Using A Nuclear Resonance Spectrometer System Patents (Class 324/307)
  • Patent number: 10408910
    Abstract: Systems and methods for estimating the actual k-space trajectory implemented when acquiring data with a magnetic resonance imaging (“MRI”) system while jointly reconstructing an image from that acquired data are described. An objective function that accounts for deviations between the actual k-space trajectory and a designed k-space trajectory while also accounting for the target image is optimized. To reduce the computational burden of the optimization, a reduced model for the parameters associated with the k-space trajectory deviation and the target image can be implemented.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: September 10, 2019
    Assignee: The General Hospital Corporation
    Inventors: Stephen Cauley, Kawin Setsompop, Lawrence L Wald
  • Patent number: 10408900
    Abstract: The present disclosure in some embodiments provides a method and an apparatus for processing MRI images wherein a plurality of slices of an object is applied with a spatial encoding gradient and a corrected gradient for applying a radial sampling, and radially sampled magnetic resonance signals of the slices are received, and MRI images are generated with the radial sampling applied over multi-bands.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: September 10, 2019
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyun Wook Park, Dong Chan Kim
  • Patent number: 10408906
    Abstract: A method of SENSE reconstruction including: constructing a coil sensitivity encoding matrix; inversing of the coil sensitivity encoding matrix using a QR decomposition algorithm; and multiplying an inverse of the receiver coil sensitivity encoding matrix with an under-sampled data using a central processing unit (CPU) and using a GPU residing on a host computer to further decrease computation time.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 10, 2019
    Assignee: COMSATS Institute of Information Technology
    Inventors: Hassan Shahzad, Irfanullah, Hammad Omer
  • Patent number: 10401460
    Abstract: In a method and apparatus for recording a magnetic resonance dataset of a volume of interest of an object, at least one gradient moment is calculated as a function of at least one jump in susceptibility that is present in the volume of interest, between two sections of the volume of interest. An excitation pulse is radiated and at least one compensation moment is activated in a part volume of the volume of interest, for the at least partial compensation of a gradient moment caused by the jump in susceptibility. The signal generated by the excitation pulse is read out.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: September 3, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Thorsten Feiweier, Josef Pfeuffer, Daniel Nico Splitthoff
  • Patent number: 10401455
    Abstract: In a method and magnetic resonance (MR) apparatus for avoidance of artifacts in the acquisition of MR data, first and second undersampled datasets are recorded, the measurement data of each dataset being selected such that artifacts in the first dataset exhibit a phase other than in the second dataset, and the measurement data in the first and second datasets, even when combined, correspond to undersampled dataset. The recorded, undersampled datasets are supplemented with the use of a supplementary kernel of a parallel acquisition method to form supplemented datasets from which a combined, artifact-free dataset is produced. Measurement time is thereby reduced overall compared with customary PAT averaging and compared with recording without the use of a parallel acquisition method.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: September 3, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Matthias Gebhardt, Mario Zeller
  • Patent number: 10401444
    Abstract: A quantitative image (resonance frequency map) of a resonance frequency difference is obtained using a high-speed phase compensated pulse sequence of a gradient echo (GE) system. A signal function of the pulse sequence used when obtaining the resonance frequency map is generated by a numerical simulation. The high-speed phase compensated pulse sequence uses a BASG sequence, for example.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: September 3, 2019
    Assignee: Hitachi, Ltd.
