Where Energy Is Transmitted Through A Test Substance Patents (Class 324/639)
  • Patent number: 9091627
    Abstract: The subject matter described herein includes methods, systems, and computer program products for measuring the density of a material. According to one aspect, a material property gauge includes a nuclear density gauge for measuring the density of a material. A radiation source adapted to emit radiation into a material and a radiation detector operable to produce a signal representing the detected radiation. A first material property calculation function may calculate a value associated with the density of the material based upon the signal produced by the radiation detector. The material property gauge includes an electromagnetic moisture property gauge that determines a moisture property of the material. An electromagnetic field generator may generate an electromagnetic field where the electromagnetic field sweeps through one or more frequencies and penetrates into the material.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: July 28, 2015
    Assignee: Troxler Electronic Laboratories, Inc.
    Inventors: Robert Ernest Troxler, Wewage Hiran Linus Dep
  • Patent number: 9091716
    Abstract: A method and an apparatus for measuring performance of an electronic device are provided. The apparatus includes an electromagnetic wave measuring device for measuring an actual level of an electromagnetic wave of an electronic device, and an analysis controller for applying a previously stored level change value to the actual level of the electromagnetic wave to compute a measured level of the electromagnetic wave. The method and the apparatus for measuring performance of an electronic device can easily measure an electromagnetic wave level of the electronic device without using a device suggested by an international standard.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 28, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jungmin Kim, Keonyoung Seo, Kwangmo Yang, Byeonghwan Kang, Bonghee Park
  • Patent number: 9080952
    Abstract: Disclosed is a method and a phased array inspection device enabling calibration of the device with an optimized pulse rate, the pulse rate is derived based on the true adaptive value of the impedance of the specific phased array probe circuit or the pulser circuit and the circuit energy consumption limitations. The energy consumption limitations include the total energy made available by the power supply to the pulser and probe circuit and the pulser energy consumption with limitation due to pulser circuit's physical limit such as thermal limitation.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 14, 2015
    Assignee: OLYMPUS SCIENTIFIC SOLUTIONS AMERICAS INC.
    Inventors: Christian Simard, Denys Laquerre
  • Patent number: 9078450
    Abstract: A cylindrical waveguide (1) for analyzing a flowing material (18) using guided microwave spectroscopy (GMS). Spaced apart plates (2, 5) each define a plane within the waveguide housing (3) that is parallel to the direction (47) of material flow through the waveguide. Two opposed frames (7, 19) each surround an aperture (6) that permits access to the region between the waveguide plates (2, 5). A microwave probe assembly (81) is mounted at each frame (7, 19) to permit the radiation and reception of electromagnetic waves within the housing (1). A temperature probe (51) is inserted into the interior of the housing (1) via fitting (13). A y-shaped assembly (89) can be used to divide the flow into two separate paths including a diverter vane (93) that permits flow to be equalized within the two separate flow paths.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: July 14, 2015
    Assignee: THERMO RAMSEY INC.
    Inventors: Darrel Thomas Butler, Tom Lee Erb
  • Patent number: 9041415
    Abstract: Provided is a waveguide for guiding an electromagnetic wave between a first conductor layer and a second conductor layer each having a negative dielectric constant real part for the electromagnetic wave, the waveguide including a tapered structure in a part of the waveguide at which the electromagnetic wave exits or enters, in which a spatial profile of the tapered structure perpendicular to an optical axis extends to both sides with respect to the optical axis at least in one direction orthogonal to the optical axis as being closer to an opening plane at an outermost part of the tapered structure.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: May 26, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yasushi Koyama
  • Patent number: 9035661
    Abstract: A flow-through conductivity sensor assembly comprises a housing (4) having a flow passage with an inlet end and an outlet end. The cross section of at least a section of the flow passage extension between the inlet and outlet ends is divided into a conductivity measuring channel (2) and a parallel by-pass channel (3) of larger cross-sectional area than the measuring channel (2).
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: May 19, 2015
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Lars Andersson, Stefan D'Argy, Patric Fricking, Joachim Tollstoy
  • Publication number: 20150091585
    Abstract: A device for measuring the dielectric and/or magnetic properties of a sample by means of a microwave transmission measurement, comprising a transmitting antenna and a receiving antenna that define a transmission measuring section in which the sample to be measured can be positioned, at least one transmission-side synthesizer for generating a high-frequency signal with a frequency between 800 MHz and 30 GHz, a frequency standard that is connected via a transmission-side low-frequency synchronization signal line to the transmission-side synthesizer and to which the transmission-side synthesizer is coupled phase-locked reproducible, as well as an evaluation unit which is connected at least indirectly to the transmission-side synthesizer and the receiving antenna.
