Using Resonant Frequency Patents (Class 324/633)
  • Patent number: 8952708
    Abstract: Processes and apparatuses are provided for contactless measuring or monitoring in-situ and in real time composition or other electromagnetic impedance correlated properties of liquid or gaseous substances or bulk materials. One or more apparatus may include a resonance type impedance sensor having at least two coils, at least one coil of the at least two coils being at least one excitation coil connectable to at least one alternating current source with frequency sweep, at least one other coil of the at least two coils being at least one sensing coil connectable to at least one data processing system. The one or more methods may include calculating changes in amplitude and resonant frequency induced by electromagnetic interaction between said sensor and object to determine impedance of said object under test; and matching said impedance with predetermined calibration data to determine said chemical or physical properties of said object under test.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: February 10, 2015
    Assignee: NeoVision LLC
    Inventor: Yury Nikolenko
  • Publication number: 20150028889
    Abstract: A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 29, 2015
    Inventors: XUN GONG, LINAN AN
  • Publication number: 20150015275
    Abstract: An apparatus and method is provided for monitoring a condition of a structure using a passive wireless antenna sensor having a known resonant frequency when mounted on the structure. A signal is transmitted with sweeping frequencies around a known resonant frequency to the passive wireless antenna sensor. A signal is received from the passive wireless antenna sensor and a resonant frequency of the passive wireless antenna sensor is determined based on the received signal. The determined resonant frequency is then compared to the known resonant frequency, whereby a change in the resonant frequency indicates a change in the condition of the structure.
    Type: Application
    Filed: October 2, 2014
    Publication date: January 15, 2015
    Inventors: Haiying Huang, Jung-Chih Chiao, Ronald L. Carter, Uday Shankar Tata
  • Patent number: 8933706
    Abstract: An apparatus comprises: a first oscillator; a second oscillator; a first frequency synthesizer configured to receive a first input from the first oscillator and to provide a scaled first output frequency based on the first input; a second frequency synthesizer configured to receive a second input from the second oscillator and to provide a scaled second output frequency based on the second input; a mixer configured to receive the scaled first output frequency and the scaled second output frequency and to output a difference between the scaled first output frequency and the scaled second output frequency; and a processor configured to determine a change in an output frequency of the first oscillator based on the difference. The change in the output frequency provides an indication of a change in a measurement parameter.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: January 13, 2015
    Assignee: Keysight Technologioes, Inc.
    Inventor: Richard K. Karlquist
  • Publication number: 20150012228
    Abstract: A method for online measurement of a plasticizer in an endless filter rod, includes: measuring a resonance shift (A) and line broadening (B) with a microwave resonator at a passing endless filter rod, determining a mass per length of plasticizer from the measurement variables (A, B), measuring a reference mass of plasticizer applied per time with the application of the plasticizer onto the filter tow band, determining an averaged reference mass per length of plasticizer from the measured mass applied over a time period, averaging the values for mass per length of plasticizer, determined using the measurement variables over the same time in which the reference mass of plasticizer is determined, determining a deviation between the averaged reference value for the mass per length and averaged mass per length and correcting the mass per length, determined from the measurement variables of the microwave resonator, according to the determined deviation.
