, and combining images into a final image.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: October 12, 2021
    Assignee: UNIVERSITY OF CINCINNATI
    Inventor: Jinghua Wang
  • Patent number: 11143724
    Abstract: A receiving device for two signals having different center frequencies. The receiving device includes a sampler. A first signal of the two signals and a second signal of the two signals are supplied to a first signal-input of the sampler in a time multiplex. The sampler digitizes the first signal and the second signal at a sampling rate. The receiving device also includes a frequency mirroring device that mirrors the second digital signal in a frequency domain about a quarter of the sampling rate.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: October 12, 2021
    Assignee: Siemens Healthcare GmbH
    Inventor: Jan Bollenbeck
  • Patent number: 11137466
    Abstract: MR imaging comprising the steps of: subjecting an object (10) to an imaging sequence of RF pulses and switched magnetic field gradients (GS, GP, GM), which imaging sequence is a steady state sequence comprising a plurality of repeatedly applied acquisition blocks (21), wherein each acquisition block (21) comprises two units (22, 23) in immediate succession, namely: i) a first unit (22) starting with an excitation RF pulse radiated toward the object (10), with the duration of the first unit being an integer multiple of a given time interval T, and ii) a second unit (23) starting with a refocusing RF pulse radiated toward the object (10) and comprising a readout magnetic field gradient (GM) and a phase encoding magnetic field gradient (GP), with the duration of the second unit (23) being an integer multiple of the time interval T, acquiring one or more phase-encoded spin echo signals (31, 32) in a sequence of acquisition blocks (21), and reconstructing one or more MR images from the acquired spin echo signals (
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: October 5, 2021
    Assignee: Koninklijke Philips N.V.
    Inventor: Tim Nielsen
  • Patent number: 11137468
    Abstract: In a method and magnetic resonance imaging apparatus having a scanner that for acquires a magnetic resonance dataset, a magnetic resonance sequence is provided to a computer and is converted in the computer into a digital sequence execution signal that includes a target gradient waveform in the form of a time-discrete target gradient signal the computer calculates a pre-GIRF gradient signal by applying a digital pre-emphasis filter to the target gradient signal. The computer transmits the pre-GIRF gradient signal to the magnetic resonance system scanner and) the scanner executes the digital sequence execution signal containing the pre-GIRF gradient signal in order to acquire magnetic resonance raw data.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: October 5, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Thomas Kluge, David Grodzki
  • Patent number: 11137463
    Abstract: MRI techniques provide robust imaging in the presence of inhomogeneity in the B1 (RF) and/or B0 magnetic fields. The techniques include using a magnetization prep sequence that includes an adiabatic half passage (AHP) followed by a spin-lock pulse, followed by a reverse AHP, after which a data acquisition sequence can be applied. The AHP and reverse AHP can have amplitude and frequency modulated to sweep through a region of frequency space. The RF amplitude of the AHP and reverse AHP can be designed to be equal to the spin-lock amplitude. Quantification of a magnetization relaxation parameter (e.g., T1rho) can use a modified relaxation model that accounts for relaxation effects during the reverse AHP. A dual-acquisition technique in which the reverse AHP of the second magnetization prep sequence has opposite frequency modulation to the reverse AHP of the first magnetization prep sequence can also be used.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: October 5, 2021
    Assignee: The Chinese University of Hong Kong
    Inventors: Weitian Chen, Baiyan Jiang
  • Patent number: 11137465
    Abstract: Method and system for cleaning a magnetic resonance measurement dataset. In the method, a GRAPPA kernel is calibrated on the measurement dataset, k-space values of the measurement dataset are verified against a predefined intensity criterion in order to identify false values, the k-space values of the measurement dataset are reconstructed point-by-point using the calibrated GRAPPA kernel from respective others of the k-space values, and the false values are replaced with the corresponding reconstructed k-space values in order to generate a cleaned measurement dataset.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: October 5, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Markus Vester, Mario Zeller
  • Patent number: 11138769
    Abstract: An image reconstruction method according to an embodiment includes: collecting first k-space data at a first time and second k-space data having an undersampled pattern different from an undersampled pattern of the first k-space data at a second time different from the first time; generating intermediate data by converting data including the first k-space data and the second k-space data; generating, by inversely converting the intermediate data, third k-space data and fourth k-space data that correspond to the first k-space data and the second k-space data, respectively, and in each of which at least part of a region undersampled through the corresponding undersampled pattern is filled; and generating a magnetic resonance image at a time different from any of the first time and the second time by converting k-space data obtained by combining at least part of the third k-space data and at least part of the fourth k-space data.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: October 5, 2021
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Masaaki Nagashima, Hiroshi Takai