    Type: Application
    Filed: May 16, 2013
    Publication date: April 2, 2015
    Inventor: Elisabeth KATZ
  • Patent number: 8994391
    Abstract: Various embodiments for detecting a high Intensity radiated field (HIRF) in a line replaceable unit are provided. In an embodiment, the internal detector comprises a receiving means for receiving HIRF and generating an AC signal proportional to the HIRF, an RF filter configured to sample the AC signal to create a DC signal; and a detecting section configured to compare the DC signal with a threshold and output a result of the comparison to a built-in test section. The internal detector may be used to test EMI filter pin connectors of a closed line replaceable unit.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: March 31, 2015
    Assignee: BAE Systems Controls Inc.
    Inventors: Paul Hart Heiland, Jr., Richard P. Quinlivan, Thomas Edward Guth, Zain Adam Horning, Peter Joseph Watson, Gustavo Enrique Melendez Velazquez
  • Publication number: 20150084645
    Abstract: An inspection apparatus of an embodiment includes a transmitting antenna device connected to a transmitting unit including a transmitting device configured to transmit a microwave, and a receiving antenna device connected to a receiving unit including a receiving device. Each of the transmitting antenna device and the receiving antenna device faces a subject to be inspected. The receiving antenna device receives at least one of a microwave transmitted from the transmitting antenna device and penetrating the subject to be inspected, a microwave of which phase has been delayed, and a microwave diffracted in the subject to be inspected. The receiving unit is a directional antenna.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 26, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki KAYANO, Toshiro HIRAOKA
  • Patent number: 8912805
    Abstract: Device for processing and measuring properties of a moving rod of material of the tobacco processing industry includes a microwave resonator structured and arranged so that the rod of material is conveyable through the microwave resonator. Includes microwave generator with output frequency f0, and frequency stabilized oscillator to generate intermediate frequency fIM that is less than f0. Single sideband modulator supplies microwave resonator with a sideband signal having a sideband frequency shifted with respect to output frequency f0 by intermediate frequency fIM, and at least one analysis arrangement includes single sideband demodulator, low-pass filter, and analog to digital converter arranged in series. Single sideband demodulator receives a measurement signal of the sideband frequency transmitted or reflected from the microwave resonator, and receives output frequency f0.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: December 16, 2014
    Assignee: Hauni Maschinenbau AG
    Inventor: Dierk Schroeder
  • Publication number: 20140347074
    Abstract: A method to detect a gas absorption line that includes alternately transmitting and sweeping two radio frequency (RF) signals through an absorption cell, wherein the two RF signals are transmitted at different frequencies separated by a range and are swept across a span of frequencies in a microwave and millimeter wave regions of a frequency spectrum. Receiving the RF signals by a receiver and analyzing the received signals by a closed loop system for relative absorption by a gas due to an absorption line of the gas in the span of the swept frequencies. Detecting the absorption line of the gas when the two RF signals straddle the gas absorption line and the relative absorption by the two RF signals is equal.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 27, 2014
    Inventor: Phillip Michel NADEAU
  • Patent number: 8736281
    Abstract: A sensing system comprises a material having a matrix structure in which a plurality of sensing elements are embedded, the sensing elements having electron distribution and/or transport properties that change in response to a change in a physical or chemical property of the material. The sensing system further comprises a receiver, including an antenna, the receiver arranged to receive a source RF signal and a returned RF signal, the returned RF signal being received from the material. A change in the electron distribution and/or transport properties of the sensing elements cause the source RF signal to change, such that a change in a property of the material can be determined from the returned RF signal. A corresponding method of sensing a change in a property of a material is also provided.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: May 27, 2014
    Inventors: Christopher R. Lowe, Quentin Tannock, Adrian Stevenson, Karishma Jain
  • Patent number: 8717045
    Abstract: A microorganism number-measuring apparatus includes: measurement container including measurement liquid; rotary driver; bacteria-collection signal generator; measurement signal generator; output amplifier for amplifying outputs of signal generators and; I/V amplifier; impedance measuring unit for measuring impedance of liquid; microorganism number-computing unit for computing the number of microorganisms present in liquid; solution conductivity-computing unit for computing conductivity of liquid; and warm-up section for warming up at least one of I/V amplifier and output amplifier. Warm-up section computes a warm-up signal based on the conductivity computed by conductivity-computing unit. Warm-up section computes the warm-up signal having a current the same in magnitude as that flowing through measurement electrode by using the measured solution conductivity, and applies the signal to at least one of I/V amplifier and output amplifier.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: May 6, 2014
    Assignee: Panasonic Healthcare Co., Ltd.
