With Counter Patents (Class 327/160)
  • Patent number: 8848850
    Abstract: Mechanisms and techniques to evaluate data for a high speed I/O receiver logic. In an embodiment, a receiver circuit shifts a bit into a shift circuit in response to a rising edge of a data signal, where a count is started in response to the bit being subsequently shifted out of the shift circuit. Based on a value of the count, the receiver circuit generates a control signal for preparing physical layer receiver logic to transition to a burst mode of operation. In another embodiment, a receiver circuit includes a frequency divider to operate based on a data signal and a clock signal, wherein, based on operation of the frequency counter, a control signal is generated to indicate a line reset for physical layer receiver logic. The receiver circuit provides a feedback signal, based on the control signal, which is to limit activation of the frequency divider.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: September 30, 2014
    Assignee: Intel Corporation
    Inventor: Wei-Lien Yang
  • Patent number: 8847646
    Abstract: In a system in which the phases of a data clock signal and a data signal differ between at an input and at an output, a semiconductor integrated circuit performs a simple BER test without using external equipment and, at the same time, performs a jitter evaluation required for a margin evaluation.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: September 30, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasushi Yamakawa
  • Patent number: 8841960
    Abstract: The present invention relates to a clock signal generating circuit and a power supply including the same. The present invention includes: a counter for counting one period of an input clock signal by using a reference clock signal, and generating a count signal; and a clock signal generator for receiving the count signal and the reference clock signal, dividing the count signal to generate a quotient and a remainder, setting the quotient as a reference period of an output clock signal, and distributing and disposing the remainder to the output clock signal with a plurality of periods occurring for one period of the input clock signal.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: September 23, 2014
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Kunhee Cho, Donghwan Kim, Young-je Lee
  • Patent number: 8829957
    Abstract: A clock signal from a first electronic subsystem is distributed to a second electronic subsystem. The second electronic subsystem is remote from the first electronic subsystem and coupled to the first electronic subsystem by a bidirectional signal path. A first clock signal is generated on the first electronic subsystem and a training signal is generated on the first electronic subsystem clocked by the first clock signal. The training signal is sent on the bidirectional signal path on a round trip to the second electronic subsystem and back to the first electronic subsystem. A phase of the training signal is adjusted symmetrically on the way to the second electronic subsystem in a first phase adjuster and on the way back to the first electronic subsystem in a second phase adjuster until the measured time for the round trip is equal to an even number of clock cycles.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: September 9, 2014
    Assignee: PRO DESIGN Electronic GmbH
    Inventors: Sebastian Fluegel, Dragan Dukaric
  • Patent number: 8826061
    Abstract: A method of implementing a system time in an electronic device using a timer is disclosed. The method comprises storing a first count reset value in the electronic device; increasing a count value; comparing the first count reset value with the count value at a first particular time; resetting the count value when the count value is the same as the first count reset value at the first particular time; and generating an interrupt request signal when the count value is reset.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-Lae Park
  • Publication number: 20140240014
    Abstract: In a system in which the phases of a data clock signal and a data signal differ between at an input and at an output, a semiconductor integrated circuit performs a simple BER test without using external equipment and, at the same time, performs a jitter evaluation required for a margin evaluation.
    Type: Application
    Filed: August 9, 2013
    Publication date: August 28, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Yasushi YAMAKAWA
  • Patent number: 8810289
    Abstract: Apparatuses, circuits, methods, and other embodiments associated with digital power on reset are described. In one embodiment, an apparatus includes a digital electronic component configured to produce a clock signal. A first counter is configured to output a first count signal based on the clock signal and a second counter is configured to output a second count signal based on the clock signal. A power on reset logic is configured to provide a power on reset signal based on the first count signal and the second count signal, where the power on reset logic is configured to disable the digital electronic component after providing the power on reset signal to prevent the digital electronic component from drawing power.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: August 19, 2014
    Assignee: Marvell International Ltd.
