Having Digital Device (e.g., Logic Gate, Flip-flop, Etc.) Patents (Class 327/166)
  • Patent number: 11264832
    Abstract: The present technology relates to a signal processing device, a signal processing method, and a program capable of reducing influence of crosstalk. Provided are: a plurality of comparators; a delay unit adapted to delay output of each of the plurality of comparators; and a subtractor adapted to subtract, from a supplied signal, a signal from the delay unit. The signal processing device processes signals transmitted in N phases and includes (N?1) or more comparators. Each of the plurality of comparators has a different threshold value set and compares a received signal with the threshold value, and in a case where the signal transitions between a plurality of voltage levels, the threshold value is set to a value within adjacent voltage levels. The present technology can be applied to a reception device that receives a signal transmitted in multiple phases and via multiple lines.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: March 1, 2022
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Hiroaki Hayashi, Masatsugu Sugano
  • Patent number: 11172312
    Abstract: The present disclosure relates generally to a microphone assembly. The microphone assembly has an acoustic activity detection mode of operation when the electrical circuit is clocked using an internal clock signal generator in the absence of an external clock signal at a host interface, and an electrical circuit of the microphone assembly is configured to provide an interrupt signal to the host interface upon detection of acoustic activity by the electrical circuit. The electrical circuit is configured to control the operating mode of the microphone assembly based on a frequency of the external clock signal in response to providing the interrupt signal and is configured to provide data representing the electrical signal to the host interface using the external clock signal received at the host interface.
    Type: Grant
    Filed: January 26, 2020
    Date of Patent: November 9, 2021
    Assignee: Knowles Electronics, LLC
    Inventors: Claus Erdmann Fürst, Henrik Thomsen, Michael Deruginsky, Dibyendu Nandy, Oddy Nopporn Khamharn, Aziz Yurttas, Svetoslav Radoslavov Gueorguiev, Anders Mortensen
  • Patent number: 10926348
    Abstract: A detection device for an active glare protection device comprises a detection unit that is configured for a direct or indirect detection of at least one welding parameter of a welding apparatus, and comprises at least one communication unit that is configured for a transmission of at least one information of the at least one welding parameter to the active glare protection device, wherein the communication unit is configured for a transmission of at least one information of the at least one welding parameter, implemented as a bit sequence of a defined length, to the active glare protection device.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: February 23, 2021
    Assignee: Optrel Holding AG
    Inventors: Ramon Hofer Kraner, Tindaro Pittorino, Olaf Schreiber
  • Patent number: 10817014
    Abstract: A method for synchronizing a plurality of components that are networked via a plurality of high speed switches, the method includes frequency-locking to a master clock component clocks of the plurality of components, and synchronizing to a master counter, driven by the master clock, component counters of the plurality of components, so that the frequency-locked component clocks drive the component counters in synchrony with the master counter.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: October 27, 2020
    Assignee: General Electric Company
    Inventors: Steven John Woloschek, Nathanael Dale Huffman, Brian Breuer, Eric Aasen
  • Patent number: 10581382
    Abstract: A circuit includes a comparator to compare an analog signal to a ramp signal to generate a pulse width modulated output signal and a driver to generate control signals for a plurality of power transistors. A pulse blanking circuit receives the pulse width modulated output signal. For each pulse of the pulse width modulated output signal, the pulse blanking circuit, responsive to a width of the pulse being greater than a threshold, passes the pulse to the driver. Responsive to the width of the pulse being less than the threshold, the pulse blanking circuit prevents the pulse from being passed to the driver.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: March 3, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Mohit Chawla
  • Patent number: 10483076
    Abstract: The present disclosure claims an apparatus, a method and a system for the calibration of a streak camera. A plurality of fiber optic cables is bundled together such that the input ends and the output ends of the fibers are grouped together. Each fiber in the bundle has a distinct and characteristic time taken for light to traverse from the input end to the output end known by the observer. This characteristic time depends on the physical and optical properties of the fibers selected. Calibration light is collected by the fiber input face and travels through the individual fibers in a characteristic time. Individual light pulses will subsequently be detected by the streak camera which converts the time profile of the incoming light pulses into a spatial profile. An observer can compare the observed spatial separation profile to an expected spatial separation profile for calibration.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: November 19, 2019
    Assignee: MCMASTER UNIVERSITY