    Inventor: Hidenori Morita
  • Patent number: 8655284
    Abstract: Embodiments include systems and methods for over-the-air testing of wireless systems. Embodiments comprise separated chambers containing wireless devices. The chambers are connected by propagation path corridors.
    Type: Grant
    Filed: May 8, 2011
    Date of Patent: February 18, 2014
    Assignee: ETS-Lindgren, LP
    Inventor: Michael Foegelle
  • Patent number: 8629681
    Abstract: A microwave sensor and algorithm for instantaneous and nondestructive determination of bulk density and moisture content in granular or particulate materials at a single microwave frequency, especially agricultural commodities, which uses an inexpensive microwave circuit for determining the real and imaginary parts of relative complex permittivity using an algorithm for phase correction.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: January 14, 2014
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Samir Trabelsi, Stuart O. Nelson
  • Patent number: 8624605
    Abstract: The present invention exploits extreme sensitivity to initial conditions in ray-chaotic enclosures to create a method to distinguish nominally identical objects through their unique “wave fingerprints.” The fingerprint can be measured through transmission of a pulsed microwave signal as a function of carrier frequency and time. When internal components are re-arranged, the Electromagnetic Fingerprints (EMF) changes in significant ways. The EMF can be detected by direct injection measurements of the enclosure or through remote measurement.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: January 7, 2014
    Assignee: University of Maryland, College Park
    Inventors: Sameer Hemmady, Steven M. Anlage
  • Patent number: 8614586
    Abstract: The moisture measuring method and apparatus determines the moisture content of post-harvest in-shell peanuts. A crystal oscillator generates a high frequency signal that is directed through a selected sample of in-shell peanuts. Capacitance, impedance, and phase change data associated with the sample are generated at (at least) two frequencies. The data is then substituted into a semi-empirical equation to determine the moisture content of the in-shell peanuts.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: December 24, 2013
    Assignee: The United States of America as represented by the Secretary of Agriculture
    Inventor: Chari Kandala
  • Patent number: 8552750
    Abstract: A sensor, a system of direct measurement using that sensor, and a method of direct and simultaneous measurement of conductivity and dielectric constant of a fluid, particularly high impedance, hydrocarbon-based fluids. The sensor has a cell that holds the fluids to be measured between a single pair of coaxial, bare metal electrodes connected through interface circuitry to measurement circuitry preferably implemented in one or several IC's. The sensor has a mutually compatible electrode geometry that provides both the correct cell constant for measurement of conductivity of hydrocarbons fluids (typical range 0-100,000 pS/cm), and a bulk capacitance (for use in dielectric constant measurement) in the range of measure of readily available low cost commercial IC's (having a typical capacitance measurement span of <10 pF, with a total bulk capacitance at the chip of <20 pF).
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: October 8, 2013
    Assignee: D-2, Inc.