  • Patent number: 11137467
    Abstract: A system and method for optimized diffusion-weighted imaging is provided. In one aspect, the method includes providing a plurality of constraints comprising an eddy current constraint for imaging a target at a selected diffusion weighting, and applying an optimization framework to generate an optimized diffusion encoding gradient waveform satisfying the plurality of constraints. The method also includes performing, using the MRI system, a pulse sequence comprising the optimized diffusion encoding gradient waveform to generate diffusion-weighted data, and generating at least one image of the target using the diffusion-weighted data.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: October 5, 2021
    Assignee: The Regents of the University of California
    Inventors: Daniel Ennis, Eric Aliotta, Kevin Moulin
  • Patent number: 11131735
    Abstract: A computer that determines coefficients in a representation of coil sensitivities and MR information associated with a sample is described. During operation, the computer may acquire MR signals associated with a sample from the measurement device. Then, the computer may access a predetermined set of coil magnetic field basis vectors, where weighted superpositions of the predetermined set of coil magnetic field basis vectors using the coefficients represent coil sensitivities of coils in the measurement device, and where the predetermined coil magnetic field basis vectors are solutions to Maxwell's equations. Next, the computer may solve a nonlinear optimization problem for the MR information associated with the sample and the coefficients using the MR signals and the predetermined set of coil magnetic field basis vectors.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: September 28, 2021
    Assignee: Q Bio, Inc.
    Inventors: Jorge Fernandez Villena, Stamatios Lefkimmiatis, Athanasios Polymeridis, Doruk Tayli
  • Patent number: 11131733
    Abstract: A system and method is provided for acquisition of magnetic resonance fingerprinting (“MRF”) data that includes determining a non-locally sequential sampling pattern for a Cartesian grid of k-space, performing a series of sequence blocks using acquisition parameters that vary between sequence blocks to acquire MRF data from a subject using the Cartesian grid of k-space and the determined non-locally sequential sampling pattern, assembling the MRF data into a series of signal evolutions, comparing the series of signal evolutions to a dictionary of known signal evolutions to determine tissue properties of the subject, and generating a report indicating the tissue properties of the subject.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: September 28, 2021
    Assignees: Case Western Reserve University, Siemens Healthcare GmbH
    Inventors: Yun Jiang, Mark A. Griswold, Gregor Korzdorfer, Mathias Nittka
  • Patent number: 11125846
    Abstract: A method is disclosed for phase contrast magnetic resonance imaging (MRI) comprising: acquiring phase contrast 3D spatiotemporal MRI image data; inputing the 3D spatiotemporal MRI image data to a three-dimensional spatiotemporal convolutional neural network to produce a phase unwrapping estimate; generating from the phase unwrapping estimate an integer number of wraps per pixel; and combining the integer number of wraps per pixel with the phase contrast 3D spatiotemporal MRI image data to produce final output.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: September 21, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher Michael Sandino, Shreyas S. Vasanawala, Joseph Yitan Cheng, Jiacheng Jason He
  • Patent number: 11125847
    Abstract: A method for magnetic resonance fingerprinting with out-of-view artifact suppression includes acquiring MRF data from a region of interest in a subject. The MRF data is acquired using a non-Cartesian, variable density sampling trajectory. The MRF data includes data from within a desired field-of-view and data from outside the desired field-of-view. The method also includes generating a set of coil images based on the MRF data with a field-of-view larger than the desired field-of-view, determining a noise covariance based on the MRF data from outside the desired field-of-view, generating a coil combined image using an adaptive coil combination determined based on the noise covariance, applying the adaptive coil combination to the MRF data to grid each frame of the MRF data and generate MRF data with out-of-view artifact suppression. The method also includes identifying at least one property of the MRF data and generating a report.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: September 21, 2021
    Assignee: Case Western Reserve University
    Inventors: Brendan Eck, Jesse Hamilton, Nicole Seiberlich, Mark Griswold
  • Patent number: 11119173
    Abstract: Methods, devices, systems and apparatus for dynamic imaging based on echo planar imaging (EPI) sequence are provided. In one aspect, a method includes: obtaining first pre-scanned k-space data by performing a pre-scan for a subject based on a first EPI sequence and pre-scanning parameters, obtaining a pre-scanned image and second pre-scanned k-space data according to the first pre-scanned k-space data, performing a dynamic scan for the subject based on a second EPI sequence and dynamic scanning parameters to generate dynamically-scanned k-space data associated with each of a plurality of dynamic periods in the dynamic scan, and for each of the dynamic periods, generating a residual image according to the dynamically-scanned k-space data of the dynamic period and the second pre-scanned k-space data, and adding the pre-scanned image and the residual image to obtain a dynamic image of the dynamic period.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: September 14, 2021
    Assignee: Neusoft Medical Systems Co., Ltd.