    Type: Application
    Filed: October 26, 2012
    Publication date: January 8, 2015
    Applicant: Tews Elektronik GmbH & Co. KG
    Inventors: Dimitar Yankov Yanchev, Udo Schlemm, Rainer Herrman
  • Patent number: 8912806
    Abstract: Disclosed is a method to determine whether a pipeline has been cut, the method including (a) transmitting an electromagnetic signal through the pipeline; (b) monitoring any reflected signal(s); and (c) interpreting the reflected signal to determine whether the pipeline has been cut.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: December 16, 2014
    Assignee: Genesis Oil & Gas Consultants Limited
    Inventors: Steve Banks, Peter Robinson, Anthony Peyton, David Armitage
  • Patent number: 8912804
    Abstract: A local oscillator (LO) of a test system is set to an initial frequency whereupon a device under test (DUT) transmits a radio frequency (RF) signal to the test system. Characteristics of the RF signal are measured with the test system and used to identify magnitudes and frequencies of spurious signal products. The LO of the test system is reset to one or more subsequent frequencies that are offset from the initial frequency. One or more subsequent RF signals are transmitted from the DUT to the test system, with the DUT maintaining its original signal settings. Characteristics of the subsequent RF signals are measured with the test system and used to identify magnitudes and frequencies of spurious signal products for each of the subsequent LO frequencies. The spurious signal products that have shifted in frequency for each of the subsequent LO frequencies as self-generated signal products can then be identified.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: December 16, 2014
    Assignee: Litepoint Corporation
    Inventors: Christian Volf Olgaard, Qiang Zhao
  • Publication number: 20140354299
    Abstract: An MRI-free non-destructive on-line system for detecting a presence of a material in a sample. The system includes: a flow conduit encompassed by a tunable RF coil and having an input duct and an output duct; a flow of the sample through the flow conduit; a signal detector that detects frequency-dependent output signals as a function of a frequency variation of the RF tunable coil within a frequency range of an RF resonant frequency of a standard sample of the substance; and a processing unit.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventor: Uri RAPOPORT
  • Patent number: 8896324
    Abstract: A method for providing an in-vivo assessment of relative movement of an implant that is positioned in a living being is provided wherein a first assembly and a second assembly are positioned within the living being. The first assembly includes a passive electrical resonant circuit that is configured to be selectively electromagnetically coupled to an ex-vivo source of RF energy and, in response to the electromagnetic coupling, generates an output signal characterized by a frequency that is dependent upon a distance between the first assembly and the second assembly at the time of the electromagnetic coupling.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: November 25, 2014
    Assignee: CardioMEMS, Inc.
    Inventors: Jason Kroh, Florent Cros, Christophe Courcimault
  • Patent number: 8896329
    Abstract: A device, a system and a method for detecting an irregularity in a structure of an aircraft are proposed. The device includes a resonant circuit with a resonance frequency and a probe for tuning the resonance frequency of the resonant circuit. The resonant circuit and the probe are operatively connected in such a way that the probe changes the resonance frequency of the resonant circuit if the structure changes due to a formation of an irregularity.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: November 25, 2014
    Assignees: European Aeronautic Defence and Space Company EADS France, EADS Deutschland GmbH
    Inventors: Werner Zimmerman, Jurgen Steinwandel, Sebastien Rolet, Didier Simonet
  • Patent number: 8878548
    Abstract: Disclosed is an apparatus for estimating a property of a fluid. The apparatus includes: a piezoelectric resonator configured to be disposed in the fluid; an electrode embedded in the piezoelectric resonator and included in a resonator circuit configured to output an electrical signal related to the property; a discontinuity defined by a surface of the piezoelectric resonator, the discontinuity altering an impedance of the resonator circuit if a high-dielectric fluid or a conductive fluid is disposed in the discontinuity; and an insulating material disposed in the discontinuity.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: November 4, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Rocco DiFoggio, Yi Liu, Louis Perez, Paul Bergren, Kerry L. Sanderlin
  • Patent number: 8847608
    Abstract: A non-destructive on-line system for detecting a presence of a material in a sample of a substance, including: an MRI device; a flow conduit encompassed by the tunable RF coil of the MRI device and having an input duct and an output duct; a flow of the sample through the flow conduit; a signal detector for detecting frequency-dependent output signals from the MRI device as a function of a frequency variation of the RF tunable coil within a frequency range of an RF resonant frequency of a standard sample of the substance, and a processing unit.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: September 30, 2014
    Inventor: Uri Rapoport
  • Publication number: 20140235450
    Abstract: A method of characterizing a tunable superconducting circuit, includes selecting an operating direct current (DC) flux for a first charge island from a plurality of coupled charge islands residing in the tunable superconducting circuit coupled to a first resonator and a second resonator, tuning operating DC flux values for at least two charge islands from the plurality of coupled charge islands, measuring coupling energies of the first resonator and the second resonator and measuring frequencies from each of the plurality of coupled charge islands.