    Inventors: Anthony Tsikouras, Qiyin Fang
  • Patent number: 9990310
    Abstract: A bus contention detection circuit includes a delay unit having an input terminal for receiving an output signal of an I/O driver, a duty cycle adjustment unit connected to the delay unit, and a comparison unit having a first input terminal for receiving the output signal, a second terminal for receiving a reference voltage, and an enable terminal for receiving an enable signal of the duty cycle adjustment unit. The enable signal has a rising edge that is delayed relative to a rising edge of the output signal and a falling edge that is aligned with a falling edge of the output signal. The comparison unit compares a voltage level of the output signal with the reference voltage when the enable signal is in a stable voltage state and determine a bus condition in response to a comparison result.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: June 5, 2018
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Zhen Ye Guo, Zhen Jiang Su, Er Yuan Feng
  • Patent number: 9712227
    Abstract: A radio frequency (“RF”) repeater system can receive, from a connected home device, an original RF signal that is unable to propagate through an object. The RF repeater system can demodulate the original RF signal to extract a data stream that includes data captured by the connected home device, can change an original data rate of the data stream to a new data rate that matches an ultrasonic frequency capable of propagating through the object thereby creating an ultrasonic data stream, can transmit, by a first surface transducer, the ultrasonic data stream through the object to a second surface transducer, can receive, by the second surface transducer, the ultrasonic data stream, can change the data stream from the new data rate back to the original data rate, can modulate the data stream to create a new RF signal, and can transmit the new RF signal towards the destination.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: July 18, 2017
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Boris Smychkovich, John Dyal
  • Patent number: 9618959
    Abstract: A circuit includes a reference circuit configured to receive a reference input voltage and provides a first output signal that is a function of the reference input voltage. The circuit includes a reference adjuster configured to receive an external input signal and generates a second output signal that is a function of the external input signal to control an offset voltage to adjust the first output signal. The first output signal and the second output signal are combined to provide a dynamic reference output signal. If the external input signal has crossed a predetermined threshold, the dynamic reference output signal tracks the external input signal while maintaining a substantially constant voltage difference relative to the external input signal.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: April 11, 2017
    Assignee: Texas Instruments Incorporated
    Inventors: Alushulla Jack Ambundo, Jim Le
  • Patent number: 9574948
    Abstract: Provided is a temperature sensing circuit and a temperature sensing method including a delay unit delaying an input clock signal to generate a feedback clock signal, and including logic gates of which delay times are variable according to temperature, a delay control unit comparing the feedback clock signal with a reference clock signal and controlling each of the logic gates of the delay unit according to the comparison result, and an input signal control unit selecting, as the input clock signal, any one of the feedback clock signal and the reference clock signal to input the input clock signal to the delay unit.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: February 21, 2017
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Seong-Ook Jung, Kyungho Ryu, Dong-Hun Jung, Young-Jae An
  • Patent number: 9479244
    Abstract: A radio frequency (“RF”) repeater system can receive, from a connected home device, an original RF signal that is unable to propagate through an object. The RF repeater system can demodulate the original RF signal to extract a data stream that includes data captured by the connected home device, can change an original data rate of the data stream to a new data rate that matches an ultrasonic frequency capable of propagating through the object thereby creating an ultrasonic data stream, can transmit, by a first surface transducer, the ultrasonic data stream through the object to a second surface transducer, can receive, by the second surface transducer, the ultrasonic data stream, can change the data stream from the new data rate back to the original data rate, can modulate the data stream to create a new RF signal, and can transmit the new RF signal towards the destination.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: October 25, 2016
    Assignee: AT&T Intellectual Propery I, L.P.
    Inventors: Boris Smychkovich, John Dyal
  • Patent number: 8975952
    Abstract: This disclosure is directed to devices, integrated circuits, systems, and methods for implementing an internal body tie bias circuit in a CMOS logic circuit. In one example, a CMOS logic circuit is formed in an integrated circuit. The CMOS logic circuit includes a PMOS transistor, an NMOS transistor; and a body tie bias circuit formed in the integrated circuit. The body tie bias circuit is coupled between a body tie connection terminal of the PMOS transistor and a body tie connection terminal of the NMOS transistor.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: March 10, 2015
    Assignee: Honeywell International Inc.