    Inventor: Feng Huang
  • Patent number: 11116418
    Abstract: A therapeutic apparatus comprising a radiotherapy apparatus for treating a target zone and a magnetic resonance imaging system for acquiring magnetic resonance imaging data. The radiotherapy apparatus comprises a radiotherapy source for directing electromagnetic radiation into the target zone. The radiotherapy apparatus is adapted for rotating the radiotherapy source at least partially around the magnetic resonance magnet. The magnetic resonance imaging system further comprises a radio-frequency transceiver adapted for simultaneously acquiring the magnetic resonance data from at least two transmit-and-receive channels. The therapeutic apparatus further comprises a processor and a memory containing machine executable instructions for the processor.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: September 14, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Paul Royston Harvey
  • Patent number: 11112475
    Abstract: A method of magnetic resonance (MR) imaging of an object includes: generating MR signals by subjecting the object to a number N of shots of a multi-echo imaging sequence comprising multi-slice RF pulses for simultaneously exciting two or more spatially separate image slices, with a phase offset in the slice direction being imparted to the MR signals; acquiring the MR signals that are received in parallel via a set of at least two RF coils having different spatial sensitivity profiles; and reconstructing a MR image for each image slice from the acquired MR signals using a parallel reconstruction algorithm, wherein the MR signal contributions from the different image slices are separated on the basis of the spatial encodings of the MR signals according to the spatial sensitivity profiles of the RF coils and of the phase offsets attributed to the respective image slices and shots.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: September 7, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Michel Paul Jurriaan Jurrissen, Arthur Filipe Nisti Grigoletto Borgonovi, Thomas Hendrik Rozijn
  • Patent number: 11112479
    Abstract: The invention also relates to a MRI apparatus for obtaining images of a target volume of a human and/or animal subject using magnetic resonance imaging (MRI), said MRI apparatus at least comprising: a housing defining a target area for accommodating said human and/or animal subject; at least one main magnet unit and at least one magnetic gradient unit for applying—during use—one or more magnetic field gradients along three independent orthogonal spatial axes in said target area, as well as at least one radiofrequency (RF) pulse generation unit for applying one or more sets of RF pulses towards said target area; a RF receiving unit for acquiring MRI signals possibly having multi-channel spatially sensitive characteristics; and a computer processing unit for processing said acquired MRI signals and for producing said magnetic resonance image data.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: September 7, 2021
    Assignees: UNIVERSITEIT MAASTRICHT, ACADEMISCH ZIEKENHUIS MAASTRICHT
    Inventors: Alard Roebroeck, Benedikt Poser, Francisco Lagos Fritz
  • Patent number: 11112474
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus includes processing circuitry. The processing circuitry acquires a first resonance frequency distribution of a first tissue and a second resonance frequency distribution of a second tissue which is different from the first tissue. The processing circuitry calculates a center frequency of a frequency-selective pulse that suppresses or emphasizes either one of the first tissue and the second tissue in accordance with the first and second resonance frequency distributions. The processing circuitry collects a magnetic resonance signal after the frequency-selective pulse is applied at the calculated center frequency.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: September 7, 2021
    Assignee: Canon Medical Systems Corporation
    Inventors: Shuhei Nitta, Naho Imamura, Takahiro Ohmure, Hiroshi Takai, Nobuyasu Ichinose, Yoshimori Kassai
  • Patent number: 11112471