    Type: Application
    Filed: August 3, 2012
    Publication date: August 21, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jerry M. Chow, Antonio D. Corcoles Gonzalez, Jay M. Gambetta, Matthias Steffen
  • Patent number: 8729909
    Abstract: A radio wave intensity measuring device includes a radio wave absorber (100) configured to include a plane having a plurality of cells (CL11, CL12, . . . ) and to absorb a radio wave entering the plane, and a measurer (200) configured to measure radio wave intensities in a plurality of cells.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: May 20, 2014
    Assignee: Kanazawa University
    Inventors: Satoshi Yagitani, Takao Shimizu, Yusuke Yamanaka
  • Patent number: 8704534
    Abstract: A resonance power transfer system and a method for tracking resonant impedance in the resonance power transfer system are provided. An apparatus for tracking resonant impedance in a resonance power transfer system may include: a load sensor configured to detect the impedance of a load connected to a target device that receives resonance power; a target reflection signal detector configured to detect a reflection signal corresponding to the resonance power; a target impedance tracking unit configured to track the resonant impedance by adjusting a determination factor of a resonant frequency; and a target control unit configured to control the tracking of the resonant impedance based on whether there is a change of the impedance of the load, the reflection signal is detected, or both.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Nam Yun Kim, Sang Wook Kwon, Eun Seok Park, Young Tack Hong, Young Ho Ryu
  • Patent number: 8692562
    Abstract: A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: April 8, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Marie Woodard
  • Publication number: 20140084943
    Abstract: This application relates to an apparatus and system for sensing strain on a portion of an implant positioned in a living being. In one aspect, the apparatus has at least one sensor assembly that can be mountable thereon a portion of the implant and that has a passive electrical resonant circuit that can be configured to be selectively electromagnetically coupled to an ex-vivo source of RF energy. Each sensor assembly, in response to the electromagnetic coupling, can be configured to generate an output signal characterized by a frequency that is dependent upon urged movement of a portion of the passive electrical resonant circuit and is indicative of strain applied thereon a portion of the respective sensor assembly.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 27, 2014
    Applicant: CardioMEMS, Inc.
    Inventors: JASON KROH, Florent Cros, Christophe Courcimault
  • Patent number: 8655284
    Abstract: Embodiments include systems and methods for over-the-air testing of wireless systems. Embodiments comprise separated chambers containing wireless devices. The chambers are connected by propagation path corridors.
    Type: Grant
    Filed: May 8, 2011
    Date of Patent: February 18, 2014
    Assignee: ETS-Lindgren, LP
    Inventor: Michael Foegelle
  • Publication number: 20140043044
    Abstract: Fuel sensor (100) and method for detecting physical properties of a fuel comprising a probe (10) and a circuit (110) having an oscillator arranged to apply multiple frequencies to the probe (10) and measure electrical properties of fuel proximal to the probe (10) in response to the applied multiple frequencies, wherein the circuit (110) has one or more outputs (160) arranged to indicate physical properties of the fuel, and wherein the one or more outputs (160) vary in response to the measured electrical properties. More particularly, fuel composition and level in terms of fuel, water and ice is determined by measuring dielectric relaxation.
    Type: Application
    Filed: February 10, 2012
    Publication date: February 13, 2014
    Inventors: Alan Parker, Andrew Jessop
  • Publication number: 20140028330
    Abstract: In one embodiment, a RF sensor comprising a sensing antenna and a reference antenna, wherein a sensing material is disposed upon said sensing antenna and wherein the sensing antenna is configured to test for specific analyte by measurement of the resonant impedance spectra, and the reference antenna is configured to mitigate and correct for environmental parameters and positionn. In a further embodiment, a method for sensing comprising; utilizing an RF sensor, wherein the RF sensor comprises a sensing antenna and a reference antenna, wherein said RF sensor is configured to test for a specific analyte; and, measuring a resonant impedance spectra of the sensing antenna and reference antennaat multiple frequencies to provide a subsequent multivariate analysis of a signal response from the RF sensor.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 30, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: RADISLAV ALEXANDROVICH POTYRAILO, IAN JAMES FORSTER
  • Patent number: 8638178
    Abstract: Methods of testing packaged thin-film piezoelectric-on-semiconductor (TPoS) microelectromechanical resonators having hermetic seals include measuring a quality factor (Q) of resonance of the packaged resonator at at least two unequal temperatures to determine whether a ?Q/?T is significantly different (e.g, by at least 50%) over a temperature range (?T) spanning a smallest and largest of the at least two temperatures. These measurements are performed for a packaged resonator having a QAIR<QTED, where QAIR is the quality factor of resonance of the packaged resonator due to air damping and QTED is the quality factor of resonance of the packaged resonator due to thermoelastic damping.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: January 28, 2014
    Assignee: Integrated Device Technology inc.