    Inventors: Paul S. Fechner, Weston Roper, James D. Seefeldt
  • Patent number: 8948299
    Abstract: A communication device includes: a converting part converting a data signal from a non-return-to-zero signal to a return-to-zero signal; a trigger flip-flop inverting an output signal every time the return-to-zero signal changes in one cycle; a first filter outputting a positive pulse and a negative pulse alternately, which indicate existence and absence of the pulse corresponding to a value of the data signal, by removing a low frequency component of an output signal of the trigger flip-flop.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: February 3, 2015
    Assignee: Fujitsu Limited
    Inventors: Yasuhiro Nakasha, Hiroki Hayashi, Takumi Itoh
  • Patent number: 8836369
    Abstract: A latch circuit switches a differential operation performed by a differential operation circuit including a first logic circuit, a second logic circuit, a third logic circuit, and a fourth logic circuit and a single end operation performed by a single end operation circuit according to a logic level of an inputted selection signal. The latch circuit performs an operation to output an input signal and an inverted input signal without change from a first output terminal and a second output terminal of the latch circuit, respectively, and an operation to set the input signal and the inverted input signal in a hold state in the differential operation and performs an operation to output the input signal from the first output terminal without change and an operation to set the input signal in a hold state in the single end operation, according to a clock signal and an inverted clock signal.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: September 16, 2014
    Assignee: Fujitsu Limited
    Inventors: Yuuki Ogata, Yoichi Koyanagi
  • Patent number: 8816737
    Abstract: An interface circuit for signal transmission includes an amplifying circuit, a de-skew circuit and a latching unit. The amplifying circuit receives an input clock signal and outputs an output clock signal after amplifying the input clock signal. The de-skew circuit receives the output clock signal and outputs a de-skew clock signal as a trigger signal after removing a skew time of the output clock signal. The latching unit includes multiple sampling circuits, respectively receives multiple inputting data signals. The sampling circuits are controlled by the trigger signal to sample the inputting data signals and output multiple outputting data signals. The voltage amplitudes of the outputting data signals are larger than the voltage amplitudes of the inputting data signals and satisfy a required voltage amplitude by a subsequent circuit.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: August 26, 2014
    Assignee: Novatek Microelectronics Corp.
    Inventor: Ying-Zu Lin
  • Publication number: 20140197871
    Abstract: A signal transmission system (10) includes a signal generator circuit (12); a signal regenerator circuit (14) coupled to the signal generator circuit by conductive lines (16, 18). The signal regenerator circuit receives input signals from the signal generator circuit on the conductive lines, and the regenerator circuit includes cascoded transistors (39, 41) and level-shifting circuits (26) coupled to the cascoded transistors. The cascoded transistors amplify the input signals to provide amplified signals. The level-shifting circuits shift a voltage level of the amplified signals to provide level-shifted signals.
    Type: Application
    Filed: January 14, 2013
    Publication date: July 17, 2014
    Inventor: PERRY H. PELLEY
  • Patent number: 8732649
    Abstract: A method and a system for determining the observability of faults in an electronic circuit include a processor that simulates, in a simulation phase, a behavior of the electronic circuit using a simulation model, and that determined, in an analysis phase, based on the simulation, and for each of a plurality of elements of the electronic circuit, time periods in which an occurrent fault could cause a deviation in analysis output signals, where the occurrent fault is determined not to cause any deviation in output signals in other time periods.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: May 20, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Robert Hartl
  • Patent number: 8724764
    Abstract: A system can include a phase detector configured to generate a phase error signal indicating a phase error of an input signal compared to an output signal and a first filter coupled to the phase detector and configured to generate a first control signal derived from the phase error signal. The system can include a pattern error detector configured to generate a pattern error signal specifying a pattern error of the input signal compared to the output signal and a second filter coupled to the pattern error detector and configured to generate a second control signal derived from the pattern error signal. The system further can include a controlled oscillator coupled to the first filter and the second filter, wherein the controlled oscillator is configured to generate the output signal responsive to the first control signal, the second control signal, and a center frequency signal.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: May 13, 2014
    Assignee: Xilinx, Inc.