    Abstract: The present invention is directed to inductively feeding a RF coil (9) for magnetic resonance imaging (MRI), and in particular to a system comprising a RF coil (9) for magnetic resonance imaging and at least one feeding coil (14) for inductively feeding the RF coil (9) with an RF signal, and further to a method for inductively feeding a RF coil (9) for magnetic resonance imaging with at least one RF signal. According to the invention, in this system, the at least one feeding coil (14) is configured and arranged for feeding the RF signal into a conductive coil element (10) of the RF coil (9) at a first position and at a second position, the first position being different from the second position, wherein the direction of the magnetic field of the RF signal at the first position is different from the magnetic field of the RF signal at the second position. In this way, the invention provides for an inductive RF feeding of a resonator which can be achieved in a compensated way, i.e.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: September 7, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Oliver Lips
  • Patent number: 11105876
    Abstract: A system and method generate a synthetic image with switchable image contrast components for a biological object. The method includes: a) using first and second quantitative MRI acquisition techniques for measuring a value of first or second quantitative parameters Q1, Q2 for the biological object and generating first and second quantitative maps, the first and second quantitative MRI acquisition techniques generate first and second contrast-weighted images; b) using the first and second quantitative maps, and the first and second contrast weighted images as inputs in a model configured for generating a synthetic image M with arbitrary sequence parameters P1, P2, P3, according to: M=|Cif(Q1,Q2,P1,P2,P3)| wherein Ci with i=1, 2, are contrast components for the generation of the synthetic image M coming from respectively the first (i=1) and second (i=2) contrast-weighted images (i=1) and f is a function of Q1, Q2, P1, P2 and P3; and c) displaying the synthetic image M.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: August 31, 2021
    Assignees: Siemens Healthcare GmbH, Centre Hospitalier Universitaire Vaudois
    Inventors: Tom Hilbert, Tobias Kober, Patrick Omoumi
  • Patent number: 11089970
    Abstract: A magnetic resonance imaging system (100) for acquiring magnetic resonance data (141) from an imaging zone (108) includes a memory (134, 136) for storing machine executable instructions (150, 152, 154, 156) and pulse sequence commands (140). The pulse sequence commands cause the magnetic resonance imaging system to provide at least one spatially selective saturation pulse (408, 410) to at least one selected volume (124, 124?) that is at least partially outside of a region of interest (123) and within the imaging zone. The magnetic resonance imaging system performs a non-selective inversion (412) of spins in the region of interest followed by a readout (414) of the magnetic resonance data which is reconstructed (202) into an image (142).
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: August 17, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Lindner, Michael Helle
  • Patent number: 11079453
    Abstract: A new method is developed for ultrafast, high-resolution magnetic resonance spectroscopic imaging (MRSI) using learned spectral features. The method uses Free Induction Decay (FID) based ultrashort-TE and short-TR acquisition without any solvent suppression pulses to generate the desired spatiospectral encodings. The spectral features for the desired molecules are learned from specifically designed “training” data by taking into account the resonance structure of each compound generated by quantum mechanical simulations. A union-of-subspaces model that incorporates the learned spectral features is used to effectively separate the unsuppressed water/lipid signals, the metabolite signals, and the macromolecule signals. The unsuppressed water spectroscopic signals in the data can be used for various purposes, e.g., removing the need of additional auxiliary scans for calibration, and for generating high quality quantitative tissue susceptiability mapping etc.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: August 3, 2021
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Zhi-Pei Liang, Fan Lam
  • Patent number: 11079448