    Inventor: Ye Wang
  • Publication number: 20140024919
    Abstract: Methods and systems for determining one or more parameters of a tuned circuit forming part of a wireless energy transmission system in an implanted (or implantable) medical device are described. The method involves energising the tuned circuit then receiving a signal back from it. This signal is then analysed to determine a property of the circuit such as its quality factor (Q) or resonant frequency. Also described herein is a method and system for determining the implantation depth of a component of an implanted medical device. The method involves determining the position of a magnetic element which is mounted in a fixed physical relationship with the component of the medical device. The methods can be performed on an implanted medical device without the need to explant the device.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Inventor: Bill Metzenthen
  • Patent number: 8633710
    Abstract: Apparatus and methods are disclosed for obtaining an image of the impedance properties of an object by inferring a measure of straight-line path impedance along a plurality of paths from a plurality of current amplitude and phase measurements made between combinations of electrodes placed at selected points, and/or from measurements of the intensity of the electromagnetic signal emitted when an alternating current is made to resonate along the straight line path.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: January 21, 2014
    Inventor: Jack Scott Emery
  • Patent number: 8618815
    Abstract: A position detecting device includes: a position indicator operable to resonate at a first frequency, upon receipt of an excitation signal, to oscillate at a second frequency different from the first frequency so as to generate an oscillation signal, and to transmit the oscillation signal thus generated; and a position detector operable to generate the excitation signal and to transmit the excitation signal to the position indicator, and configured to perform band pass filtering and amplitude detection upon the oscillation signal received thereby for generating a processed signal, and to obtain information corresponding to position of the position indicator relative to the position detector based on the processed signal. A frequency range of the band pass filtering includes the second frequency and excludes the first frequency.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: December 31, 2013
    Assignees: Sunrex Technology Corp., Gimbal Technology Co., Ltd.
    Inventor: Shun-Pin Lin
  • Patent number: 8593155
    Abstract: MEMS in-plane resonators include a substrate wafer, at least one resonant mass supported by the substrate wafer and configured to resonate substantially in-plane, and at least one transducer coupled to the at least one resonant mass for at least one of driving and sensing in-plane movement of the at least one resonant mass, wherein at least part of one surface of the resonant mass is configured for exposure to an external environment and wherein the at least one transducer is isolated from the external environment. Such MEMS in-plane resonators may be fabricated using conventional surface micromachining techniques and high-volume wafer fabrication processes and may be configured for liquid applications (e.g., viscometry, densitometry, chemical/biological sensing), gas sensing (e.g., where a polymer film is added to the sensor surface, further degrading the damping performance), or other applications.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: November 26, 2013
    Assignee: Analog Devices, Inc.
    Inventors: Andrew Sparks, Milind Bhagavat
  • Publication number: 20130291617
    Abstract: An automotive urea solution monitoring device is deployed in conjunction with the urea tank of a selective catalytic reduction vehicle. An RF signal of a constant frequency may be generated across a resonant circuit, which may be comprised of an inductor and a PCB trace capacitor, or the like. Electromagnetic radiation is propagated into the automotive urea solution in the urea tank. The conductivity and dielectric properties of the liquid change the impedance of the discrete/trace capacitor and or the discrete/trace inductor. These changes are proportional to ammonia content, temperature, and/or level of the automotive urea solution in the urea tank and are preferably detected by a microcontroller, or the like, and then transmitted to a selective catalytic reduction vehicle engine management system, or the like.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 7, 2013
    Inventors: IDIR BOUDAOUD, ALAN KENNETH MCCALL, ADRIAN M. PAGE
  • Publication number: 20130285676
    Abstract: Embodiments of the invention include micromechanical resonators. These resonators can be fabricated from thin silicon layers. Both rotational and translational resonators are disclosed. Translational resonators can include two plates coupled by two resonate beams. A stable DC bias current can be applied across the two beams that causes the plates to resonate. In other embodiments, disk resonators can be used in a rotational mode. Other embodiments of the invention include using resonators as timing references, frequency sources, particle mass sensors, etc.