    Inventors: Giovanni Guasti, Paolo Novellini
  • Patent number: 8686778
    Abstract: The described embodiments provide a configurable clock circuit. The clock circuit includes a control and enable circuit and a clock distribution circuit. During operation, when a signal on an enable input to the control and enable circuit is asserted and the control and enable circuit is configured in a clock mode, the control and enable circuit generates an enable signal on a control output to enable a signal on a clock input to propagate through the clock distribution circuit to the clock output. Alternatively, when a signal on the enable input to the control and enable circuit is asserted and the control and enable circuit is configured in a pulse mode, the control and enable circuit generates a pulsed control signal on the control output to control a length of a pulse generated from the clock input on a clock output by the clock distribution circuit.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: April 1, 2014
    Assignee: Oracle America, Inc.
    Inventors: Jason M. Hart, Robert P. Masleid
  • Publication number: 20140084963
    Abstract: A multi-stage passive capture adapter (PCA) circuit is configured to sense and recover digital signals present on a high-speed serial bus for capture and analysis in external test equipment. A first stage of the PCA circuit includes a differentiator that functions as a high impedance probe that contacts the serial bus to capture an original input signal waveform of the high-speed digital signals. The signal waveform is fed to a dual-slope comparator/driver that includes a plurality of high-speed comparators and drivers. The second stage includes a differential receiver/shaper that converts logic levels of differential receiver outputs to input signals that set and reset a signal restorer whose output signals are fed to a driver of a driver/shaper. The output of the driver is then fed to a shaper network configured to substantially match an output signal of driver/shaper to the input signal waveform sensed from the high-speed serial bus.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 27, 2014
    Applicant: MCCI Corporation
    Inventors: Terrill M. Moore, Roy F. Flacco
  • Patent number: 8669890
    Abstract: A method of estimating mismatches of a time-to-digital converter (TDC) includes: capturing phase error samples; calculating difference between the phase error samples and an expected value of the phase error samples; and adjusting correction gain of the TDC based on the calculating step. Another method of estimating mismatches of a TDC includes: capturing TDC output code samples; storing a plurality of accumulation values corresponding to different TDC values respectively, wherein each accumulation value records a number of times a TDC value is carried by the TDC output code samples; calculating a desired value based on the accumulation values; calculating difference between the accumulation values and the desired value; and adjusting correction gain of the TDC based on the calculating step.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: March 11, 2014
    Assignee: Mediatek Inc.
    Inventors: Chi-Hsueh Wang, Robert Bogdan Staszewski, Yi-Hsien Cho
  • Patent number: 8665003
    Abstract: A dead-time generating circuit includes a constant current circuit; a current generating circuit generating a capacitor-charge current; and a control circuit receiving a dead time control signal and a comparator signal. The control circuit generates a dead time generating signal based on the dead time control signal and the comparator signal, and a charge/discharge signal based on the dead time generating signal. Charging or discharging of a capacitor is controlled by the capacitor-charge current in accordance with the charge/discharge signal. A voltage of the capacitor is compared with a threshold voltage in order to generate a comparator signal when the voltage of the capacitor exceeds the threshold voltage. The control circuit generates the charge/discharge signal for a duration starting from a time when the delay time has elapsed from the rise or fall timing of the dead time control signal until the control circuit receives the comparator signal.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: March 4, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Yasuo Ueda, Masashi Tokuda, Toshihiro Tsukagoshi
  • Publication number: 20140021993
    Abstract: Apparatuses and methods for suppressing power supply noise harmonics are disclosed. A method includes selecting at least one flip-flop of a plurality of data paths of an integrated circuit based on a slack associated with the at least one flip-flop. The method also includes providing at least one delay circuit at an output of at least one flip-flop. The at least one delay circuit is configured to delay the output of the at least one flip-flop by a threshold clock cycle for managing current at a positive edge of a clock input and current at a negative edge of the clock input, thereby suppressing power supply noise harmonics of the integrated circuit.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: SUMANTH REDDY PODDUTUR, Prakash Narayanan, Vivek Singhal
  • Patent number: 8575983
    Abstract: A waveform generator has a waveform generation circuit storing waveform data for an analog waveform signals having dead time periods without the need for storing data on the dead time. A sequencer having a sequence memory stores sequence data that controls the sequencing of one or more signal components and associated dead times of the analog waveform signal. The timing of the dead time is controlled by a sampling clock and a wait time counter. The generation of the signal components is controlled by the sampling clock controlling the generation of addresses for a waveform memory storing digital data of the sampling components. The waveform memory digital data is converted to an analog waveform signal.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 5, 2013
    Assignee: Tektronix, Inc.