    Inventor: Alan J. Fougere
  • Patent number: 8525705
    Abstract: A solid rocket motor having a liner surrounding a propellant includes an array of transmitter elements and receiver elements disposed within the liner. Transmitter electronics provide the transmitter elements with a transmit signal and receiver electronics receive the outputs of the receiver elements. The outputs are analyzed to determine any defects in the propellant.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: September 3, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Craig Michael Lopatin
  • Patent number: 8519724
    Abstract: A plate of substantially uniform thickness is formed from an electrically conductive material. The plate has a top surface defined to support a part to be measured. The plate has a bottom surface defined to be connected to a radiofrequency (RF) transmission rod such that RF power can be transmitted through the RF transmission rod to the plate. The plate is defined to have a number of holes cut vertically through the plate at a corresponding number of locations that underlie embedded conductive material items in the part to be measured when the part is positioned on the top surface of the plate.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: August 27, 2013
    Assignee: Lam Research Corporation
    Inventors: Jaehyun Kim, Arthur H. Sato, Keith Comendant, Qing Liu, Feiyang Wu
  • Publication number: 20130147493
    Abstract: A system for determining a concentration of gas in a confined space includes a first frequency generator for generating a first RF signal. A first antenna transmits the first RF signal across the confined space and second antenna receives the first RF signal. First and second RF signal power detectors detect the power of the first RF signal both prior to and after transmission through the confined space. A first comparator circuit determines a concentration of oxygen in the confined space based on the power of the first RF signal prior to transmission through the confined space and the power of the first RF signal received by the second antenna.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 13, 2013
    Applicant: GULFSTREAM AEROSPACE CORPORATION
    Inventor: John A. Marchetti
  • Patent number: 8461851
    Abstract: A slotted TEM transmission line and an in-situ TEM transmission line are utilized to determine both complex permittivity and permeability of soil. The permittivity and permeability information may be used by underground sensing techniques such as GPR and EMI to enhance information from these techniques. The in-situ probe provides that both complex permittivity and permeability can be measured simultaneously over a broad frequency range without disturbing the soil conditions.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: June 11, 2013
    Assignee: University of Hawaii
    Inventors: Magdy F. Iskander, Hyoungsun Youn, Charles Amazeen, Brian Burns
  • Publication number: 20130127478
    Abstract: A system and method for determining loading of a filter having a first dielectric constant with a material having a different dielectric constant, is disclosed. The filter is contained within a metallic container forming a microwave cavity, and microwave or RF energy is created within the cavity and changes in the cavity microwave response are monitored. The changes in cavity microwave response are related to filter loading. In a preferred embodiment, the microwave energy includes multiple cavity modes thereby allowing determination of spatial distribution of the contaminant material loading. In one embodiment, the microwave cavity response includes a shift in frequency of a resonant mode. Alternatively, the microwave cavity response includes a shift in quality factor Q of a resonant mode. The microwave cavity response may include a shift in amplitude or peak width of the microwave's signal at resonance.
    Type: Application
    Filed: January 17, 2013
    Publication date: May 23, 2013
    Applicant: FILTER SENSING TECHNOLOGIES, INC.
    Inventor: Filter Sensing Technologies, Inc.
  • Patent number: 8427176
    Abstract: At least one embodiment is directed to a sensor for measuring a parameter. A signal path of the system comprises an amplifier (612), a sensor element, and an amplifier (620). The sensor element comprises a transducer (4), a waveguide (5), and a transducer (30). A parameter such as force or pressure applied to the sensor element can change the length of waveguide (5). A pulsed energy wave is emitted by the transducer (4) into the waveguide (5) at a first location. The transducer (30) is responsive pulsed energy waves at a second location of the waveguide (5). The transit time of each pulsed energy wave is measured. The transit time corresponds to the pressure or force applied to the sensor element.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: April 23, 2013
    Assignee: Orthosensor Inc
    Inventor: Marc Stein
  • Patent number: 8421479
    Abstract: At least one embodiment is directed to a sensor for measuring a parameter. A signal path of the system comprises an amplifier (612), a sensor element, and an amplifier (620). The sensor element comprises a transducer (4) at a first location of a waveguide (5), and a reflective surface (30) at a second location of the waveguide (5). A parameter such as force or pressure applied to the sensor element can change the length of waveguide (5). A pulsed energy wave is emitted by the transducer (4) into the waveguide (5) at the first location. The transducer (4) is responsive to pulsed energy waves reflected from reflective surface (30) to the second location. The transit time of each pulsed energy wave is measured. The transit time corresponds to the pressure or force applied to the sensor element.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: April 16, 2013
    Assignee: NaviSense
    Inventor: Marc Stein
  • Patent number: 8405406
    Abstract: A detection apparatus and an imaging apparatus are capable of accurately conducting non-destructive observation of a target by using an incoherent electromagnetic wave. The detection apparatus has a generating section, a first coupler section, a delaying section, a second coupler section and a signal processing section. The generating section 101 includes a coherent electromagnetic wave source 102 and a diffusing section 103 for generating a pseudoincoherent electromagnetic wave by changing a propagation state of the coherent electromagnetic wave in accordance with a code pattern. The incoherent electromagnetic wave is split into first and second waves and the first wave is affected by the target of observation while the second wave is delayed by the delaying section. The first and second waves are then coupled to produce a coupled wave having a correlation signal of them and the signal is utilized to acquire information on the inside of the target of observation.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: March 26, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeaki Itsuji
  • Publication number: 20130063159
    Abstract: Provided is a waveguide for guiding an electromagnetic wave between a first conductor layer and a second conductor layer each having a negative dielectric constant real part for the electromagnetic wave, the waveguide including a tapered structure in a part of the waveguide at which the electromagnetic wave exits or enters, in which a spatial profile of the tapered structure perpendicular to an optical axis extends to both sides with respect to the optical axis at least in one direction orthogonal to the optical axis as being closer to an opening plane at an outermost part of the tapered structure.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 14, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Yasushi Koyama
  • Publication number: 20130027059
    Abstract: A test waveguide (33) for evaluating the performance of microwave probe assemblies (1, 13) and their associated analysis equipment is mounted on a stand (56). The test waveguide (33) includes geometry that is similar to that found on the test cell assembly (2) used during commercial production activities. The test waveguide (33) includes an unsealed interior space (41) that remains accessible while the probe assemblies (1, 13) are fastened to the test waveguide. One or more reference blocks (59) are formed having known characteristics that permit calibration and evaluation of the probe assemblies and their associated analysis equipment.