    Type: Application
    Filed: October 12, 2011
    Publication date: October 31, 2013
    Applicant: COLORADO SEMINARY
    Inventors: Amir Rahafrooz, Arash Hajjam, Siavash Pourkamali
  • Patent number: 8567232
    Abstract: Techniques are generally described for detecting a concentration level of at least one gas. Some example devices may include a sensor including conductive plate on a surface of dielectric including a nanotube layer formed thereon. The conductive plate and the nanotube layer form a resonator that resonates at a frequency in response to an interrogation signal. The nanotube layer may be configured to associate with one or more gas molecules. The frequency at which the resonator resonates may shift according to which gas molecules are associated with the nanotube layer to identify a particular gas. An amount of resonance may be exhibited as a resonant response signal. An amplitude of the resonant response signal may be indicative of the concentration level of the detected gas.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: October 29, 2013
    Assignee: Empire Technology Development LLC
    Inventors: H. Sprague Ackley, Christopher A. Wiklof
  • Publication number: 20130277351
    Abstract: A capacitive sensor comprises a sensing antenna electrode (10) for capacitively coupling to a counterelectrode to form a capacitance (40, 42), this capacitance being responsive to an electric-field-influencing property of an object or person proximate to the antenna electrode. The counterelectrode may be or may not be part of the capacitive sensor. The capacitive sensor further comprises a capacitive sensing network connected to the antenna electrode to apply an oscillating signal thereto and to and to determine the capacitance based upon characteristics of the oscillating signal. The capacitive sensing network includes at least one inductor (16) and a plurality of reactive components (36) arranged to form a resonant network together with the capacitance (40, 42), the plurality of reactive components being activatable and deactivatable in such a way as to modify a resonance frequency of the resonant network.
    Type: Application
    Filed: December 30, 2011
    Publication date: October 24, 2013
    Applicant: IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A.
    Inventor: Laurent Lamesch
  • Patent number: 8558555
    Abstract: It is an object to provide a test method of a process, an electric characteristic, and a mechanical characteristic of a structure body in a micromachine without contact. A structure body including a first conductive layer, a second conductive layer provided in parallel to the first conductive layer, and a sacrifice layer or a space provided between the first conductive layer and the second conductive layer is provided; an antenna connected to the structure body is provided; electric power is supplied to the structure body wirelessly through the antenna; and an electromagnetic wave generated from the antenna is detected as a characteristic of the structure body.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: October 15, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Konami Izumi, Fuminori Tateishi
  • Patent number: 8547110
    Abstract: Devices and methods of the invention can be used in many industries, including, but not limited to, utilities, agriculture, food, textile, pharmaceutical, photovoltaic and semiconductor, medical devices, chemical and petro-chemical, material science, and defense, where monitoring and/or analysis of various properties of materials are desired. Sensors and methods of using same are provided for measuring at least one impedance of an object under test (or a tested object) at a predetermined frequency and/or a predetermined frequency range, particularly where resonance conditions are provided for such measurement.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: October 1, 2013
    Assignee: Adem, LLC
    Inventors: Boris Kesil, Yury Nikolenko
  • Publication number: 20130241574
    Abstract: Systems and methods for estimating a physical characteristic of a seafood product are provided. In one system, the estimate is based on a slope defined by a ratio of changes in peak resonant amplitude and frequency of an electromagnetic resonant circuit in loaded and unloaded states. In another system, a first probe of a plurality of probes is driven with a test signal when the plurality of probes is loaded by a seafood product and the estimate is based on received test signals at one or more of the other probes. In another system, the estimate is based on the loading effect of a seafood product on an electromagnetic resonant circuit, which is also used to read an ID from an RFID associated with the seafood product. The systems and methods may be used for individual specimens, or to determine an average estimate for multiple specimens at one time.