    Abstract: A system and method is provided for correcting receiver bias during quantitative proton density mapping with magnetic resonance fingerprinting (MRF). The method comprises acquiring MRF data from a region of interest in a subject by performing a pulse sequence using a series of varied sequence blocks to elicit a series of signal evolutions. The method further comprises comparing the MRF data to a MRF dictionary to simultaneously map proton density and another tissue property from the region of interest, the proton density map having a proton density signal and a receiver sensitivity profile signal. The method also includes quantifying the proton density signal and the receiver sensitivity profile signal using parameters provided by the proton density map and the tissue property map, and generating a quantitative map from the region of interest based on the proton density signal.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: August 3, 2021
    Assignee: Case Western Reserve University
    Inventors: Mark A. Griswold, Anagha Deshmane
  • Patent number: 11073585
    Abstract: A magnetic resonance fingerprinting (MRF) method for determining parameter values in pixels of an examination object can use a magnetic resonance system with, for example, a constant magnetic field strength (e.g. of less than 1.5 tesla or a constant magnetic field strength of less than 0.5 tesla). The MRF method can be adapted for conditions that prevail with such low-field magnetic resonance systems, thus enabling the parameter values to be advantageously determined efficiently while simultaneously maintaining a high degree of quality.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: July 27, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Gregor Koerzdoerfer, Mathias Nittka, Peter Speier
  • Patent number: 11071470
    Abstract: A method of measuring a tissue parameter such as proteoglycan content and other relevant tissue parameters, e.g. tissue pH, in a tissue or an organ of a subject includes generating first and second frequency magnetic resonance data using T1? scans at different frequencies, wherein the frequencies are symmetric. The method also includes combining the first frequency magnetic resonance data and the second frequency magnetic resonance data to remove a number of contributions from a number of relaxation mechanisms other than chemical exchange, thereby obtaining chemical exchange-specific magnetic resonance data indicative of the tissue parameter in the tissue or the organ. The chemical exchange-specific magnetic resonance data may be used to measure the proteoglycan content in the tissue or organ.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: July 27, 2021
    Assignee: University of Pittsburgh—Of the Commonvvealth System of Higher Education
    Inventors: Wen Ling, Tao Jin, Kyongtae Ty Bae
  • Patent number: 11073581
    Abstract: A coil assembly includes: a radio frequency (RF) coil operable to be placed over a portion of a subject; a quarter-wave transformer coupled to the RF coil and configured to transform a characteristic impedance of the RF coil; and a diode placed behind the quarter-wave transformer and away from the RF coil, wherein the diode is operable to: (i) when the diode is forward biased, the diode turns the quarter-wave transformer into an open circuit such that the power amplifier drives the RF coil with sufficient electrical power for the RF coil to transmit an RF pulse into the portion of the subject; and (ii) when the diode is provided zero or reverse bias, the diode turns the quarter-wave transformer into a short circuit such that the RF coil is detuned from a Lamor frequency of nuclei of interest immersed in the main magnet.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: July 27, 2021
    Assignee: Synaptive Medical Inc.
    Inventor: Ian Robert Oliphant Connell
  • Patent number: 11073587
    Abstract: An image corrected for body motion with high accuracy in a short time when performing retrospective body motion correction on an MRI image is provided, and the time from imaging to image display is reduced. A body motion corrector of an MRI apparatus has a weighting factor calculator that calculates a three-dimensional weighting factor based on signals received by multi-channel receive coils. A processing space converter converts three-dimensional frequency space data of a measurement signal and the three-dimensional weighting factor respectively into hybrid space data and a two-dimensional weighting factor. A synthesized signal calculator calculates a synthesized signal by convolution integration of the hybrid space data and the two-dimensional weighting factor; and a body motion position detector detects a body motion occurrence position in the hybrid space from the hybrid space data and the synthesized signal.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: July 27, 2021
    Assignee: HITACHI, LTD.