    Inventor: Yongjiang Wang
  • Patent number: 8766682
    Abstract: A method and apparatus for measuring the duration of a transient signal with high precision.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: July 1, 2014
    Assignee: Voxtel, Inc.
    Inventor: George W. Williams
  • Publication number: 20140176209
    Abstract: A clock generation circuit includes a counting code generation unit configured to generate counting codes corresponding to a frequency of an input clock when an enable signal is enabled; a control code generation unit configured to decode the counting codes and generate control codes; and a cycle changeable oscillation unit configured to determine a frequency of an output clock in response to the control codes.
    Type: Application
    Filed: March 18, 2013
    Publication date: June 26, 2014
    Applicant: SK HYNIX INC.
    Inventors: Jung Hwan JI, Geun Il LEE
  • Patent number: 8724677
    Abstract: Provided are a method and apparatus (receiver) of receiving and processing a radio signal in a transmitter-receiver environment. The radio signals are transmitted across a wireless interface using Ultra Wideband (UWB) pulses. A transmitted reference approach is utilized. The radio signal include pairs of UWB pulses with each pair of pulses separated by a fixed time delay. The two pulses are then combined to provide for improved noise immunity.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: May 13, 2014
    Assignee: University of South Florida
    Inventor: James L. Tucker
  • Publication number: 20140103978
    Abstract: In one embodiment, an apparatus may include a pulse generator to generate an oversampled clock signal. The apparatus may also include a sample and hold unit to provide at least two differential input signals based on the oversampled clock signal. The apparatus may further include a conversion unit to generate a single-ended signal based on the at least two differential input signals. The apparatus may also include a counter to determine a count of rising and falling edges of the single-ended signal based on the oversampled clock signal.
    Type: Application
    Filed: December 27, 2013
    Publication date: April 17, 2014
    Inventor: Wei-Lien Yang
  • Publication number: 20140078852
    Abstract: For example, a semiconductor device includes a first latency counter, which selects whether to give an odd-cycle latency to an internal command signal; and a second latency counter, which gives a latency to an internal command signal at intervals of two cycles. The latency counters are connected in series. Since the number of bits in control information, which is used to set a latency, is smaller than the types of settable latency as a result, it is possible to reduce wiring density.
    Type: Application
    Filed: November 22, 2013
    Publication date: March 20, 2014
    Applicant: Elpida Memory, Inc.
    Inventor: Hiroki Fujisawa
  • Publication number: 20140062555
    Abstract: Techniques are disclosed relating to detecting and minimizing timing problems created by clock domain crossing (CDC) in integrated circuits. In various embodiments, one or more timing parameters are associated with a path that crosses between clock domains in an integrated circuit, where the one or more timing parameters specify a propagation delay for the path. In one embodiment, the timing parameters may be distributed to different design stages using a configuration file. In some embodiments, the one or more parameters may be used in conjunction with an RTL model to simulate propagation of a data signal along the path. In some embodiments, the one or more parameters may be used in conjunction with a netlist to create a physical design for the integrated circuit, where the physical design includes a representation of the path that has the specified propagation delay.
    Type: Application
    Filed: November 8, 2013
    Publication date: March 6, 2014
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Michael J. Osborn, Michael J. Tresidder, Aaron J. Grenat, Joseph Kidd, Priyank Parakh, Steven J. Kommrusch
  • Patent number: 8664983
    Abstract: A clock data recovery circuit includes a sampler circuit, a filter circuit, a control circuit, and a phase shift circuit. The sampler circuit samples input data in response to a clock signal. The filter circuit is coupled to the sampler circuit. The control circuit is coupled to the filter circuit. The phase shift circuit provides the clock signal to the sampler circuit. The control circuit causes the phase shift circuit to shift a phase of the clock signal by a first phase shift, and by a second phase shift after the phase of the clock signal has shifted by the first phase shift, in response to the filter circuit indicating to shift the phase of the clock signal by more than a predefined phase shift.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: March 4, 2014
    Assignee: Altera Corporation
    Inventor: Lip Kai Soh
  • Patent number: 8643416
    Abstract: A semiconductor device includes a DLL circuit, which comprises: a delay unit generating a second clock signal by delaying a first clock signal; a phase comparator circuit comparing the first clock signal and a signal generated by further delaying the second clock signal; a counter circuit outputting a count value that determines a delay amount of the delay unit to the delay unit, and up/down operating in response to the result of the phase comparison by the phase comparator circuit; and an initial delay amount control circuit detecting a cycle of the first clock signal at the time of initial setting operation, and outputting an initial value of the count value depending upon the detected cycle to the counter circuit.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: February 4, 2014
    Assignee: Elpida Memory, Inc.