    Inventor: Ryoichi Sakai
  • Patent number: 8432188
    Abstract: A latch circuit includes a first tri-state inverter configured to invert an input voltage in response to a pulse and to output the inverted voltage to a first node, a second tri-state inverter connected between the first node and a second node and to invert a voltage of the second node in response to an inverted pulse being an inverted version of the pulse, and a variable inversion unit connected between the first node and the second node. The variable inversion unit adjusts a logical threshold value according to a logical value corresponding to a voltage of the first node and inverts a voltage of the first node based upon the adjusted logical threshold value, the logical threshold value indicating a voltage for discriminating the logical value.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: April 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gunok Jung, Minsu Kim
  • Patent number: 8355431
    Abstract: A Decision Feedback Equalizer (DFE) capable of preventing incremental increases of a jitter of a recovered clock and reduction of a voltage margin of decided data due to delay of feedback data. The DFE includes a combiner for combining received data with feedback data and outputting the combined data as equalization data, a decision circuit for deciding recovery data by receiving the equalization data, a feedback loop for supplying the recovery data to the combiner as feedback data and a clock recovery circuit for removing a delay data component from the equalization data through the feedback loop, recovering a clock with respect to the other equalization data except the delay data component and supplying the recovered clock for decision operation of the decision circuit.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: January 15, 2013
    Assignee: Hynix Semiconductor, Inc.
    Inventor: Ki-Hyuk Lee
  • Patent number: 8347123
    Abstract: Exemplary techniques for turning off the clock signal to flip flops are described, which may reduce power consumption by electronic devices. In an implementation, a clock-gating logic turns off the clock signal to a flip flop when a data input of the flip flop remains untoggled. The reduction in power consumption is envisioned to also reduce heat generation.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: January 1, 2013
    Assignee: LSI Corporation
    Inventor: Richard Thomas Schultz
  • Patent number: 8281176
    Abstract: The disclosed embodiments relate to buffer circuits and methods. One embodiment is a buffer circuit that receives a data signal, a first clock signal and a second clock signal, the buffer circuit comprising circuitry to latch the data signal with the first clock signal to produce a first latched signal, circuitry to latch the data signal with the second clock signal to produce a second latched signal, and circuitry that selects the first latched signal or the second latched signal depending on a transition of the data signal in a previous clock cycle.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: October 2, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Derek A. Sherlock
  • Patent number: 8131242
    Abstract: A system and method for implementing an IQ generator includes a master latch that generates an I signal in response to a clock input signal, and a slave latch that generates a Q signal in response to an inverted clock input signal. A master selector is configured to provide a communication path from the master latch to the slave latch, and a slave selector is configured to provide a feedback path from the slave latch to the master latch. The foregoing I and Q signals are output directly from the respective master and slave latches without any intervening electronic circuitry.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: March 6, 2012
    Assignees: Sony Corporation, Sony Electronics Inc.