    Inventors: Yukari Yamamoto, Toru Shirai, Masahiro Takizawa, Takashi Nishihara
  • Patent number: 11071502
    Abstract: In a method and apparatus for characterizing an obstacle within an examination object using a medical image data set by the use of a database containing at least one data class, a trained artificial neural network defines and develops relationships between different obstacles, features and medical imaging data sets. A data entry of a data class is assigned by the neural network to the obstacle within the examination object and the obstacle within the examination object is characterized in an electronic output by this data entry.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: July 27, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Dominik Paul, Mario Zeller
  • Patent number: 11064900
    Abstract: Provided are an ultra-low field nuclear magnetic resonance device and a method for measuring an ultra-low field nuclear resonance image. The ultra-low field nuclear magnetic resonance device includes an AC power supply configured to supply a current to a measurement target in such a manner the current flows to the measurement target, magnetic field measurement means disposed adjacent to the measurement target, and measurement bias magnetic field generation means configured to apply a measurement bias magnetic field corresponding to a proton magnetic resonance frequency of the measurement target. A vibration frequency of the AC power supply matches the proton magnetic resonance frequency of the measurement target, and the magnetic field measurement means measures a nuclear magnetic resonance signal generated from the measurement target.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: July 20, 2021
    Assignee: Korea Research Institute of Standards and Science
    Inventors: Seong-Joo Lee, Kiwoong Kim, Jeong-Hyun Shim, Kwon-Kyu Yu, Seong-min Hwang
  • Patent number: 11067653
    Abstract: The invention relates to a method of MR imaging of an object. It is an object of the invention to enable MR imaging using the stack-of-stars acquisition scheme with an enhanced control of the contrast of the reconstructed MR image. The method of the invention comprises the steps of: a) generating MR signals by subjecting the object (10) to a number of shots of a multi-echo imaging sequence comprising RF pulses and switched magnetic field gradients, wherein a train of echo signals is generated by each shot; b) acquiring the echo signals according to a stack-of-stars (i.e.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: July 20, 2021
    Assignee: Koninklijke Philips N.V.
    Inventor: Gabriele Marianne Beck
  • Patent number: 11061089
    Abstract: A magnetic resonance imaging (MRI) system, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, electromagnetic shielding provided to attenuate at least some electromagnetic noise in an operating environment of the MRI system, and an electrical conductor coupled to the electromagnetic shielding and configured to electrically couple to a patient during imaging of the patient by the MRI system. The magnetics system may include at least one permanent B0 magnet configured to produce a B0 magnetic field for an imaging region of the MRI system. The B0 magnetic field strength may be less than or equal to approximately 0.2 T.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: July 13, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Eddy B. Boskamp, Jeremy Christopher Jordan
  • Patent number: 11061091
    Abstract: A method for the magnetic resonance examination of a measurement object is described, in which a measurement sequence is used in which the magnetic resonance response to the transmitted signal during transmission is measured. It is provided that a correction signal corresponding to the transmitted signal be generated and be used for correction of the response signal. To this end, the correction signal is modulated by a phase value and an amplitude value. The phase value and the amplitude value are automatically and iteratively customized for optimum correction of the response signal by an optimization method using a respective present state value of the measurement signal. Further, a radio-frequency unit (1) is described that can be used to carry out the method according to the invention.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: July 13, 2021
    Assignee: Albert-Ludwigs-Universität Freiburg
    Inventors: Ali Caglar Ozen, Michael Bock
  • Patent number: 11061092
    Abstract: A fat saturation method for a magnetic resonance imaging system having a main magnet providing a magnetic field B0 The method includes: driving a shim coil assembly with a first set of shimming currents to sufficiently alter a B0 field inhomogeneity of the magnetic field B0 within a region that includes a first imaging volume of interest such that water saturation inside the region is reduced from before the first set of shimming currents are applied; applying a fat saturation pulse to the region; identifying the first imaging volume of interest from the region; driving the shim coil assembly with a second set of shimming currents to alter the B0 field inhomogeneity of the magnetic field B0 within the first imaging volume of interest such that the B0 field inhomogeneity within the first imaging volume of interest is reduced; and obtaining magnetic resonance signals from the first imaging volume of interest.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: July 13, 2021
    Assignee: Synaptive Medical Inc.