    Inventor: Ryo Fujimaki
  • Patent number: 8643410
    Abstract: A system for compensating for variations in the frequency of an input clock signal having a first frequency includes a coarse counter that receives the input clock signal, counts a predetermined number of clock pulses of the input clock signal, and generates a coarse compensated clock signal having a second frequency. A first compensation module adjusts a clock pulse of the input clock signal based on a coarse compensation value. A residual period adjustment module accumulates a fine compensation value for each clock pulse of the coarse compensated clock signal. A fine counter operates at a third frequency of a fine clock signal, receives an adjusted delay value based on the accumulated fine compensation value, counts a number of fine clock pulses in each clock pulse of the coarse compensated clock signal, and generates a fine compensated clock signal having the second frequency.
    Type: Grant
    Filed: September 2, 2012
    Date of Patent: February 4, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Prashant Bhargava, Mohit Arora, James R. Feddeler, Martin Mienkina
  • Patent number: 8638151
    Abstract: Groups of phase shifted Pulse Width Modulation (PWM) signals are generated that maintain their duty-cycle and phase relationships as a function of the period of the PWM signal frequency. The multiphase PWM signals are generated in a ratio-metric fashion so as to greatly simplify and reduce the computational workload for a processor used in a PWM system. The groups of phase shifted PWM signals may also be synchronized with and automatically scaled to match external synchronization signals.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: January 28, 2014
    Assignee: Microchip Technology Incorporated
    Inventor: Bryan Kris
  • Patent number: 8635040
    Abstract: A signal measuring device, comprises one set, or a plurality of sets, of measuring unit(s) measuring an object of measurement in synch with a driving clock signal for measurement and outputting result of measurement as first data, and a timing identification unit which, in accordance with a measurement-start command, outputs a value, which differs every period, as second data in synch with a reference signal having a prescribed period and a speed lower than that of the driving clock signal; and a storage unit collecting and successively storing the first data and the second data as one set in synch with the driving clock signal.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: January 21, 2014
    Assignee: NEC Corporation
    Inventors: Koichi Nose, Masayuki Mizuno, Atsufumi Shibayama
  • Publication number: 20140015579
    Abstract: A system that may include a slow clock event generator arranged to generate the slow clock event; a fast clock edge type detector that is arranged to perform a determination process of determining whether an earliest fast clock edge that occurs within a slow clock event is a rising clock edge or a falling clock edge, and whether a last fast clock edge that occurs within the slow clock event is a rising clock edge or a falling clock edge; and a counter module that is arranged to count fast clock cycles during the slow clock event to provide a duration estimate indicative of duration of the slow clock event and generate a slow clock event duration value indicative of the duration of the slow clock event, in response to the duration estimate and to a determination result that is indicative of an outcome of the determination process.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Applicant: DSPG GROUP LTD.