    Type: Application
    Filed: April 30, 2013
    Publication date: September 19, 2013
    Inventors: TIMOTHY A. BURKE, PETER H. GREGSON, GLEB J. SEKRETTA, STEPHEN J.F. HANKINSON
  • Publication number: 20130234728
    Abstract: A local oscillator (LO) of a test system is set to an initial frequency whereupon a device under test (DUT) transmits a radio frequency (RF) signal to the test system. Characteristics of the RF signal are measured with the test system and used to identify magnitudes and frequencies of spurious signal products. The LO of the test system is reset to one or more subsequent frequencies that are offset from the initial frequency. One or more subsequent RF signals are transmitted from the DUT to the test system, with the DUT maintaining its original signal settings. Characteristics of the subsequent RF signals are measured with the test system and used to identify magnitudes and frequencies of spurious signal products for each of the subsequent LO frequencies. The spurious signal products that have shifted in frequency for each of the subsequent LO frequencies as self-generated signal products can then be identified.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: LITEPOINT CORPORATION
    Inventors: Christian Volf OLGAARD, Qiang ZHAO
  • Publication number: 20130162267
    Abstract: A multi purpose capacitive sensor suitable for indicating close proximity of a person to a surface along a large-size truck as well as along a medium-size painting or a pocket-size mobile phone is disclosed. The sensor comprises a voltage measuring device provided with a signal ground connected to a first pole of an oscillating voltage source that has a second pole connected to a signal input of the voltage measuring device. This input has a first capacitance to earth and a second capacitance to the signal ground. A third capacitance is exhibited to earth by the second pole of said voltage source. According to the invention, a prebias component is connected between the second pole of the voltage source and the signal input of the voltage measuring device.
    Type: Application
    Filed: June 29, 2011
    Publication date: June 27, 2013
    Inventor: Lars Wern
  • Patent number: 8467192
    Abstract: A method for producing a rollable web with successive antennas, where an electronic chip is attached to an antenna in a predetermined position. The position of an electronic chip changes with respect to the antenna when compared to at least some of the chips within individual and successive antennas. A rollable web includes successive antennas, where electronic chips are attached to antennas in a predetermined position. In the rollable web, the position of a chip changes with respect to the antenna compared to at least some of the chips within individual and successive antennas.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: June 18, 2013
    Assignee: Smartrac IP B.V.
    Inventor: Samuli Strömberg
  • Patent number: 8456177
    Abstract: An occupant detection system that includes an electrode arranged proximate to an expected location of an occupant for generating an electric field between the electrode and the occupant proximate thereto. An electrical network coupled to the electrode forms a resonant circuit that includes the occupant as part of the resonant circuit. A controller coupled to the resonant circuit is configured to determine a resonant frequency of the resonant circuit indicative of an occupant presence, and a network signal magnitude at the resonant frequency indicative of a humidity value proximate to the electrode. 7. A method for detecting a vehicle applies an excitation signal to the resonant circuit, determine a resonant frequency of the resonant circuit and determines a humidity value based on a network signal magnitude at the resonant frequency.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: June 4, 2013
    Assignee: Delphi Technologies, Inc.
    Inventors: Dennis P. Griffin, Mark C. Hansen
  • Publication number: 20130134792
    Abstract: Disclosed herein is a detecting device including a coil electromagnetically coupled to the external, a resonant circuit that includes at least the coil, and a detecting section that superimposes a measurement signal for measuring the Q-factor of the resonant circuit on a power transmission signal transmitted to the coil in a contactless manner and removes the power transmission signal from an alternating-current signal obtained by superimposing the measurement signal on the power transmission signal. The detecting section measures the Q-factor by using the alternating-current signal from which the power transmission signal is removed.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 30, 2013
    Applicant: SONY CORPORATION
    Inventor: SONY CORPORATION
  • Patent number: 8410792
    Abstract: A resonator arrangement has a conductive, semi-open outer housing, at an interior of which a conductive bar is provided disposed coaxially to the housing. At one end of the bar in a direction of a housing bottom, the bar has a die and, together with a dielectric and the housing bottom, forms a capacitor. The bar is short-circuited to the housing at another end, so that the bar and housing together form an LC oscillator circuit. Also disclosed is a method for analyzing a sample using a resonator arrangement.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: April 2, 2013
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Norbert Klein, Svetlana Vitusevich, Serhiy Danylyuk
  • Patent number: 8405404
    Abstract: An assembly (1) for detecting an electric discontinuity that includes an exciter (6) connected, via at least one capacitor, to two contacts (2, 3) normally connected between them by an electrically conducting member (4). The circuit outside the exciter defines a resonating circuit having an impedance that changes upon the opening of one of the contacts. The frequency of the detection circuit, which varies between two values corresponding to the two open or closed states of the contacts, is used by an electronic processing module (8) that generates a dysfunctional signal upon opening of one of the contacts. The invention can be used in numerous fields, such as transport, handling, storage, etc.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 26, 2013
    Assignee: Lohr Industrie
    Inventor: Sebastien Vanaud
  • Publication number: 20130038337
    Abstract: A method, implemented by a software-controlled computer device and/or by dedicated hardware, for probing an electrically conductive target material, e.g. molten metal or semiconductor material, in a metallurgical vessel. In the method, a measurement signal is acquired from a sensor, which is inserted into the target material, during a relative displacement between the electrically conductive target material and the sensor, the measurement signal being indicative of electrical conductivity in the vicinity of the sensor. The measurement signal is generated to represent momentary changes in an electromagnetic field around the sensor, which is created by operating at least one coil in the sensor. Based on the measurement signal, a signal profile is generated to be indicative of the electrical conductivity as a function of the relative movement. The method enables a probing of the internal distribution of the target material in the vessel at any level of detail.