    Inventors: Philip J. Beatty, Chad Tyler Harris, Curtis Nathan Weins
  • Patent number: 11054493
    Abstract: In a method for generating an MR image of an object, k-space of the MR image is separated into blades. In each blade, parallel k-space lines are provided which are separated in a phase encoding direction (PED). Each blade has a different rotation angle around a common center relative to the remaining blades. A spatial extent of the object is determined. For the blades, the extent of the object in the corresponding PED is determined. A blade specific extent of a field of view (FOV) in the PED is determined for each of the blades based on the corresponding extent of the object in the PED. The extent of the FOV in the PED differs for at least one of the blades from the extent of the remaining blades, and sampling the k-space with the blades with the determined blade specific FOV as determined for each of the blades.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: July 6, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Mario Zeller, Dominik Paul
  • Patent number: 11051711
    Abstract: A plurality of stimulations is transmitted to tissue or other material using one or more transmitters. The plurality of signals associated with the excited tissue and the transmitted stimulations are measured. The measured signals are processed to generate field-related quantities, such as B1+ and/or MR signal maps. Field-related quantities are generated also from simulation, by calculating the one or more incident fields from a simulator model of the one or more transmitters and assuming a given distribution of electrical properties in the tissue or other material. Field-related quantities generated from simulation and experimental procedures are compared to each other. The assumed electrical properties distribution is updated and the procedure is repeated iteratively until the difference between simulated and experimental field-related quantities is smaller than a threshold.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: July 6, 2021
    Assignee: New York University
    Inventors: Riccardo Lattanzi, Daniel K. Sodickson, José E. Cruz Serralles, Athanasios Polymeridis, Luca Daniel, Jacob K. White
  • Patent number: 11041925
    Abstract: A processor controls an MRI system with pulse sequence commands to acquire magnetic resonance data according to a magnetic resonance fingerprinting protocol during multiple pulse repetitions. The pulse sequence commands control the magnetic resonance imaging system to cause gradient induced spin rephasing at least twice during each of the multiple pulse repetitions, and to acquire at least two magnetic resonance signals during each of the multiple pulse repetitions. Each of the at least two magnetic resonance signals is measured during a separate one of the gradient induced spin rephasing. The magnetic resonance data includes the at least two magnetic resonance signals acquired during each of the multiple pulse repetitions. The processor further at least partially calculates a B0-off-resonance map using the magnetic resonance data, and generates at least one magnetic resonance parametric map by comparing the magnetic resonance data with a magnetic resonance fingerprinting dictionary.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: June 22, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Jan Jakob Meineke, Thomas Erik Amthor, Peter Koken, Karsten Sommer
  • Patent number: 11041922
    Abstract: An apparatus to provide power for operating at least one gradient coil of a magnetic resonance imaging system. According to some aspects, the apparatus comprises a plurality of power terminals configured to supply different voltages of a first polarity, and a linear amplifier configured to provide at least one output to power the at least one gradient coil to produce a magnetic field in accordance with a pulse sequence, the linear amplifier configured to be powered by one or more of the plurality of power terminals, wherein the one or more of the plurality of power terminals powering the linear amplifier is selected based, at least in part, on the at least one output.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: June 22, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: William J. Mileski, Gregory L. Charvat, Jonathan M. Rothberg, Jeremy Christopher Jordan
  • Patent number: 11037683
    Abstract: Methods, systems and circuits evaluate a subject's risk of developing type 2 diabetes using defined mathematical models of short term risk (STR) and longer term risk of progression. The evaluations can stratify risk for patients having the same glucose measurement, particularly those with intermediate or low (normal) fasting plasma glucose (FPG) values. The STR or IR (insulin resistance) model(s) may include an inflammatory biomarker such as an NMR derived measurements of GlycA and a plurality of selected lipoprotein components of at least one biosample of the subject. Embodiments of the invention also provide methods, systems and circuits that generate STR scores as a marker of beta-cell dysfunction or impairment.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: June 15, 2021
    Assignee: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova
  • Patent number: 11033335
    Abstract: The present invention relates to orthopaedic implants and has particular relevance to determining the placement of fixation apparatus or devices, such as screws, which are used to fix implants to the bone or bones with which the implants are to be connected. More particularly, the invention relates to a method for determining placement of a fixation apparatus for fixing an orthopaedic implant to bone, and the method comprising: selecting a plurality of fixation locations; using a bone density model to determine bone density associated with each location; and selecting a combination or permutation of the fixation locations dependent on the determined bone density.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: June 15, 2021
    Assignee: FORMUS LABS LIMITED
    Inventor: Ju Zhang
  • Patent number: 11035920
    Abstract: Described here are systems and methods for producing images of a subject using magnetic resonance imaging (“MRI”) in which data are acquired using a sparse approximate encoding scheme for controlled aliasing techniques. As one example, the sparse approximate encoding can be used for a Wave-CAIPI encoding scheme, which can enable faster image reconstruction using fewer computational resources, in addition to reducing noise in the reconstructed images relative to those reconstructed from data acquired using a Wave-CAIPI encoding scheme without sparse approximate encoding.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: June 15, 2021
    Assignee: The General Hospital Corporation
    Inventors: Lawrence Wald, Kawin Setsompop, Stephen Cauley