    Inventors: David Shkolnik, Igal Sadoun
  • Publication number: 20140002153
    Abstract: In one embodiment, an apparatus may include a pulse generator to generate an oversampled clock signal. The apparatus may also include a sample and hold unit to provide at least two differential input signals based on the oversampled clock signal. The apparatus may further include a conversion unit to generate a single-ended signal based on the at least two differential input signals. The apparatus may also include a counter to determine a count of rising and falling edges of the single-ended signal based on the oversampled clock signal.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Inventor: WEI-LIEN YANG
  • Patent number: 8610480
    Abstract: The present invention relates to a clock signal generating circuit and a power supply including the same. The present invention includes: a counter for counting one period of an input clock signal by using a reference clock signal, and generating a count signal; and a clock signal generator for receiving the count signal and the reference clock signal, dividing the count signal to generate a quotient and a remainder, setting the quotient as a reference period of an output clock signal, and distributing and disposing the remainder to the output clock signal with a plurality of periods occurring for one period of the input clock signal.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: December 17, 2013
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Kunhee Cho, Donghwan Kim, Young-Je Lee
  • Patent number: 8595543
    Abstract: A circuit and method for trimming an internal oscillator of a USB device that generates a clock signal as a frequency source of the USB device detect an end of packet from an input data stream to initialize a counter, identify a token packet in the data stream to detect a start of frame token packet for the counter to carry out clock counting on the clock signal to thereby obtain a count value, and compare the count value with a reference value to determine a trimming code for trimming a clock frequency of the internal oscillator.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: November 26, 2013
    Assignee: Elan Microelectronics Corporation
    Inventors: Tsung-Yin Chiang, Chun-Chi Wang, Po-Hao Wu, Chun-An Tang
  • Patent number: 8588270
    Abstract: The invention includes a method for transmitting and detecting high speed Ultra Wideband pulses across a wireless interface. The transmitter includes a serializer and pulse generator. The receiver comprises a fixed delay line, multiplier, local serializer (with a sequence matching the transmitter), digital delay lines, low noise amplifier and logic fan-out buffer along with an array of D flip-flop pairs. Each flip-flop pair is enabled, at fixed time increments, to detect signals at a precise time; the timing is controlled by the pseudo-random sequence generated by the local serializer. A local tunable oscillator is controlled by detecting the phase change of the incoming signal and applying compensation to maintain the phase alignment and clock synchronization of the receiver to the clock reference of the transmitter. The invention uses a pair of pulses with a fixed delay and then relies on mixing the two to provide better noise immunity.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: November 19, 2013
    Assignee: University of South Florida
    Inventor: James L. Tucker
  • Publication number: 20130278313
    Abstract: A trigger signal detection apparatus includes: a clock gating circuit which is supplied with a trigger signal and a clock signal and outputs the clock signal; a trigger signal processing circuit which outputs a first signal only for a predetermined time when the clock signal is supplied from the clock gating circuit; a counter which operates in response to the trigger signal, thus outputting a count value of the clock signal; and a time set-up circuit which outputs a second signal to the trigger signal processing circuit when count value supplied from the counter reaches a preset value, and the trigger signal processing circuit stops outputting the first signal when the trigger signal processing circuit receives the second signal.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventor: Yoshihide Suzuki
  • Publication number: 20130278312
    Abstract: The present invention may provide a system including a controller and a plurality of integrated circuits. The controller may control synchronization operations of the system, the controller may include a master timing counter and a controller data interface. Each integrated circuit may include a timing counter and an IC data interface. Further, each integrated circuit may synchronize its respective timing counter based on synchronization command received from the controller via the data interfaces. Hence, the system may provide synchronization between the controller and the integrated circuits without an extraneous designated pin(s) for a designated common time-based signal.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 24, 2013
    Applicant: ANALOG DEVICES, INC.
