With Slope Detector Patents (Class 324/76.25)
  • Patent number: 10199937
    Abstract: Methods and apparatus to digitally control pulse frequency modulation pulses in power converters are disclosed. An example apparatus includes a low-side controller structured to, when an inductor current corresponds to a first current direction during a low-side control signal of a power converter, decrease a first duration of the low-side control after the first duration; and when the inductor current corresponds to a second current direction during the low-side control signal of the power converter, increase the first duration of the low-side control after the first duration; and a high-side controller structured to, when a sum of the first duration and a second duration corresponding to a high-side control of the power converter does not satisfy target pulse length, increase a third duration of the high-side control after the third duration; and when the sum of the first duration and the second duration satisfies the target pulse length, decrease the third duration of the subsequent high-side control.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: February 5, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Juha Olavi Hauru, Janne Matias Pahkala, Ari Kalevi Väänänen
  • Patent number: 8514919
    Abstract: Systems and other embodiments associated with synthetic instrumentation are presented. A reconfigurable synthetic instrumentation unit comprises an input module, with dual input/output ports and conditioning logic to condition an input signal. An RF down converter selectively down converts the conditioned input signal. A sampled RF down converter selectively samples the conditioned input signal. A pair of narrowband A/D converters are configured to convert one of the conditioned signal, the down converted signal and the sampled signal to produce a narrowband digital signal. A pair of broadband A/D converters convert at least one of the conditioned signal, the down converted signal and the sampled signal to produce a broadband digital signal. Signal processing logic selectively performs digital signal processing on the broadband digital signal or the narrow band digital signal.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: August 20, 2013
    Assignee: BAE Systems National Security Solutions Inc.
    Inventors: Anthony J. Estrada, Dana C. Ford, Tae S. Kim, Robert W. Lowdermilk, Dragan Vuletic
  • Publication number: 20100117624
    Abstract: A system and method for achieving oscilloscope functionality over a network. In one embodiment, the system includes: (1) a core having a local memory and configured to gather samples of an external signal based on a schedule at a specified sampling rate, write the samples into the local memory and transmit the samples over the network, and (2) a viewer couplable to the core over a network and configured to receive the samples over the network and display a waveform based on the samples.
    Type: Application
    Filed: November 11, 2008
    Publication date: May 13, 2010
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: Martin D. Carroll, Ilija Hadzic
  • Publication number: 20090115396
    Abstract: The present invention determines the resonant frequency of a sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency or set of frequencies and a predetermined amplitude. The energizing signal is coupled to the sensor via magnetic coupling and induces a current in the sensor which oscillates at the resonant frequency of the sensor. The system receives the ring down response of the sensor via magnetic coupling and determines the resonant frequency of the sensor, which is used to calculate the measured physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal.
    Type: Application
    Filed: January 7, 2009
    Publication date: May 7, 2009
    Applicant: CardioMEMS, Inc.
    Inventors: Mark G. Allen, Michael Ellis, Jason Kroh, Donald J. Miller
  • Patent number: 7482817
    Abstract: A signal including at least one group of a group comprised of two slopes having different gradients and a known temporal position relationship is applied to a device under test, the time intervals between the specific transitions of the logic level produced in the output signal of the device under test in response to the slopes included in the applied signal are measured, and the measurements are used to obtain the input threshold level of the device under test.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: January 27, 2009
    Assignee: Verigy (Singapore) Pte. Ltd.