    Inventors: Yo Taniguchi, Toru Shirai, Suguru Yokosawa, Shinji Kurokawa, Hisaaki Ochi
  • Patent number: 10401456
    Abstract: A method of parallel MR imaging includes subjecting the portion of the body (10) to an imaging sequence of at least one RF pulse and a plurality of switched magnetic field gradients. The MR signals are acquired in parallel via a plurality of RF coils (11, 12, 13) having different spatial sensitivity profiles within the examination volume. The method further includes deriving an estimated ghost level map from the acquired MR signals and from spatial sensitivity maps of the RF coils (11, 12, 13), and reconstructing a MR image from the acquired MR signals, the spatial sensitivity maps, and the estimated ghost level map.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 3, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Elwin De Weerdt, Zhaolin Chen
  • Patent number: 10401461
    Abstract: An object (10) placed in an examination volume of a MR device (1) is subject to an imaging sequence including multi-slice RF pulses for simultaneously exciting two or more spatially separate image slices. MR signals are received in parallel via a set of RF coils (11, 12, 13) having different spatial sensitivity profiles within the examination volume. An MR image is reconstructed for each image slice from the acquired MR signals. MR signal contributions from the different image slices are separated on the basis of the spatial sensitivity profiles of the RF coils (11, 12, 13). Side-band artifacts, namely MR signal contributions from regions excited by one or more side-bands of the multi-slice RF pulses, are suppressed in the reconstructed MR images on the basis of the spatial sensitivity profiles of the RF coils (11, 12, 13).
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: September 3, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Zhaolin Chen, Miha Fuderer
  • Patent number: 10401462
    Abstract: A system and method for magnetic resonance imaging is provided. The method includes acquiring a first set of MR signals and a second set of MR signals by applying a pulse sequence on a subject. The method also includes obtaining a first data line by filling the first set of MR signals into k-space along a first trajectory, and obtaining a second data line by filling the second set of MR signals into k-space along a second trajectory. The method also includes determining a candidate k-space shift based on the first data line and the second data line, and determining a candidate gradient delay based on the candidate k-space shift obtained in each of a plurality of iterations. The method also includes reconstructing an image of the subject based on the candidate gradient delay obtained in the last iteration.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 3, 2019
    Assignee: UIH AMERICA, INC.
    Inventors: Qi Liu, Yu Ding
  • Patent number: 10401520
    Abstract: Aspects of the disclosure provide a method for processing three-dimensional (3D) hexagonally sampled seismic data. The method can include receiving 3D hexagonally sampled seismic data represented using 3D spiral architecture (SA), the 3D hexagonally sampled seismic data including a plurality of data traces each corresponding to center of a hexagon in the 3D SA, representing the 3D hexagonally sampled seismic data as two-dimensional (2D) seismic data using spiral architecture (SA) addressing scheme, and processing the 2D seismic data with an SA based signal processing process.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: September 3, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Wail A. Mousa, Haroon Ashraf
  • Patent number: 10393912
    Abstract: A method is disclosed of inverting three dimensional fluid property distribution. The method includes comparing a detected NMR signal with a plurality of modeled signal values derived from precomputed values of NMR signal contribution values at prechosen (T1, T2, D) value tuples; identifying one or more modeled signals satisfying domain constraints and in respect of which an objective function involving a respective detected NMR signal and a modeled signal is optimized; selecting one or more of the solutions resulting in optimized objective; and using each selected optimized solution to characterize the one or more properties of fluid in the formation. The method also includes processing the resulting solutions as e.g. graphical or tabular data. Also disclosed is apparatus for performing the method.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: August 27, 2019
    Assignee: Weatherford Technology Holdings, LLC
    Inventors: Hamed Chok, Endre Anderssen
  • Patent number: 10393839
    Abstract: A system and method for processing highly undersampled multi-echo spin-echo data by linearizing the slice-resolved extended phase graph model generates highly accurate T2 maps with indirect echo compensation. Principal components are used to linearize the signal model to estimate the T2 decay curves which can be fitted to the slice-resolved model for T2 estimation. In another example of image processing for highly undersampled data, a joint bi-exponential fitting process can compensate for image variations within a voxel and thus provide partial voxel compensation to produce more accurate T2 maps.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: August 27, 2019
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Maria Altbach, Ali Bilgin, Chuan Huang, Christian Graff
  • Patent number: 10390725
    Abstract: An accessory comprises at least one first electrical accessory port for connection to a respective matching electrical coil port of an MR coil and at least one second electrical accessory port for connection to a respective matching electrical device port of an MR device. The first accessory port and the second accessory port do not match one another. The respective first accessory port is connected to the associated second accessory port by electrical adaptation.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: August 27, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hubertus Fischer, Katharina Hesels, Karsten Jahns, Wolfgang Kraus, Thomas Kundner, Steffen Wolf, Jörg Rothard
  • Patent number: 10393840
    Abstract: In a magnetic resonance method and apparatus, a control computer for a data acquisition scanner automatically determines sequence control data, for a control protocol that has been loaded into the control computer, that define different functional sub-sequences of data acquisition sequence, the sub-sequences causing nuclear spins in at least two sub-volumes of a subject to be simultaneously manipulated or used in order to acquire magnetic resonance data. For each sub-sequence, the computer determines a respective effective volume dependent on the respectively associated sub-volumes, and determines applicable underlying conditions from which control signals are generated that locally optimize the sub-sequences for each effective volume.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 27, 2019
    Assignee: Siemens Healthcare GmbH
    Inventor: Thorsten Feiweier
  • Patent number: 10393684
    Abstract: A low-cost and bench-top magnetic resonance relaxometer can be used for ex-vivo biochemical stress tests on plasma/erythrocytes, enabling deep-phenotyping of an individual's oxidative status, susceptibility and capacity.