    Inventors: Derek Mellor, Bernard J. Griffiths, Frank E. Hayden
  • Patent number: 8122395
    Abstract: A method and structure for an apparatus for maintaining signal integrity between integrated circuits residing on a printed circuit board. The apparatus has adjustable delay circuitry within the circuits and the adjustable delay circuitry adjusts the timing of signals processed within the circuit. A phase monitor connects to the circuits. The phase monitor detects phase differences between signals output by the circuits. A controller connected to the delay circuitry, the phase monitor, and the controller adjust the delay circuitry to compensate for the phase differences.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventor: Kai Di Feng
  • Patent number: 8082413
    Abstract: A memory access mode detection circuit and method for detecting and initiating memory access modes for a memory device. The memory access mode detection circuit receives the memory address signals, the control signals, and the clock signal and generates a first mode detection signal in response to receipt of the memory address signals or a first combination of control signals. An first mode initiation signal is generated a time delay subsequent to the detection signal to initiate the first mode memory access operation. In response to receipt of a second combination of control signals and an active clock signal, the memory access mode detection circuit further generates a second mode detection signal to initiate a second mode memory access operation and to suppress generation of the first mode detection signal, thereby canceling the first mode memory access operation.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: December 20, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Simon J. Lovett
  • Patent number: 7973584
    Abstract: Timing setting data include an arbitrary combination of a set timing signal indicating a positive edge timing and a reset timing signal indicating a negative edge timing. A sort unit sorts n pieces of the timing setting data in accordance with timing orders indicated by each of the timing setting data. With reference to the sorted timing setting data an open processor detects continuation of the set timing signals or continuation of the reset timing signals, and invalidates one of the continuous set timing signals or one of the continuous reset timing signals. An edge assigning unit sequentially assigns the set/reset timing signals remaining without being invalidated to, among the m variable delay circuits for setting/resetting, the variable delay circuits for setting/resetting in the ascending order of the frequencies of use thereof by then.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: July 5, 2011
    Assignee: Advantest Corporation
    Inventors: Nobuei Washizu, Hiroaki Tateno
  • Publication number: 20110140749
    Abstract: An input data recovery circuit is applied for asynchronous serial data transmission such as USB, SATA, or PCI-E. The input data recovery circuit includes two-tier switches controlled by the switching state of input data signal and pulse signals. The input data recovery circuit further includes pulse generator for producing pulse signals to trigger the input data signal and correctly recover the input data signal. The input data recovery circuit can be applied to equipment with high speed protocol because accumulated error between data sending end and data receiving end can be prevented.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 16, 2011
    Inventor: Chin-Cheng HUANG
  • Patent number: 7936199
    Abstract: A phase recombination circuit includes a first phase input and a first one-shot pulse generator adapted to receive the first phase input and produce a first signal to pull a signal to a first state. The phase recombination circuit also includes a second phase input in phase relationship with the first phase input, and a second one-shot pulse generator adapted to receive the second phase input and produce a second signal to pull a signal to a second state.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: May 3, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Michael V. Ho, Tyler J. Gomm, Scott E. Smith
  • Patent number: 7932751
    Abstract: A circuit is described that detects high and low frequencies and additional clock frequencies and outputs a signal that indicates a high, a low frequency or an additional mode. When in the low frequency low frequency mode signals are regenerated free of any high frequency signals from appearing on the filtered low frequency clock line. The rising and falling edges of the input clock are low pass filtered separately and then combined to generate a low frequency clock or the additional input clock and that retains the input clock pulse width and duty cycle.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: April 26, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventor: James B. Boomer
  • Patent number: 7920002
    Abstract: A high-level period of each of n first pulse signals partially or wholly overlaps a period during which all of n second pulse signals are at the low level. A high-level period of each of the n second pulse signals partially or wholly overlaps a period during which all of the n first pulse signals are at the low level. Each of n first drive transistors includes a source connected to a ground node, a drain connected to a first node, and a gate receiving a corresponding one of the first pulse signals. Each of n second drive transistors includes a source connected to the ground node, a drain connected to a second node, and a gate receiving a corresponding one of the second pulse signals. A current mirror circuit allows a current corresponding to a current flowing through the second node to flow through the first node.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: April 5, 2011
    Assignee: Panasonic Corporation
    Inventors: Shiro Sakiyama, Yusuke Tokunaga, Shiro Dosho, Akinori Matsumoto, Takashi Morie, Kazuaki Sogawa, Yukihiro Sasagawa, Masaya Sumita
  • Patent number: 7915936
    Abstract: A method of dealing with anomalies in an output signal is provided. The method includes monitoring transitions in the output signal. When transitions do not occur at expected times, detecting an anomalous signal. Determining the type of anomalous signal based at least in part on the time period of the anomalous signal and conditioning the output signal based on the type of anomalous signal detected.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: March 29, 2011
    Assignee: Honeywell International Inc.