    Inventor: Junichi Miyamoto
  • Patent number: 7414438
    Abstract: The clock based voltage deviation detector of the present invention includes a pulse module, an indicator module and a correlation module. The pulse module generates a stream of reset pulses as a function of a clock signal. The indicator module generates a pass/fail indicator signal as a function of the reset pulse stream and a difference between an input signal and a reference voltage. The correlation module correlates an event (e.g., overvoltage or undervoltage) of the pass/fail indicator signal with a period of the clock signal at which the event occurred.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: August 19, 2008
    Assignee: Credence Systems Corporation
    Inventors: Thomas Nulsen, Jose Rosado, Robert Glenn
  • Patent number: 6518741
    Abstract: An inversion in-phase component and a non-inversion in-phase component of a modulation signal inputted from a quadrature modulation section of a sample machine captured in a pair of signal lines, and an inversion quadrature component and a non-inversion quadrature component of the modulation signal, are computed by a pair of computers, respectively. In addition, these components are analog/digital converted at a pair of analog/digital converting sections, and then, are stored in a waveform storage memory. A modulation characteristics analyzing section performs predetermined computation processing of the storage data, thereby analyzing modulation characteristics of the modulation signal. A balance/imbalance switching section is provided at each one of the pair of signal lines, and the signal lines are grounded, whereby a state for transmitting a modulation signal of a balance transmission format is switched to a state for transmitting a modulation signal of an imbalance transmission format.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: February 11, 2003
    Assignee: Anritsu Corporation
    Inventor: Tomohisa Okada
  • Patent number: 6459278
    Abstract: Absolute delay of a FTD is characterized by applying a stimulus signal to a first port of the FTD. A second port of the FTD is coupled to a delay element having a known delay and a reflective termination. A drive signal is applied to a third port of the FTD. A time domain reflection response to the stimulus signal is obtained and a signal peak within the response that corresponds to a return signal from the reflective termination is identified. Absolute delay of the frequency translation device is then extracted based on the known delay of the delay element and a time that corresponds to the occurrence of the identified signal peak. Delay versus frequency is characterized by isolating a segment of the obtained time domain reflection response that corresponds to a return signal from the reflective termination. Inverse frequency transforming the isolated segment of the time domain reflection response provides delay characteristics of the FTD versus frequency.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: October 1, 2002
    Assignee: Agilent Technologies, Inc.
    Inventor: Michael E Knox
  • Patent number: 6421619
    Abstract: A data processing system and method included within an oscilloscope for independently analyzing a signal input into the oscilloscope. The oscilloscope includes a plurality of triggering modes. A plurality of trigger parameters are specified for each of the triggering modes. Thereafter, the oscilloscope automatically analyzes the input signal, independently from any user input, utilizing each of the triggering modes and the trigger parameters specified for each of the triggering modes. The input signal includes a desired waveform and a plurality of undesired waveforms. While the oscilloscope is automatically analyzing the input signal, a determination is made regarding whether the oscilloscope triggered on one of the undesired waveforms. When it is determined that the oscilloscope triggered on one of the undesired waveforms, the undesired waveform upon which the oscilloscope triggered is stored.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: July 16, 2002
    Assignee: International Business Machines Corporation
    Inventors: Scott Leonard Daniels, David Edward Halter
  • Patent number: 6288529
    Abstract: The present invention relates to an electro-optic sampling oscilloscope. This electro-optic sampling oscilloscope carries out measurement of measured signal by using an optical pulse generated based on a timing signal generated from a timing generation circuit synchronous with a trigger signal, providing: a timing generation circuit comprising a fast ramp circuit that outputs a ramp waveform using said trigger signal as a trigger, a slow ramp circuit that increases stepwise and sequentially the output value according to said timing signal; a comparator circuit that compares the output of said fast ramp circuit and the output of said slow ramp circuit and outputs the results of this comparison; and a gate circuit that limits the output of said comparator circuit by closing a gate only when the output of said comparator circuit is unstable based on the input trigger signal and timing signal.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: September 11, 2001
    Assignees: Ando Electric Co., LTD, Nippon Telegraph and Telephone Corporation
    Inventors: Nobuaki Takeuchi, Yoshiki Yanagisawa, Jun Kikuchi, Nobukazu Banjou, Yoshio Endou, Mitsuru Shinagawa, Tadao Nagatsuma, Junzo Yamada
  • Publication number: 20010010461
    Abstract: A phase comparator for calculating the phase difference between a test wave form and an output wave form in a disk driver according to the invention includes a phase converter, a first multiplier, a first integrator, a second multiplier, a second integrator and a phase angle calculator. The phase converter for delaying the test wave form for a specific time based on the frequency thereof. The first multiplier electrically coupled to the phase converter for performing a first operation by multiplying the delayed test wave form with the output wave form. The first integrator electrically coupled to the first multiplier for integrating the result of the first operation for a period to generate a first weighted value. The second multiplier for performing a second operation by multiplying the test wave form with the output wave form. The second integrator electrically coupled to the second multiplier for integrating the result of the second operation for the same period to generate a second weighted value.
    Type: Application
    Filed: December 11, 2000
    Publication date: August 2, 2001
    Inventor: Meng-Huang Chu