    Inventors: Lawrence GETZIN, Petre MINCIUNESCU
  • Patent number: 8542552
    Abstract: According to one embodiment, there is provided a DLL circuit including a delay chain, a plurality of phase comparators, and a controller. The plurality of phase comparators receive the reference clocks individually and receive respectively the clocks from the delay elements in mutually different stages, among the delay elements of the plurality of stages. The controller simultaneously receives comparison results of the plurality of phase comparators, determines the number of stages that generate the clock of which a phase is synchronized with a phase of the reference clock from among the delay elements of the plurality of stages, and selects the number of output stages from among the delay elements of the plurality of stages based on the determined number of stages so that a delay clock having a demanded delay amount with respect to the reference clock is output.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: September 24, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akira Aoki
  • Patent number: 8520789
    Abstract: The present invention relates to the communication field and discloses a method and an apparatus for implementing pulse synchronization, so that the control on a single-chip multi-channel device can be simplified. A method for implementing pulse synchronization includes: when a cycle count value corresponding to a reference symbol port of the multiple ports reaches a length of a predetermined pulse cycle, obtaining, by a microprocessor, cycle count values corresponding to the multiple ports; obtaining lengths of temporary synchronization cycles of the multiple ports according to the length of the predetermined pulse cycle and the cycle count values corresponding to the multiple ports; and sending the lengths of the temporary synchronization cycles to logic circuits corresponding to the multiple ports. Embodiments of the present invention are mainly applied in communication systems to output pulse symbols synchronously.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: August 27, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yang Li, Matthew Leung, Tin Yau Fung
  • Patent number: 8488408
    Abstract: Systems and methods are disclosed relating to semiconductor memory devices. According to some exemplary implementations, there are provided innovations associated with power and ground pads in devices such as static random access memory (“SRAM”) devices and dynamic random access memory (“DRAM”) devices. Moreover, the systems and/or methods may include features such as minimization of simultaneous switching outputs (SSO) effects relating to echo clock circuitry.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: July 16, 2013
    Assignee: GSI Technology, Inc.
    Inventors: Lee-Lean Shu, Tuan Duc Nguyen, William Le
  • Patent number: 8483345
    Abstract: A receiving circuit which receives serial data, includes: a voltage controlled oscillator which generates a sampling clock signal having a frequency based on an input control voltage; a first frequency divider which divides the frequency of the sampling clock signal at a division rate M; a second frequency divider which divides a frequency of a clock signal based on the received serial data at a division rate N, N being a real number represented by M×q/p; a frequency comparator which generates a phase/frequency difference signal based on a phase difference between an output signal of the first frequency divider and an output signal of the second frequency divider; and a control voltage generating circuit which generates the control voltage to control a frequency of the voltage controlled oscillator based on the phase/frequency difference signal.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: July 9, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Saito Shinichi
  • Patent number: 8451967
    Abstract: Disclosed is a method and apparatus for clock checking, to solve the problem of high resource occupation in existing clock checking methods. The method includes: a programmable device for performing frequency division on the source clock signal to obtain a reference clock signal; treating the source clock signal as a counting work clock to determine the counting value of rising edges and counting value of high levels of a clock signal being checked during each high level period out of N continuous high levels of the reference clock signal; and determining whether the clock signal being checked is valid according to the magnitude relationship between the counting value of the high levels of the clock signal being checked during each high level period and a first expected value, as well as the magnitude relationship between the counting value of the rising edges and a second expected value.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: May 28, 2013
    Assignee: ZTE Corporation
    Inventor: Jichao Xu
  • Patent number: 8416114
    Abstract: An A/D conversion circuit includes a pulse transit circuit, first and second pulse transit position detection circuits, and a digital signal generation circuit. The first pulse transit position detection circuit detects a transit position of the pulse signal output from the pulse transit circuit and generates a logical signal according to the transit position. The second pulse transit position detection circuit detects the circling number of the pulse signal output from the pulse transit circuit and generates a logical signal according to the circling number. The digital signal generation circuit synthesizes the logical signals output from the first and second pulse transit position detection circuits and generates a digital signal according to a size of an analog signal VA.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: April 9, 2013
    Assignees: Olympus Corporation, Denso Corporation
    Inventor: Yasunari Harada
  • Patent number: 8416901
    Abstract: The embodiment of the present disclosure discloses a method and apparatus for detecting frequency deviation of a clock. The method includes: counting the clock to be detected to acquire current counting information; filtering the current counting information to acquire filtered data; and acquiring the frequency deviation of the clock to be detected from the filtered data. According to the embodiments of the present disclosure, the detection accuracy of frequency deviation is improved by filtering the counting information acquired by counting the clock to be detected, and appropriately increasing an amount of information after the filtering, so as to perceive the occurrence of any abnormal dithering, and avoid neglecting of any abnormal condition in periodic or aperiodic queries.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: April 9, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Bo Li, Shiqing Hu, Peng Chen
  • Publication number: 20130076416
    Abstract: A system for calibrating a circuit comprising a delay to voltage converter for receiving an input signal and generating an output signal that represents a delay metric. A counter for receiving the output signal and generating a binary output as a function of the delay metric.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: Conexant Systems, Inc.