    Inventors: Douglas A. Chamberlin, Anthony N. DeFazio
  • Patent number: 7890789
    Abstract: A disclosed embodiment is a circuit for producing a core clock from a system clock so that a core clock cycle is independent of a duty cycle of the system clock. The circuit comprises a system clock receiving sub-circuit for generating a first rising edge of the core clock, a core clock falling edge generation sub-circuit responsive to every rising edge of the core clock, and a self-triggering sub-circuit to trigger a second rising edge of the core clock so as to cause the core clock cycle to be independent of the system clock duty cycle. In one embodiment, the first core clock rising edge may be triggered in response to an initial system clock rising edge. In another embodiment, the first core clock rising edge may be triggered in response to an initial system clock falling edge. The core clock frequency may be twice the frequency of the system clock.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: February 15, 2011
    Assignee: Broadcom Corporation
    Inventor: Gregg Hoyer
  • Patent number: 7876141
    Abstract: A generator of synchronization pulses intended for at least two registers, including a first input intended to receive a clock signal and at least one output intended to deliver the pulses on the clock input of said registers, and at least one second input intended to receive a signal for forcing the output, independently from the clock signal, to make said registers transparent.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: January 25, 2011
    Assignees: STMicroelectronics Inc., STMicroelectronics S.A.
    Inventors: Benoît Lasbouygues, Sylvain Clerc, Alain Artieri, Thomas Zounes, Françoise Jacquet
  • Patent number: 7872516
    Abstract: A pulse generator circuit. The pulse generator circuit includes a precharge circuit coupled to receive a clock signal alternating between a first logic level and a second logic level, a storage circuit having a storage node, wherein the precharge circuit is configured to precharge the storage node when the clock signal is at the first logic level, a logic circuit having an output, a first input node coupled to receive the clock signal, and a second input node coupled to the storage node and configured to produce a pulse at the second logic level responsive to the clock signal transitioning to the second logic level, and a discharge circuit configured to discharge the storage node at a predetermined delay time subsequent to the clock signal transitioning to the second logic level, wherein the output of the logic circuit transitions to the first logic level responsive to discharging the storage node.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: January 18, 2011
    Assignee: Oracle America, Inc.
    Inventors: Robert P Masleid, David Greenhill
  • Patent number: 7863952
    Abstract: A technique to mitigate noise spikes in an electronic circuit device such as an integrated circuit. The clock frequency of a clock signal used by the electronic circuit is controlled such that instantaneously large changes to the clock frequency are avoided by use of a frequency filter that is capable of generating frequency ramps having a linear slope which is used as a feedback signal in a digital phase-locked loop clock circuit in lieu of a discrete, stair-stepped feedback control signal.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Daniel Joseph Friedman, Alexander V. Rylyakov, Jose A. Tierno
  • Patent number: 7847616
    Abstract: A balanced input inverter circuit includes a first P-type MOS transistor including a gate terminal connected to an input, a source terminal connected to a first power source potential, and a drain terminal connected to an output, a first N-type MOS transistor including a gate terminal connected to the input, a drain terminal connected to the output, and a source terminal connected to a second power source potential, a first inverter circuit including an input terminal connected to an inverted input, and an output terminal connected to a back gate terminal of the first N-type MOS transistor, a first diode connected between the first power source potential and a first power source terminal of the first inverter circuit, a second inverter circuit including an input terminal connected to the inverted input, and an output terminal connected to a back gate terminal of the first P-type MOS transistor, and a second diode connected between the second power source potential and a second power source terminal of the sec
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 7, 2010
    Assignee: Fujitsu Limited
    Inventor: Yasuhiro Hashimoto
  • Patent number: 7822113
    Abstract: In an integrated decision feedback equalizer and clock and data recovery circuit one or more flip-flops and/or latches may be shared. One or more flip-flops and/or latches may be used in retiming operations in a decision feedback equalizer and in phase detection operations in a clock recovery circuit. Outputs of the flip-flops and/or latches may be used to generate feedback signals for the decision feedback equalizer. The output of a flip-flop and/or latches may be used to generate signals that drive a charge pump in the clock recovery circuit.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: October 26, 2010
    Assignee: Broadcom Corporation
    Inventors: Davide Tonietto, Afshin Momtaz
  • Publication number: 20100176855
    Abstract: An apparatus for producing a separate pulse width modulation signal for each of a plurality of integrated devices, comprising circuitry for each integrated device having structures that :receive and convert a digital signal for each integrated device to an analog voltage level; sample the analog voltage level and storing such analog voltage level; and compare the stored analog voltage level to a common dynamic reference signal and producing a variable width pulse having a first level when the reference signal is above the analog voltage level and a second level when the reference signal is below the analog voltage level, wherein the common dynamic reference signal is the same signal for each integrated device