    Type: Application
    Filed: July 25, 2011
    Publication date: January 31, 2013
    Inventors: Scott Richard Breimon, Matthew Whitlock Dawson, Teresa Ainsworth, Darrell Thomas Butler
  • Patent number: 8354848
    Abstract: An obstacle detecting system having leakage coaxial cables laid on at both the sides of an obstacle monitoring district and an obstacle detecting device for emitting electrical waves from one of the leakage coaxial cables laid on at both the sides to the other leakage coaxial cable and detecting an obstacle in the obstacle monitoring district on the basis of the electrical waves incident to the other leakage coaxial cable is further equipped with an electrical wave transmitting unit for transmitting the electrical waves to the one leakage coaxial cable in the obstacle detecting device, an electrical wave receiving unit for receiving the electrical waves incident to the other leakage coaxial cable, and a connecting unit for connecting the electrical wave transmitting unit and the electrical wave receiving unit.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: January 15, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Keisuke Morita, Akihiro Toyohara, Kenji Inomata
  • Patent number: 8350580
    Abstract: A non-invasive Time Domain Reflectometry transmission line system and method for measuring one or more parameters of an electromagnetic Radio Frequency pulse transmitted, and reflected, along a transmission line, the parameters including at least one of; amplitude, propagation velocity and/or propagation time between defined predetermined instances. The system includes a transmission line structure including three or more elongated transmission elements each having two distal ends. Each element is capable of being selectively activated in at least two distinct pairs having distinct geometric configurations relative to each other to generate at least two distinct electric field potentials without physical displacement of the transmission line.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: January 8, 2013
    Assignee: Lincoln Ventures Limited
    Inventors: Ian Maxwell Woodhead, Ian Gregory Platt
  • Publication number: 20120319702
    Abstract: A cylindrical waveguide (1) for analyzing a flowing material (18) using guided microwave spectroscopy (GMS). Spaced apart plates (2, 5) each define a plane within the waveguide housing (3) that is parallel to the direction (47) of material flow through the waveguide. Two opposed frames (7, 19) each surround an aperture (6) that permits access to the region between the waveguide plates (2, 5). A microwave probe assembly (81) is mounted at each frame (7, 19) to permit the radiation and reception of electromagnetic waves within the housing (1). A temperature probe (51) is inserted into the interior of the housing (1) via fitting (13). A y-shaped assembly (89) can be used to divide the flow into two separate paths including a diverter vane (93) that permits flow to be equalized within the two separate flow paths.
    Type: Application
    Filed: July 30, 2012
    Publication date: December 20, 2012
    Applicant: THERMOFISHER SCIENTIFIC
    Inventors: Darrel Thomas Butler, Tom Lee Erb
  • Publication number: 20120304763
    Abstract: One or more methods and apparatuses for determining a characteristic, such as volume, of an excavated void of a construction material are provided. The one or more methods may include excavating a void defined in a construction material, interacting with the void using a material interacting device for determining at least one measurement thereof, manipulating the at least one measurement to determine a characteristic of the void such as the volume thereof, obtaining at least one measurement of the material, and determining a characteristic of the void based on the measurements obtained. The apparatus may include at least one material interacting device configured to interact with a surface of a construction material and a surface of a void defined therein for determining at least one respective measurement thereof and manipulate a plurality of the at least one measurement so as determine a characteristic of the void.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 6, 2012
    Applicant: TROXLER ELECTRONIC LABORATORIES, INC.