    Inventor: Vamsi Mocherla
  • Publication number: 20130076417
    Abstract: Multi-phase, frequency coherent pulse width modulation (PWM) signals are generated that maintain PWM data-set coherency regardless of user or system events. PWM data-set coherency is accomplished by adding data buffers to hold and transfer new PWM data during a data-set update from a processor. After the data-set transfer to the data buffers is complete and when the next PWM cycle is about to start, the data-set stored in the data buffers is transferred to the active PWM registers in time for the start of the next PWM cycle.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 28, 2013
    Inventor: Bryan Kris
  • Patent number: 8386828
    Abstract: Circuits and methods are provided for estimating a latency through a FIFO buffer. A first detector detects first instances of a pattern in first data values serially written to a write port of the FIFO buffer. A second detector detects second instances of the pattern in second data values serially read from a read port of the FIFO buffer. The second data values are the first data values delayed by the latency through the FIFO buffer. A counter counts a count of active transitions of a sample clock signal. The counter starts on each detected first instance and stops on each detected second instances. The count provides an estimate of the latency of the FIFO buffer.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: February 26, 2013
    Assignee: Xilinx, Inc.
    Inventors: Sai Lalith Chaitanya Ambatipudi, Seu Wah Low, Christopher J. Borrelli, Loren Jones
  • Patent number: 8374075
    Abstract: Phase and frequency recovery techniques comprising; a software controlled clock synthesizer (SCCS) for high accuracy phase & frequency synthesis producing synchronized low jitter clock from external time referencing signals or time referencing messages wherein SCCS includes a hybrid PLL (HPLL) enabling 1-50,000 frequency multiplication with very low output jitter independent of reference clock quality, and receiver synchronization techniques (RST) enabling by one order more accurate synchronization of receiver clock to OFDM composite frame combined with much faster acquisition time and better stability of receivers oscillator.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 12, 2013
    Inventor: John W. Bogdan
  • Publication number: 20130027103
    Abstract: A delay line of individually selectable delay elements can operate as an oscillator in an open loop mode to track process variation or drive a clock signal that varies with temperatures and voltages in the system. The delay line oscillator can also operate in a closed loop mode to match a frequency given by a tuner ratio and a reference clock. The delay line can also be used for measuring clock jitter or duty cycle.
    Type: Application
    Filed: October 1, 2012
    Publication date: January 31, 2013
    Inventors: Tor Erik Leistad, Frode Milch Pedersen, Fredrik Larsen
  • Publication number: 20130002321
    Abstract: The present invention relates to a clock signal generating circuit and a power supply including the same. The present invention includes: a counter for counting one period of an input clock signal by using a reference clock signal, and generating a count signal; and a clock signal generator for receiving the count signal and the reference clock signal, dividing the count signal to generate a quotient and a remainder, setting the quotient as a reference period of an output clock signal, and distributing and disposing the remainder to the output clock signal with a plurality of periods occurring for one period of the input clock signal.
    Type: Application
    Filed: February 17, 2012
    Publication date: January 3, 2013
    Inventors: Kunhee CHO, Donghwan KIM, Young-je LEE
  • Publication number: 20130002316
    Abstract: An integrated circuit (IC) provides a reset function. The IC receives a command that is defined by a first sequence of counts of signal transitions of a first signal during windows of a second signal and provides a reset function when it is determined that the command is received. A device including the IC and a system including the device are provided.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: STMicroelectronics Asia Pacific Pte Ltd.