    Type: Application
    Filed: April 27, 2011
    Publication date: February 14, 2013
    Applicant: AGELLIS GROUP AB
    Inventors: Albert Rodfalk, Jan-Peter Nilsson, Patrik Bloemer, Anthony Lyons
  • Publication number: 20130027078
    Abstract: A method for wireless power transmission includes obtaining, via a Q-value circuit, first and second voltages at respective first and second nodes of a resonance circuit. The first and second voltages are effective to determine if foreign matter is present in a space affecting wireless power transmission. The method includes controlling a switching section between the Q-value circuit and the resonance circuit such that at least a part of the electric power transmission process occurs at a different time than when the first and second voltages are obtained.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 31, 2013
    Applicant: SONY CORPORATION
    Inventors: Hiroaki Nakano, Takaaki Hashiguchi, Shinichi Fukuda, Kenichi Fujimaki
  • Publication number: 20130009650
    Abstract: A voltage detector for detecting a voltage generated in a second resonant coil that is disposed to face a first resonant coil and that performs at least one of electric power transmission and electric power reception to and from the first resonant coil in a contactless manner by means of electromagnetic resonance includes: a first high-impedance element having one end connected to one end of the second resonant coil; a second high-impedance element having one end connected to the other end of the second resonant coil; a low-impedance element connected between the other end of the first high-impedance element and the other end of the second high-impedance element and having an impedance smaller than each of those of the first and second high-impedance elements; and an output terminal for outputting a signal associated with a voltage applied across the low-impedance element.
    Type: Application
    Filed: May 27, 2010
    Publication date: January 10, 2013
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, NIPPON SOKEN, INC.
    Inventors: Hiroyuki Sakakibara, Shinji Ichikawa
  • Patent number: 8350578
    Abstract: A system, device, method, and apparatus provide the ability to wire a voltage sensitive device to a nanoelectromechanical system (NEMS) resonator. A voltage sensitive device is configured to detect one or more voltage signals and output one or more electrical potentials in real-time. An array of piezoelectric NEMS resonators (with each resonator tuned to a unique frequency) is used to receive the output electrical potentials and convert each output electrical potential to a corresponding resonance frequency varying signal. The output signal from each resonator varies in linear proportion to the resonator's corresponding frequency variation arising from the applied electrical potential. The frequency varying signals are multiplexed together into a single readout signal path that is monitored to determine variations in vibrational amplitude. A demodulation device deconvolves the multiplexed frequency varying signals to recover and uniquely identify the output electrical signal.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: January 8, 2013
    Assignee: California Institute of Technology
    Inventors: Akram Sarwat Sadek, Rassul Bulatovich Karabalin, Michael L. Roukes, Sotirios K. Masmanidis
  • Publication number: 20120319701
    Abstract: An occupant detection system that includes an electrode arranged proximate to an expected location of an occupant for generating an electric field between the electrode and the occupant proximate thereto. An electrical network coupled to the electrode forms a resonant circuit that includes the occupant as part of the resonant circuit. A controller coupled to the resonant circuit is configured to determine a resonant frequency of the resonant circuit indicative of an occupant presence, and a network signal magnitude at the resonant frequency indicative of a humidity value proximate to the electrode.