    Inventor: Robert Ernest Troxler
  • Patent number: 8324975
    Abstract: A measurement system for capturing a transit time, phase, or frequency of energy waves propagating through a propagation medium (702) is disclosed. The measurement system comprises two different closed-loop feedback paths. The first path includes a transducer driver (726), a transducer (704), a propagation structure (702), a transducer (706), and a zero-crossing receiver (740). The series and parallel resonance of the transducer (704) does not overlap the series and parallel resonance of the transducer (706). A second path includes a transducer driver (1126), a transducer (1104), a propagation medium (1102), a reflecting surface (1106), and an edge-detect receiver (1140). Each positive closed-loop path maintains the emission, propagation, and detection of energy waves in the propagation medium (702, 1102). In either path, a propagation tuned oscillator maintains positive closed-loop feedback of the system that sustains detection, emission, and propagation of energy waves or pulses in a medium.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: December 4, 2012
    Inventor: Marc Stein
  • Patent number: 8326229
    Abstract: Embodiments include systems and methods for over-the-air testing of wireless systems. Embodiments comprise separated anechoic chambers containing wireless devices. The anechoic chambers are connected by propagation path corridors.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: December 4, 2012
    Assignee: ETS Lindgren, L.P.
    Inventor: Michael Foegelle
  • Publication number: 20120262190
    Abstract: A measuring method for measuring characteristics of an object to be measured, the measuring method including holding the object on a void-arranged structure having at least two void portions that pass therethrough in a direction perpendicular to a principal surface thereof, and applying electromagnetic waves to the void-arranged structure on which the object is held to detect frequency characteristics of the electromagnetic waves transmitted through the void-arranged structure. The void-arranged structure has a grid structure in which the void portions are periodically arranged in at least one direction on the principal surface of the void-arranged structure. The characteristics of the object are measured on the basis of a relationship between a first frequency characteristic and a second frequency characteristic.
    Type: Application
    Filed: June 22, 2012
    Publication date: October 18, 2012
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Takashi Kondo, Kazuhiro Takigawa, Seiji Kamba, Ryoichi Fukazawa, Tomofumi Ikari
  • Patent number: 8283930
    Abstract: A method and apparatus for determining the attenuation of an RF signal caused by a DPF at an unknown or different ambient temperature than the temperature used for DPF sensor calibration is disclosed. The method and apparatus determine the sensor attenuation just prior to determining the DPF attenuation by disconnecting the antennas and determining the attenuation of a loopback path. This sensor attenuation can then be deducted from the attenuation determined for the normal path that includes the attenuation caused by the loopback path, the cables, and the DPF. This method compensates for variation in the attenuation of the sensor caused by changes in ambient temperature of the sensor. Further temperature compensation is be achieved by determining additional factors to account for variations caused by changes in ambient temperature.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: October 9, 2012
    Assignee: General Electric Company
    Inventors: David Michael Davenport, John Lofgren
  • Patent number: 8264239
    Abstract: A cylindrical waveguide (1) used for analyzing a flowing stream of corn masa (18) using a guided microwave spectroscopy (GMS) process. The waveguide (1) includes opposed spaced apart plates (2, 5) that each define a plane within the waveguide housing (3) that is parallel to the direction (47) of corn masa flow through the waveguide. The housing (1) includes two opposed frames (7, 19) that each surround an aperture (6) that permits access to the region between the waveguide plates (2, 5). A microwave probe assembly (81) is mounted at each frame (7, 19) to permit the radiation and reception of electromagnetic waves within the housing (1) as required to perform the GMS process. A temperature probe (51) is inserted into the interior of the housing (1) at a fitting (13). In an actual installation a y-shaped assembly (89) can be used to divide the corn masa flow into two separate paths with one path containing the waveguide (1).