    Type: Grant
    Filed: April 23, 2016
    Date of Patent: August 27, 2019
    Assignees: Massachusetts Institute of Technology, National University Hospital (S) Pte
    Inventors: Weng Kung Peng, Jongyoon Han, Tze Ping Loh
  • Patent number: 10393834
    Abstract: To supply a magnetic resonance imaging (MRI) apparatus capable of shifting a high frequency of noise into a low frequency during measurement, the magnetic resonance imaging apparatus includes: a gradient magnetic field device (9, 10) that applies a pulse-shaped gradient magnetic field to an object placed in a static magnetic field; and a measurement control unit (4) that drives the gradient magnetic field device by a gradient magnetic field pulse and measures magnetic resonance image data. The measurement control unit performs noise suppression control to shift a frequency of noise generated by the gradient magnetic field device to a low frequency side by changing a waveform of the gradient magnetic field pulse during repetition of the gradient magnetic field pulses at a constant period.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: August 27, 2019
    Assignee: HITACHI, LTD.
    Inventor: Atsushi Kuratani
  • Patent number: 10383554
    Abstract: A kinetic analysis system includes: an analytical value calculation unit configured to divide, into a plurality of divisions, a lung field region included in kinetic images in a plurality of time phases acquired as a result of kymography of a chest of an object, and calculate analytical values of the respective divisions in the plurality of time phases based on at least one of pixel signal values and the number of pixels in the respective divisions; a ventilation state calculation unit configured to calculate index values representing ventilation states of the respective divisions from the analytical values of the respective divisions in the plurality of time phases using different functions corresponding to the respective divisions; a display unit; and a control unit configured to cause the display unit to display the index values representing the ventilation states of the respective divisions in the plurality of time phases.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: August 20, 2019
    Assignee: KONICA MINOLTA, INC.
    Inventor: Masayuki Nakazawa
  • Patent number: 10386436
    Abstract: In a method and apparatus for generating magnetic resonance (MR) measurement data of an object, (a) a multiband RF excitation pulse is radiated into the object to simultaneously selectively excite at least two slices, which do not overlap, in the object, and (b) echo signals generated are read out with at least two reception coils and are stored in a measurement data record, and (c) after reading out a last echo signal that follows from the multiband RF excitation pulse, a driven equilibrium module is radiated that includes at least one further multiband RF pulse. Steps (a) to (c) are repeated with different position encoding and/or while exciting different slices, until all desired measurement data are stored in the measurement data record. The measurement data contained in the measurement data record are separated into slice-specific measurement data records on the basis of coil sensitivity data of the reception coils used for read-out purposes.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: August 20, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, Dominik Paul, Mario Zeller
  • Patent number: 10386429
    Abstract: Described herein are systems and methods for the selective mapping of water T1 relaxation times.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: August 20, 2019
    Assignee: Oxford University Innovation Limited
    Inventors: Christopher T. Rodgers, Liam D. Garrison
  • Patent number: 10386434
    Abstract: A method is for carrying out an automatic adjustment of an MR system, including a number of receive coils. In such cases, a number of partial spectra in a number of receive coils are measured for an excitation volume of an examination object. The number of partial spectra are evaluated via an algorithm, at least one characteristic value being determined for each partial spectrum and a decision being further made with the aid of the number of characteristic values to determine whether the partial spectra fulfill a quality criterion. Finally, adjustment parameters of the MR system are optimized on the basis of the number of partial spectra.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: August 20, 2019
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Johann Sukkau, Michael Wullenweber, Daniel Niederloehner
  • Patent number: 10379183
    Abstract: A magnetic moment arrangement calculation method for magnetic field adjustment by combining correction of a component of a low-order mode with correction of a component of a high-order mode among the eigenmodes so as to calculate arrangement of the magnetic moment for approximately correcting the error magnetic field distribution, in which the low-order mode is an eigenmode group from the first of eigenmode numbers assigned to respective eigenmodes in the magnitude order of singular values to an eigenmode number specified by a first threshold value, in which the high-order mode is an eigenmode group with an eigenmode number more than the first threshold value, and in which a correction amount of the component of the high-order mode is smaller than a correction amount of the component of the low-order mode.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: August 13, 2019
    Assignee: HITACHI, LTD.