    Type: Application
    Filed: August 7, 2012
    Publication date: December 20, 2012
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: Dennis P. Griffin, Mark C. Hansen
  • Patent number: 8334702
    Abstract: The invention relates to a detection device of small size, allowing direct in situ detection of particles with no labelling, enabling the particles to be rapidly analysed, and having both a specificity and a sensitivity that are at least equivalent to the existing devices. In one embodiment, the invention provides a device having a nanowire, intended for interacting with the particles of interest, which is suspended between two anchors that define a source and a drain, the source and the drain are configured to be connected to an AC voltage generator and to a DC voltage generator, respectively, in order to generate a first input signal; an excitation electrode, placed laterally facing the nanowire and configured to be connected to an AC voltage generator, in order to generate a second input signal; and a measurement electrode placed opposite the excitation electrode relative to the nanowire and generating a single output signal representative of the particles of interest.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: December 18, 2012
    Assignee: Commissariat a l'Energie et aux Energies Alternatives
    Inventors: Vincent Agache, Guillaume Delapierre
  • Patent number: 8326229
    Abstract: Embodiments include systems and methods for over-the-air testing of wireless systems. Embodiments comprise separated anechoic chambers containing wireless devices. The anechoic chambers are connected by propagation path corridors.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: December 4, 2012
    Assignee: ETS Lindgren, L.P.
    Inventor: Michael Foegelle
  • Patent number: 8305088
    Abstract: A process for differentiating conductive and/or ferromagnetic objects (O) in a material stream (2) comprises generating an electromagnetic alternating field by exciting a coil (S) with a sinusoidal voltage (ue(t)) of a constant frequency (fM), detecting an impedance change in the coil, which has been caused by an object (O), by determining at least one pair of values from a peak value (ÎM) and a phase shift (?m) of the coil current (iM(t)) toward the excitation potential (ue(t)) of the coil, and determining the material by comparing the peak values (ÎM) and phase shifts (?m) with reference values, wherein the peak values (ÎM) of the coil current (iM(t)) are calculated at at least one measuring phase angle (?m) with the aid of a window comparator having a constant window width (?i), wherein the time (?tM) between the window inlet point (p4) and the window outlet point (p6) of the coil current (iM(t)) is measured and the gradient of the current profile (iM(t)) is calculated from the window width (?i) and the me
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: November 6, 2012
    Assignee: EVK di Kerschhaggl GmbH
    Inventors: Michael Kiss, Bernhard Kohla, Bernd Graze
  • Publication number: 20120262189
    Abstract: Embodiments of methods of non-destructively testing whether a laminated substrate satisfies structural requirements are disclosed herein. Additionally, laminated substrates that can be non-destructively tested are also disclosed along with methods of manufacturing the same. To non-destructively test whether the laminated substrates satisfies the structural requirement, an electrical characteristic of the laminated substrate may be detected. Since the detected electrical characteristic is related to a structural characteristic being tested, whether the structural characteristic complies with the structural requirement can be determined based on the electrical characteristic.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Thomas Scott Morris, David C. Dening, Chris Botzis
  • Patent number: 8289033
    Abstract: Systems and methods are provided for detecting a resonance on a bus coupled to an inverter module. A method involves generating a first signal on the bus with a first frequency and sweeping the first signal from the first frequency to a second frequency. A second signal, which may be influenced by a characteristic of a component coupled to the bus, is obtained from the bus during the sweep of the first signal from the first frequency to the second frequency. The method further involves determining a resonant frequency based on the first signal and the second signal and updating the inverter module such that the resonant frequency is not used as a switching frequency for the inverter module.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 16, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Lateef A. Kajouke
  • Publication number: 20120249163
    Abstract: A system and method for detecting arc formation in a corona discharge ignition system is provided. The system includes a driver circuit conveying energy oscillating at a resonant frequency; a corona igniter for receiving the energy and providing a corona discharge; and a frequency monitor for identifying a variation in an oscillation period of the resonant frequency, wherein the variation in the oscillation period indicates the onset of arc formation. The method includes supplying the energy to the driver circuit and to the corona igniter; obtaining the resonant frequency of the energy in the oscillating driver circuit; and identifying a variation in the oscillation period of the resonant frequency.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 4, 2012
    Inventor: JOHN ANTONY BURROWS