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: September 11, 2012
    Assignee: Thermo Fisher Scientific
    Inventors: Darrel Thomas Butler, Tom Lee Erb
  • Patent number: 8237452
    Abstract: Non-invasive THz spectroscopic apparatus and methods are provided for detecting and/or identifying constituents such as variations in a structural entity where chemical or biological entities can reside. Position dependent scattering of THz radiation is employed to image voids and defects in the internal structure of samples, enabling the determination of contamination, spoilage or readiness of products such as wine in sealed containers.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: August 7, 2012
    Assignee: New Jersey Institute of Technology
    Inventors: John Francis Federici, Rose M. Federici
  • Publication number: 20120126831
    Abstract: A microwave emitter for use in a microwave sensor assembly that includes an emitter body includes a first arm that extends radially outward from the emitter body. The first arm is at least partially non-linear and includes at least one peak and at least one trough. The microwave emitter also includes a second arm that extends radially outward from the emitter body. The second arm includes at least one peak and at least one trough. The first arm and the second arm generate an electromagnetic field when at least one microwave signal is received.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 24, 2012
    Inventors: Yongjae Lee, Boris Leonid Sheikman, Steven Go
  • Patent number: 8164348
    Abstract: Aspects of the disclosure can provide an integrated circuit (IC) chip. The IC chip may adjust delays at its interface to compensate for outside transmission line delays. The interface of the IC chip can include a plurality of input/output (IO) modules coupled to a plurality of outside transmission lines, respectively. Each of the IO module can further include at least one variable delay element configured to delay transmission over the corresponding outside transmission line based on an actually measured transmission delay of the outside transmission line, in order to align signals transmitted by the plurality of outside transmission lines in a desired manner.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: April 24, 2012
    Assignee: Marvell Israel (M.I.S.L.) Ltd.
    Inventors: Dan Azeroual, Meir Hasko
  • Publication number: 20120074958
    Abstract: Device for processing and measuring properties of a moving rod of material of the tobacco processing industry includes a microwave resonator structured and arranged so that the rod of material is conveyable through the microwave resonator. Includes microwave generator with output frequency f0, and frequency stabilized oscillator to generate intermediate frequency fIM that is less than f0. Single sideband modulator supplies microwave resonator with a sideband signal having a sideband frequency shifted with respect to output frequency f0 by intermediate frequency fIM, and at least one analysis arrangement includes single sideband demodulator, low-pass filter, and analog to digital converter arranged in series. Single sideband demodulator receives a measurement signal of the sideband frequency transmitted or reflected from the microwave resonator, and receives output frequency f0.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 29, 2012
    Applicant: HAUNI MASCHINENBAU AG
    Inventor: Dierk SCHROEDER
  • Patent number: 8141417
    Abstract: The present invention includes medical fluid injector systems that detect the contents and/or volume of such contents within a syringe of the system. For example, an RF signal from a first antenna of a medical fluid injector may be transmitted through a syringe associated with the medical fluid injector. At least some of the transmitted RF signal may be received by a second antenna of the medical fluid injector. An amount of the RF signal received by the second antenna may be measured to provide information regarding the contents and/or volume of such contents within the syringe.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: March 27, 2012
    Assignee: Mallinckrodt LLC
    Inventors: Chad M. Gibson, Vernon D. Ortenzi
  • Publication number: 20120053426
    Abstract: A system includes an estimating unit to non-destructively estimate a fat content and a water content of a food sample. The system further includes a processing unit operatively coupled to the estimating unit to determine a calorie content based solely on the fat content and the water content of the food sample.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jack Mathew Webster, Vasile Bogdan Neculaes
  • Publication number: 20120025848
    Abstract: A device for transmitting and/or receiving electromagnetic RF signals, in particular a UWB antenna, has a planar, ultra-wideband antenna structure made of a plurality of dipole elements. Each dipole element comprises two poles having substantially elliptical base shapes. A measuring machine, in particular a locating and/or material identifying device for identifying objects encased in a medium and/or for identifying material parameters, in particular the moisture of a material, has at least one UWB sensor comprising at least one device for transmitting electromagnetic RF signals. A machine tool monitoring device has a detecting device for detecting the presence of a material type, in particular of tissue, in a machine tool working area, and has a working mechanism wherein the detecting device comprises a sensor unit having at least one device for transmitting electromagnetic RF signals.
    Type: Application
    Filed: January 11, 2010
    Publication date: February 2, 2012
    Applicant: Robert Bosch GmbH
    Inventors: Juergen Hasch, Alexander Werner Hees
  • Publication number: 20120007607
    Abstract: A sensing system comprises a material having a matrix structure in which a plurality of sensing elements are embedded, the sensing elements having electron distribution and/or transport properties that change in response to a change in a physical or chemical property of the material. The sensing system further comprises a receiver, including an antenna, the receiver arranged to receive a source RF signal and a returned RF signal, the returned RF signal being received from the material. A change in the electron distribution and/or transport properties of the sensing elements cause the source RF signal to change, such that a change in a property of the material can be determined from the returned RF signal. A corresponding method of sensing a change in a property of a material is also provided.