    Inventors: Hikaru Hanada, Kenji Sakakibara, Mitsushi Abe, Takuya Fujikawa
  • Patent number: 10371767
    Abstract: In some aspects, polarization of a spin ensemble can be increased using cavity-based techniques. A cavity is coupled with a spin ensemble, and a drive field generates an interaction between the cavity and the spin ensemble. In some cases, the interaction increases the polarization of the spin ensemble faster than the thermal (T1) relaxation process or any other thermal polarizing process affecting the spin ensemble. In some cases, polarization is increased by iteratively acting on angular momentum subspaces of the spin ensemble, and mixing the angular momentum subspaces, for example, by a dipolar interaction, a transverse (T2) relaxation process, application of a gradient field, or a combination of these and other processes.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: August 6, 2019
    Assignee: Quantum Valley Investment Fund LP
    Inventors: Troy Borneman, David G. Cory, Christopher James Wood
  • Patent number: 10373351
    Abstract: A method and system for image reconstruction are provided. Multiple coil images may be obtained. A first reconstructed image based on the multiple coil images may be reconstructed based on a first reconstruction algorithm. A second reconstructed image based on the multiple coil images may be reconstructed based on a second reconstruction algorithm. Correction information about the first reconstructed image may be generated based on the first reconstructed image and the second reconstructed image. A third reconstructed image may be generated based on the first reconstructed image and the correction information about the first reconstructed image.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: August 6, 2019
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD
    Inventors: Renjie He, Yu Ding, Qi Liu
  • Patent number: 10365341
    Abstract: An MRI method includes: defining image regions on an object; setting imaging conditions for the defined image regions; and acquiring MR images for the image regions according to the set imaging conditions. The imaging conditions may be set by displaying information about the defined image regions and setting the imaging conditions for the image regions based on the displayed information.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: July 30, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keum-yong Oh, Sang-young Zho, Sang-heum Cho, Jin-young Hwang
  • Patent number: 10365343
    Abstract: A novel approach for CEST MR imaging is called Multi-echo Length and Offset VARied Saturation (Me-LOVARS) CEST. This method allows efficient collection of additional CEST data without penalty in scan time, which could be useful for enhancing the contrast, increasing the specificity or improving quantification of exchange. As CEST-MRI has shown promise at both the pre-clinical and clinical levels, including for detecting and grading brain tumors and evaluating ischemia, using either endogenous CEST contrast or through administration of CEST contrast agents. This fast and robust imaging method is suitable for accelerating image collection and widening the scope of applications for CEST-MRI.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: July 30, 2019
    Assignees: The Johns Hopkins University, Kennedy Krieger Institute, Inc.