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Inventors: James D. Huffman, John A. Agostinelli
  • Patent number: 7667507
    Abstract: According to some embodiments, a method and system are provided to receive a clock input at a first clock adjustment tuner, receive the clock input at a second clock adjustment tuner, output a tuned inverted rising clock signal via the first clock adjustment tuner, output a tuned inverted falling clock signal via the second clock adjustment tuner, receive the inverted rising clock signal and the inverted falling clock signal at a clock synchronizer, output a synchronized tuned clock signal via the clock synchronizer, receive the synchronized tuned clock signal at a third clock adjustment tuner, and output a tuned clock signal. The first clock adjustment tuner and the second clock adjustment tuner provide coarser adjustments than the third clock adjustment tuner.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: February 23, 2010
    Assignee: Intel Corporation
    Inventor: Mark L. Neidengard
  • Patent number: 7656240
    Abstract: Systems and methods which provide an oscillator circuit outputting non-overlapping trigger signals throughout a range of operating voltages using a reset-set (RS) flip-flop type circuit configuration are shown. Embodiments utilize output driver buffers internal to the RS flip-flop circuit configuration to provide oscillator feedback delay. Feedback control circuitry may be implemented to ensure that the delay associated with any one driver buffer does not solely provide the feedback delay. Embodiments further implement input delay circuitry adapted to maintain a relatively constant reset and set input feedback delay ratio throughout a large range of operating conditions.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: February 2, 2010
    Assignee: Hong Kong Applied Science and Technology Research Institute Co., Ltd.
    Inventors: Yat To Wong, David Chik Wai Ng, Kam Chuen Wan, David Kwok Kuen Kwong
  • Patent number: 7640413
    Abstract: A memory access mode detection circuit and method for detecting and initiating memory access modes for a memory device The memory access mode detection circuit receives the memory address signals, the control signals, and the clock signal and generates a first mode detection signal in response to receipt of the memory address signals or a first combination of control signals. An first mode initiation signal is generated a time delay subsequent to the detection signal to initiate the first mode memory access operation. In response to receipt of a second combination of control signals and an active clock signal, the memory access mode detection circuit further generates a second mode detection signal to initiate a second mode memory access operation and to suppress generation of the first mode detection signal, thereby canceling the first mode memory access operation.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: December 29, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Simon J. Lovett
  • Patent number: 7631209
    Abstract: Exemplary techniques for turning off the clock signal to flip flops are described, which may reduce power consumption by electronic devices. In an implementation, a clock-gating logic turns off the clock signal to a flip flop when a data input of the flip flop remains untoggled. The reduction in power consumption is envisioned to also reduce heat generation.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: December 8, 2009
    Assignee: LSI Corporation
    Inventor: Richard Thomas Schultz
  • Patent number: 7594150
    Abstract: A method and apparatus for a structure of a flip-flop that is tolerant to the noise pulses occurring due to the presence of crosstalk faults by sampling the input data multiple times before and after the active clock edge. The final stored value at the flip-flop is determined by the resolution of a counter circuit residing in the flip-flop, which is activated at the change of the sampled input data. This counter based resolution mechanism allows for the detection and filtering of the noise pulse induced at the input of the flip-flop due to a crosstalk fault.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: September 22, 2009
    Assignees: Alcatel-Lucent USA Inc., Rutgers, The State University of New Jersey
    Inventors: Tapan Jyoti Chakraborty, Aditya Jagirdar, Roystein Oliveira
  • Patent number: 7542533
    Abstract: Embodiments of the invention include an apparatus and method for continuously calibrating the frequency of a clock and data recovery (CDR) circuit. The apparatus includes a delay arrangement that generates a gating signal, and a gated voltage-controlled oscillator that is enabled by the gating signal. The gated voltage-controlled oscillator generates a recovered clock signal that is based on the data signal input to the CDR circuit. The apparatus also includes a frequency control loop that continuously calibrates the gated voltage-controlled oscillator in such a way that the frequency of the clock signal generated by the gated voltage-controlled oscillator continues to be one half of the period of the data bits in the input data signal and the clock signal remains synchronized to the center of the data state transitions of the input data signal. Alternatively, a secondary frequency control loop adjusts the amount of delay in the frequency control loop.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: June 2, 2009
    Assignee: Agere Systems Inc.
    Inventors: Hrvoje Jasa, Gary D. Polhemus, Kenneth P. Snowdon