    Type: Application
    Filed: November 28, 2008
    Publication date: January 12, 2012
    Inventors: Christopher R. Lowe, Quentin Tannock, Adrian Stevenson, Karishima Jain
  • Patent number: 8093912
    Abstract: The invention relates to a device for controlling a material, the device including at least one transmitter for transmitting an electromagnetic signal at a carrier frequency Fp to illuminate the material and one receiver for receiving the electromagnetic signal, wherein the device further includes a first modulator for modulating the electromagnetic signal at a frequency Fm1, the first modulator being arranged, on the signal path, between the transmitter and the material in order to spatially sample the emitted electromagnetic signal; second modulator for modulating the electromagnetic signal at a frequency Fm2, the second modulator being arranged, on the signal path, between the material and the electromagnetic signal receiver in order to spatially sample the electromagnetic signal passed through the material.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: January 10, 2012
    Assignee: Ste d'Applications Technologiques de l'Imagerie Micro-Onde
    Inventors: Philippe Garreau, Jérôme Drean, Luc Duchesne, Arnaud Gandois, Ludovic Durand, Virginie Tessier, Per Iversen, Nicolas Robic
  • Patent number: 8073514
    Abstract: A dual autodiplexing antenna (300) redirects power flow (303) from an unloaded antenna to a loaded antenna, thereby improving communication performance under loaded conditions. The dual autodiplexing antenna (300) includes a first antenna (101) disposed at a first end (103) of a portable two-way communication device (100). A second antenna (102) is disposed at the distal end (104) of the portable two-way communication device (100). The first antenna (101) and second antenna (102) are coupled to a transceiver (107) by a first transmission line matching circuit (201) and a second transmission line matching circuit (202), respectively. In one embodiment, the first antenna (101) is configured to primarily operate in a first bandwidth, while the second antenna (102) is configured to primarily operate in a second bandwidth. When one of the first antenna (101) or second antenna (102) is loaded, power flow (303) is redirected to the lesser loaded antenna.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: December 6, 2011
    Assignee: Motorola Mobility, Inc.
    Inventors: Greg R. Black, Vijay L. Asrani, Adrian Napoles
  • Patent number: 8058880
    Abstract: A PIM measurement circuit enables making forward and reverse PIM measurements on any 1 port (reflection) or 2 port (transmission) device with the ability to determine in distance where individual PIM impairments are located as well as their magnitude. The PIM measurement circuit includes two frequency sources that are provided through a combiner for a CW characterization of the PIM circuit. To enable distance determination, an FM measurement is created by using a saw tooth offset sweep generator attached to one of the two frequency sources. With downconversion and processing of signals from the PIM impairments, the FM signal provides a frequency variation that is converted using a Fourier transform or spectrum analysis for separation of frequencies, enabling determination of the distance of the PIM sources as well as their magnitudes.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: November 15, 2011
    Assignee: Anritsu Company
    Inventors: Donald Anthony Bradley, Alan Charles Witty
  • Patent number: 8049516
    Abstract: Apparatus for detecting a discontinuity within a non-biological element located within a biological structure, the apparatus comprising: a microwave energy source; a first antenna coupled to the microwave energy source and arranged to transmit the microwave energy into the biological structure; a second antenna arranged to receive at least a portion of the transmitted microwave energy; an antenna carrier arranged to have the first and second antenna affixed thereon and including means for moving the first and second antenna with respect to the biological structure; and a signal processing unit coupled to the second antenna arranged to determine the phase and/or magnitude response of the received microwave energy as a function of the position of the antennas with respect to the biological structure and provide an indication of the location of the discontinuity within the non-biological element according to the phase and/or magnitude response.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: November 1, 2011
    Assignees: Creo Medical Llimited, Microoncology Limited
    Inventors: Christopher Paul Hancock, John Bishop, Martin Wynford Booton
  • Patent number: 8049517
    Abstract: A sensor for detecting a substance in a physical space, having an RF energy emitter fed by a signal source on one side of the space and an RF energy receiving element coupled to a detector at an opposite side of the channel, spaced apart by a distance (r) selected so that when the signal wavelength (?) changes based on the value of the dielectric constant (?) of the particular substance in the physical space between the emitter and receiver, the mode of field type within the sensor channel changes between near field and intermediate or far field mode.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: November 1, 2011
    Assignee: Greenwald Technologies, LLC
    Inventors: Shlomo Greenwald, Zipora Greenwald, Uri Moshe Greenwald