    Inventors: Michael T. McMahon, Xiaolei Song, Jiadi Xu
  • Patent number: 10365237
    Abstract: A device for the analysis of fluid distribution in an absorbent article is disclosed. The device provides for a frame, a pressure chamber disposed in contacting and mating engagement with the frame, and a NMR sensor in cooperative engagement with the frame and the pressure chamber. The pressure chamber further comprises a top plate and a conformable surface. The absorbent article is disposable between the top plate and the conformable surface. The NMR sensor is disposable proximate to the pressure chamber and is capable of measuring a fluid distribution in the absorbent article when the absorbent article is disposed between the top plate and the conformable surface of the pressure chamber and the NMR sensor is disposed proximate to a surface of the absorbent article.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: July 30, 2019
    Assignee: The Procter & Gamble Company
    Inventors: Behzad Mohebbi, Jan Claussen, Justyna Paradowska, J Michael Bills
  • Patent number: 10359490
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus includes a data acquiring part and a processing circuit. The data acquiring part is configured to acquire a magnetic resonance signal after applying an inversion recovery pulse or a saturation pulse. The processing circuit generates magnetic resonance examination data based on the magnetic resonance signal, by data processing including processing for compensating an incomplete inversion of a longitudinal magnetization resulting from an inversion efficiency of the inversion recovery pulse or processing for compensating an incomplete saturation of a longitudinal magnetization resulting from a saturation efficiency of the saturation pulse.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: July 23, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventor: Shigehide Kuhara
  • Patent number: 10359488
    Abstract: Disclosed herein is a framework for identifying signal components in image data. In accordance with one aspect, the framework receives multiple measured signal values corresponding to respective quantified signal components in image data. The framework determines at least one first measure of fit map of a signal model based on the measured signal values. The measured signal values may be swapped to generate swapped signal values. At least one second measure of fit map of the signal model may be determined based on the swapped signal values. The multiple signal components may then be identified by comparing the first and second measure of fit maps.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: July 23, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Xiaodong Zhong, Stephan Kannengiesser, Marcel Dominik Nickel, Brian M. Dale, Berthold Kiefer
  • Patent number: 10359492
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus includes an acquiring part and an analysis part. The acquiring part is configured to acquire magnetic resonance signals for an analysis by magnetic resonance spectroscopy. The analysis part is configured to perform correction processing of magnetic resonance signals for an eddy current correction and obtain a frequency spectrum of the magnetic resonance signals for the analysis by the eddy current correction using magnetic resonance signals after the correction processing. The correction processing removes an influence of a magnetic resonance signal component from a predetermined metabolite.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: July 23, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventor: Masaaki Umeda
  • Patent number: 10360472
    Abstract: An exemplary system, method and computer-accessible medium for determining a plurality of tissue parameters of a tissue(s), can include, for example, receiving information related to a plurality of rotational invariants contained within a diffusion magnetic resonance (dMR) image(s) of the tissue(s), and generating the tissue parameters using a set of rotational invariants related to the plurality of tissue parameters using such information. The tissue parameters can be generated by factorizing a response of an individual fiber segment of the tissue(s) based on the set of rotational invariants. The response of the individual fiber segments can be factorized from an orientational distribution function (“ODF”). The individual fiber segments can be factorized using a scalar tensor factorization(s) of the rotational invariants. The set of rotational invariants can be of a rotation group SO(3).
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 23, 2019
    Assignees: New York University, Albert-Ludwigs-Universität Freiburg
    Inventors: Dmitry Novikov, Ileana Jelescu, Jelle Veraart, Els Fieremans, Valerij Kiselev, Marco Reisert
  • Patent number: 10349865
    Abstract: In a method, a local coil, and an apparatus for magnetic resonance imaging, an examination subject is situated in a patient receiving area of the apparatus, together with at least one marker element. The apparatus is operated to perform a radio-frequency excitation of the at least one marker element, and to read out magnetic resonance signals that are emitted by the at least one marker element. An image data acquisition scanner of the magnetic resonance apparatus is adjusted using the magnetic resonance signals that have been read out. Magnetic resonance image data are acquired from the subject by operation of the adjusted image data acquisition scanner.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: July 16, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventor: Joerg Roland
  • Patent number: 10353035
    Abstract: A system and method for magnetic resonance imaging reconstruction using novel k-space sampling sequences is provided. The method includes dividing k-space into a plurality of regions along a dividing direction; scanning an object using a plurality of sampling sequences; acquiring a plurality of groups of data lines; filling the plurality of groups of data lines into the plurality of regions of the k-space; and reconstructing an image based on the filled k-space.