    Inventors: Beng-Heng GOH, Yann DESPREZ-LE-GOARANT
  • Publication number: 20120319751
    Abstract: The high resolution capture (HRCAP) of this invention enables time stamping of input signals with very high resolution without requiring high frequency sampling. This invention uses a capture delay line to time stamp an input edge signal as a fraction of the input signal sampling frequency. The capture delay line includes a first input receiving a synchronized signal and a second input receiving the input signal. These inputs propagate toward one another within a sequence of bit circuits. The meeting location within the sequence of bit circuits indicates a time of the input signal transition at a resolution greater than possible via the sampling frequency clock.
    Type: Application
    Filed: April 19, 2010
    Publication date: December 20, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Alexander Tessarolo, Saya Goud Langadi
  • Patent number: 8299829
    Abstract: To provide a DLL circuit incorporating a duty adjustment circuit that is independent of the frequency of a clock signal. The DLL circuit includes: a delay line that delays a first internal clock signal to generate a second internal clock signal; a counter circuit that specifies an amount of delay of the delay line; a counter control circuit that adjusts a count value of the counter circuit; and a subtraction circuit that determines a difference between first and second count values at which the rise edge of the first internal clock signal coincides with that of a replica clock signal. The fall edge of the second internal clock signal is adjusted based on a value equivalent to one-half of the difference obtained. This prevents the applicable frequency range from being limited as with a type of duty adjustment circuit that alternately discharges capacitors.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: October 30, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Katsuhiro Kitagawa
  • Publication number: 20120269015
    Abstract: Command paths, apparatuses, memories, and methods for providing an internal command to a data path are disclosed. In an example method, a command is received and propagated through a command path to provide an internal command. Further included in the method is determining a difference between a latency value and a path delay difference, the path delay difference representing a modeled path delay difference between the command path and the data path measured in terms of a number of clock periods. The propagation of the command through the command path to the data path is delayed by a delay based at least in part on the difference between the latency value and the path delay difference. The internal command is provided to the data path responsive to an internal clock signal.
    Type: Application
    Filed: April 25, 2011
    Publication date: October 25, 2012
    Applicant: Micron Technology, Inc.
    Inventor: Venkatraghavan Bringivijayaraghavan
  • Patent number: 8289087
    Abstract: A computer-implemented method, device, and program product for detecting a phase shift between an I data clock and a Q data clock in processing an I data signal or a Q data signal used in quadrature modulation or quadrature demodulation. The method includes: receiving an input of the I data clock and the Q data clock; performing exclusive-ORing (XORing) on the I data clock and the Q data clock; latching a result of the performance of XORing on a phase sampling clock which is asynchronous with the I data clock and the Q data clock; incrementing a first number; incrementing a second number; comparing the incremented first number and the incremented second number and determining, based on a phase determination criterion, a phase shift between the I data clock and the Q data clock; and detecting a phase shift between the I data clock and the Q data clock.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Yasunao Katayama, Yasuteru Kohda, Nobuyuki Ohba
  • Patent number: 8283983
    Abstract: A frequency calibration method for a programmable oscillator includes the steps of: counting an oversampling number of an oversampling signal and estimating an accumulated bit number of a USB data stream according to the oversampling signal; calculating a difference between the oversampling number and M times of the accumulated bit number when the accumulated bit number is larger than or equal to a predetermined value; and determining a frequency calibration step of the oversampling signal according to the difference. The present invention further provides a frequency calibration device for a programmable oscillator.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: October 9, 2012
    Assignee: PixArt Imaging Inc.