    Type: Grant
    Filed: June 12, 2016
    Date of Patent: July 16, 2019
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Guobin Li, Chaohong Wang, Zhaopeng Li, Weiguo Zhang, Renkuan Zhai
  • Patent number: 10353031
    Abstract: A method of acquiring magnetic resonance imaging (MRI) data of a subject includes dividing a region of interest into a plurality of slices, and acquiring the slices using an iterative process that interleaves acquisition of shim data covering the plurality of slices with acquisition of image data covering the slices over a plurality of iterations.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: July 16, 2019
    Assignees: Siemens Healthcare GmbH, NorthShore University HealthSystem
    Inventors: Sven Zuehlsdorff, Shivraman Giri, Robert R. Edelman
  • Patent number: 10354377
    Abstract: Techniques for segmentation include determining an edge of voxels in a range associated with a target object. A center voxel is determined. Target size is determined based on the center voxel. In some embodiments, edges near the center are suppressed, markers are determined based on the center, and an initial boundary is determined using a watershed transform. Some embodiments include determining multiple rays originating at the center in 3D, and determining adjacent rays for each. In some embodiments, a 2D field of amplitudes is determined on a first dimension for distance along a ray and a second dimension for successive rays in order. An initial boundary is determined based on a path of minimum cost to connect each ray. In some embodiments, active contouring is performed using a novel term to refine the initial boundary. In some embodiments, boundaries of part-solid target objects are refined using Markov models.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: July 16, 2019
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Yongqiang Tan, Binsheng Zhao, Lawrence H. Schwartz
  • Patent number: 10353041
    Abstract: In one embodiment, an MRI apparatus, includes a static magnetic field magnet configured to generate a static magnetic field, a gradient coil configured to generate a gradient magnetic field, a transmission and reception coil configured to transmit an RF signal and receive a magnetic resonance signal, and processing circuitry. The processing circuitry determines whether or not a prescan for calculating a correction value that corrects a phase error is skippable or reducible based on an imaging condition of a main scan, and executes a scan including at least the main scan in accordance with a result of the determination.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: July 16, 2019
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Hiroki Kondo, Shinya Ozawa, Masaaki Umeda, Yoshimori Kassai, Naoyuki Takabayashi
  • Patent number: 10353034
    Abstract: A method for producing an image of a subject using a magnetic resonance imaging (MRI) system includes acquiring a series of echo signals by sampling k-space along radial lines that each pass through the center of k-space. Each projection of the radial lines is divided into multiple echoes and successive projections are spaced by a predetermined angular distance. The series of echo signals are reconstructed into a plurality of images, wherein each image corresponds to a distinct echo signal.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: July 16, 2019
    Assignees: Siemens Healthcare GmbH, University of Utah Research Foundation
    Inventors: Bradley Drake Bolster, Jr., Dennis L. Parker, Allison Payne, Bryant Svedin
  • Patent number: 10345401
    Abstract: An apparatus and a method for detecting an antenna coil with a non-active detuning apparatus are provided. The apparatus has a transmitter, an antenna, an amplitude meter, and a controller. The controller actuates the transmitter such that the transmitter emits radio-frequency signals with different predetermined amplitudes via the antenna. The controller acquires testing amplitudes with the amplitude meter as a function of the emitted signal and determines a testing relationship between the predetermined amplitudes and the acquired testing amplitudes. If the determined testing relationship deviates from a predetermined reference relationship, a signal is output.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: July 9, 2019
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Jürgen Nistler, Markus Vester, Christian Wünsch
  • Patent number: 10345409
    Abstract: Systems and methods for controlling a magnetic resonance imaging (MRI) system to simultaneously excite multiple different slice locations. A multiband (MB) radio frequency (RF) pulse waveform is combined with an RF pulse waveform that results in periodic excitation of the slice locations, such as a power independent of a number of slices (PINS) RF pulse waveform. Before combination, the MB RF pulse waveform is preferably transformed to traverse the excitation k-space trajectory defined by a plurality of slice-encoding gradient blips. The combined RF pulse waveform is used to generate an RF excitation field generated while the plurality of slice-encoding gradient blips are played out. The portions of the combined RF pulse associated with the MB RF pulse are played out during the gradient blips, and the portions associated with the PINS RF pulse are played out between the gradient blips.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: July 9, 2019
    Assignee: The General Hospital Corporation
    Inventors: Cornelius Eichner, Lawrence L. Wald, Kawin Setsompop
  • Patent number: 10338052
    Abstract: Methods of detecting a sulfur-containing compound in a sample are described, for example using NMR-SABRE hyperpolarization of the sulfur-containing compounds in the sample. The methods can comprise, for example, contacting a sample comprising a sulfur-containing compound with parahydrogen and a catalyst to form a mixture. A spin order can be transferred from the parahydrogen to the sulfur-containing compound thereby hyperpolarizing the sulfur-containing compound during a temporary association of the parahydrogen, the sulfur-containing compound, and the catalyst. The methods can further comprise, for example, performing an NMR measurement on the mixture comprising the hyperpolarized sulfur-containing compound to detect the hyperpolarized sulfur-containing compound (e.g., from the hyperpolarized NMR signals. In some examples, the methods described herein can be used for detecting a sulfur-containing contaminant in a fuel.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: July 2, 2019
    Assignee: Vanderbilt University
    Inventors: Eduard Y. Chekmenev, Roman V. Shchepin
  • Patent number: 10338168
    Abstract: In a magnetic resonance measurement apparatus, when a frequency of an observation nucleus falls within a high frequency band, a frequency conversion scheme is selected. In this case, an intermediate frequency signal is generated as an original signal, which is then frequency-converted to generate an RF transmission signal. An RF reception signal is converted into an intermediate frequency signal by frequency conversion, and is sampled. When the frequency of the observation nucleus falls within a low frequency band, a non-conversion scheme is selected. In this case, an RF transmission signal is generated as the original signal, and an RF reception signal is sampled.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: July 2, 2019
    Assignee: JEOL Ltd.
    Inventor: Kenichi Hachitani
  • Patent number: 10338015
    Abstract: This invention relates to methods and devices for NMR spectroscopy analyzing sealed containers e.g., food and beverage containers and other containers, and particularly according to specific embodiments sealed containers made of a conducting but generally nonferromagnetic metal or other conducting material. As discussed in above referenced applications, many current strategies for contaminant detection require a container to be violated, a process that can destroy the container or product and is impractical in large scale applications. The present invention overcomes these and other problems by providing methods and devices for the detection of contaminants and/or contraband in metal or conducting containers by NMR spectroscopy.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: July 2, 2019
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, MADISON AVENUE MANAGEMENT CO., INC.
    Inventors: Matthew P. Augustine, Victor Lim, Joseph S. Broz
  • Patent number: 10338177
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a sequence control unit, an image generating unit, and a deriving unit. The sequence control unit executes first imaging scan for acquiring data of a range including a target internal organ and second imaging scan for acquiring data for a diagnostic image by controlling execution of a pulse sequence. The image generating unit generates an image by using data acquired by the first imaging scan. The deriving unit derives an imaging scan area in which data for the diagnostic image are acquired in the second imaging scan and a related area set associated with the imaging scan area in the second imaging scan, based on image processing using the image.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: July 2, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Shigehide Kuhara, Shuhei Nitta, Taichiro Shiodera, Tomoyuki Takeguchi
  • Patent number: 10330761
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus includes control circuitry. The control circuitry executes, by a single protocol, acquisition of a distribution of a T1 relaxation time with a first slice as a target, and acquisition of a different kind from the distribution of the T1 relaxation time with a second slice as a target which neither overlaps nor crosses a region of interest of the first slice.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: June 25, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventor: Satoshi Sugiura
  • Patent number: 10330760
    Abstract: An MRI apparatus includes: a data processor configured to acquire a first set of T2-weighted imaging data and a second set of T2-weighted imaging data; a pulse sequence controller configured to generate a pulse sequence and apply the generated pulse sequence to a gradient coil assembly and RF coil assembly, the generated pulse sequence including: T2-preparation modules and associated imaging modules to acquire the first set of T2-weighted imaging data, and a saturation pulse sequence and an associated saturation imaging module to acquire the second set of T2-weighted imaging data; a curve fitter configured to apply the first and second sets of T2-weighted imaging data to a three-parameter model for T2 decay, to determine a T2 value at a plurality of locations; and an image processor configured to generate a T2 map of the object based on the T2 value determined at the plurality of locations.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: June 25, 2019
    Assignee: BETH ISRAEL DEACONESS MEDICAL CENTER, INC.