    Inventors: Chih Yen Wu, Chien Jung Huang, Hsiang Sheng Liu, Ching Chih Chen
  • Patent number: 8270557
    Abstract: An integrated circuit includes a counter configured to perform a counting operation and output a count code value. The integrated circuit further includes an operation controller, a digital circuit and an alignment unit. The operation controller receives the count code value and generates a first control signal and a second control signal. The first control signal is generated, when the count code value is equal to a first value, which is counted by the counter prior to a target count value. The second control signal is generated, when the count code value is equal to the target count value. A digital circuit performs a first operation based on the first control signal, and output a digital signal. An alignment unit aligns the digital signal, and outputs the aligned digital signal as a final digital signal in response to the second control signal.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: September 18, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ji-Wang Lee, Shin-Deok Kang
  • Patent number: 8269536
    Abstract: An onion waveform generator and a spread spectrum clock generator (SSCG) using the same are provided. The onion waveform generator includes a value generation unit and an accumulating unit. The value generation unit outputs a counting value. The accumulating unit accumulates the counting value to output a waveform value. The accumulating unit switches from an increasing mode to a decreasing mode if the waveform value is a third boundary value, and the accumulating unit switches from the decreasing mode to the increasing mode if the waveform value is a fourth boundary value.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 18, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Hong-Yi Huang, Chih-Yuan Hsu, Wei-Sheng Tseng, Kuo-Hsing Cheng, Yuan-Hua Chu
  • Patent number: 8253460
    Abstract: An oscillation circuit including a first transistor, a second transistor, a current source, a first inverter, and an impedance unit is disclosed. The first transistor has a first source receiving a first operation voltage, a first drain, and a first gate coupled to the first drain. The second transistor has a second source receiving the first operation voltage, a second drain, and a second gate coupled to the first gate. The current source is coupled between the first drain and a grounding voltage. The first inverter generates an oscillation signal and has a first input terminal, a first output terminal, and a first power terminal coupled to the second drain. The impedance unit is coupled between the first input terminal and the first output terminal.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: August 28, 2012
    Assignee: Princeton Technology Corporation
    Inventor: Ming Jen
  • Patent number: 8250399
    Abstract: Aspects of the disclosure provide a network device. The network device includes a first port coupled to a first device to communicate with the first device, and a clock wander compensation module. The first port recovers a first clock based on first signals received from the first device. The clock wander compensation module includes a global counter configured to count system clock cycles based on a system clock of the network device, and a first port counter configured to count first clock cycles based on the recovered first clock. Further, the first port transmits a first pause frame to the first device based on the global counter and the first port counter.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: August 21, 2012
    Assignees: Marvell International Ltd., Marvell Israel (M.I.S.L.) Ltd.
    Inventors: Tal Mizrahi, Carmi Arad, Martin White, Tsahi Daniel
  • Publication number: 20120201273
    Abstract: A converter comprising a comparator having a first input operable to receive a first signal, a second input operable to receive a second signal, and an output, a switch for sinking a portion of the first signal, wherein the switch is responsive to the output, and an integrator connected to the first input, wherein the first signal is a voltage developed by the integrator when a current proportional to the absolute temperature is applied thereto. A method for measuring temperature of a device using a comparator and converting the bitstream of the comparator to a digital output is also given. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
    Type: Application
    Filed: April 17, 2012
    Publication date: August 9, 2012
    Applicant: Micron Technology, Inc.
    Inventor: Sugato MUKHERJEE
  • Patent number: 8237477
    Abstract: A programmable clock generator, which is used in dynamic-voltage-and-frequency-scaling (DVFS) operated in Sub- and Near-Threshold region. The programmable clock generator includes first pulse generating unit and a pulse multiplier. A first counter is configured to generate a first counting signal, so as to control the phase detector comparing the phase difference between a first pulse signal and a second pulse signal. A first control signal is transmitted by a control unit in accordance with a phase difference signal, and the phase of the second pulse signal is adjusted by a lock-in delay unit, so that a predetermined phase is generated between the first pulse signal and the second pulse signal. The PVT variation may be compensated by the programmable clock generator during the sub threshold region. Therefore, the period of reference clock is in the locking range of lock-in delay line.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: August 7, 2012
    Assignee: National Chiao Tung University
    Inventors: Chung-Ying Hsieh, Ming-Hung Chang, Wei Hwang