    Inventors: Mehmet Akcakaya, Tamer Basha, Warren J. Manning, Reza Nezafat
  • Patent number: 10321853
    Abstract: A method for evaluating positioning of an examination object on a patient-positioning apparatus in a magnetic resonance unit, a magnetic resonance unit, and a computer program product are provided. The method includes acquiring positioning data relating to the examination object using an acquisition unit. Using the acquired positioning data, positioning information relating to the examination object is determined using an analysis unit. Evaluation information is determined using the positioning information, using an evaluation unit. Using the evaluation information, an evaluation signal is transmitted using an output unit. Monitoring of a specific absorption rate may be adjusted using the evaluation signal.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: June 18, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Gerhard Brinker, Franz Hebrank, Patrick Sieber
  • Patent number: 10317564
    Abstract: Methods and systems are provided for tools having non-resonant circuits for analyzing a formation and/or a sample. For example, nuclear magnetic resonance and resistivity tools can make use of a non-resonant excitation coil and/or a detection coil. These coils can achieve desired frequencies by the use of switches, thereby removing the requirement of tuning circuits that are typical in conventional tools.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: June 11, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Timothy Andrew John Hopper, David G Cory, Julius Kusuma, Yi-Qiao Song, Martin D. Hurlimann, Martin E. Poitzsch
  • Patent number: 10317487
    Abstract: In a method for the acquisition of magnetic resonance (MR) data relating to a pre-determined two-dimensional volume segment of an examination object with an MR apparatus, a randomized determination of points to be sampled in the raw data space is made, such that the raw data space is undersampled when only the determined points to be sampled are then sampled. MR data relating to the specified points to be sampled are acquired by operation of the MR apparatus. Alternatively, a determination of points to be sampled in the raw data space is made using radial or spiral trajectories in k-space that begin in the center k-space. Each specified point to be sampled is then moved to an FFT grid point, and MR data relating to the determined points to be sampled is implemented by operation of the MR apparatus.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: June 11, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: David Grodzki, Bjoern Heismann
  • Patent number: 10317488
    Abstract: In a method and a magnetic resonance system for fat saturation when acquiring magnetic resonance data in a predetermined volume segment of an examination object, a SPAIR pulse is emitted and an RF excitation pulse is emitted following a predetermined time period after the SPAIR pulse, and magnetic resonance data are thereafter acquired. The time period of at least one slice is set so as to be different from the time period for the remaining slices.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: June 11, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan Ole Blumhagen, Dominik Paul, Daniel Nico Splitthoff
  • Patent number: 10317492
    Abstract: In a method, computer and magnetic resonance imaging system for determining a control sequence for operating the magnetic resonance imaging system to generate magnetic resonance image data of a region to be imaged of an examination subject, from which magnetic resonance raw data are acquired, information describing the anatomical structure of the region to be imaged is made available in the computer, and a surrounding area and a central area are specified in the region to be imaged dependent on the determined anatomical structure. Furthermore, a one-dimensional water/fat saturation pulse sequence for saturating the surrounding areas is determined and a multidimensional water/fat saturation pulse sequence for saturating the central area is determined.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: June 11, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Josef Pfeuffer, Rainer Schneider
  • Patent number: 10317486
    Abstract: In a method for determining a minimum possible echo time for a radio-frequency coil used in a magnetic resonance scanner, magnetic resonance signals are acquired with the radio-frequency coil in a magnetic resonance measurement of a free induction decay at fixed time intervals, the minimum possible echo time being determined by evaluating the time series of magnetic resonance signals as the instant from which an exponential signal decay was measured.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: June 11, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventor: David Grodzki