Hum Or Noise Or Distortion Bucking Introduced Into Signal Channel Patents (Class 330/149)
  • Patent number: 11070176
    Abstract: Some embodiments relate to a device, comprising an amplifier and a linearizer, the linearizer comprising a first transistor, the first transistor comprising a first terminal coupled to an input of the amplifier, a second terminal configured to be coupled to a DC supply voltage, and a control terminal configured to control a current flowing between the first and second terminals and configured to receive a DC bias voltage different from a voltage of the first terminal. Some embodiments relate to a device, comprising an amplifier, comprising an input, an output, and a first set of one or more transistors coupled between the input and the output, and a linearizer, comprising a second set of one or more transistors coupled between a DC supply voltage and the input of the amplifier, wherein the first set of transistors and the second set of transistors have a same topology.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: July 20, 2021
    Assignee: MEDIATEK Singapore Pte. Ltd.
    Inventors: Zhiming Deng, Osama Shanaa
  • Patent number: 11057081
    Abstract: A method for predistortion comprising receiving a plurality of input signals forming a multiple-input signal in a multiple-input multiple-output system, generating a pre-distorted multiple-input signal from the received multiple-input signal, generating a multiple-output signal by feeding the pre-distorted multiple-input signal into a multiple-input and multiple-output transmitter, estimating impairments generated by the multiple-input and multiple-output transmitter, the impairments comprising nonlinear crosstalk between distinct ones of the plurality of input signals; and adjusting the pre-distorted multiple-input signal to compensate for the estimated impairments.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: July 6, 2021
    Inventor: Fadhel M Ghannouchi
  • Patent number: 11038465
    Abstract: An amplifier circuit is provided that includes an amplifier having a signal input and a signal output, the amplifier being configured to produce an amplified signal at the signal output, a feedback path coupled between the signal output and the signal input, and an amplifier linearity boost circuit positioned in the feedback path. The amplifier linearity boost circuit includes a non-linear current generator and a phase-shifting circuit, the non-linear current generator being configured to provide a non-linear current based on the amplified signal, and the phase-shifting circuit being configured to adjust a phase of the non-linear current to reduce an intermodulation distortion of the amplified signal.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: June 15, 2021
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee
  • Patent number: 11022787
    Abstract: A method for generating a control signal for an acousto-optical element includes generating a raw signal using at least one correction term by an IQ modulation from a target I component and a target Q component, and amplifying the raw signal to become the control signal. The target I component and/or the target Q component are corrected using the at least one correction term. The at least one correction term is obtained from an analysis of the control signal.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: June 1, 2021
    Assignee: LEICA MICROSYSTEMS CMS GMBH
    Inventors: Patric Mrawek, Thorsten Koester
  • Patent number: 11016170
    Abstract: A device and techniques for generating and filtering a signal for transmission, such as the signal used to interrogate distance measuring equipment (DME), which may be tuned to a channel or frequency selected from a wide bandwidth. A system according to the techniques of this disclosure may generate a narrow band intermediate frequency (IF) signal with desired pulse characteristics, mix the IF signal with a local oscillator (LO) to upconvert to the desired radio frequency (RF) signal, then filter the upconverted RF signal through one of several narrow band filters in a filter bank to remove any undesired signal images. The system may select the filter from the filter bank depending on the transmitted RF frequency. In this manner the system of this disclosure may generate signals to span a wide RF bandwidth by using a narrow bandwidth IF signal generator.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: May 25, 2021
    Assignee: Honeywell International Inc.
    Inventors: David Larsen, Thomas D. Moran, Mark C. Virtue
  • Patent number: 10992270
    Abstract: A power amplifier apparatus supporting reverse intermodulation product (rIMD) cancellation is provided. The power amplifier apparatus includes an amplifier circuit configured to amplify and output a radio frequency (RF) signal for transmission via an antenna port. The antenna port may receive a reverse interference signal, which may interfere with the RF signal to create a rIMD(s) that can fall within an RF receive band(s). A reverse coupling circuit is provided in the power amplifier apparatus to generate an interference cancellation signal based on the reverse interference signal. The amplifier circuit is configured to amplify the interference cancellation signal and the RF signal to create an intermodulation product(s) to suppress the rIMD(s) to a determined threshold. By suppressing the rIMD(s) in the power amplifier apparatus, it is possible to support concurrent transmissions and receptions in a number of RF spectrums while in compliance with stringent regulatory spurious emissions (SEM) requirements.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: April 27, 2021
    Assignee: Qorvo US, Inc.
    Inventors: Marcus Granger-Jones, Dirk Robert Walter Leipold, Nadim Khlat
  • Patent number: 10965303
    Abstract: Techniques for improving a power supply accuracy of a precision data converter system, such as analog-to-digital converter circuits (ADCs) and digital-to-analog converter circuits (DACs). Improving the power supply accuracy can enable a reference voltage to be as large as possible, thereby increasing the signal-to-noise-ratio (SNR). The techniques can also simplify power supply sequencing requirements for the data converter system.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: March 30, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Richard James Reay, Richard T Owen, Eric C. Welde
  • Patent number: 10965256
    Abstract: Circuitry includes an amplifier circuit having a first transistor, an inductor, and a second transistor, and a distortion compensation circuit having a third transistor, a forth transistor, and a first capacitor. The first transistor is applied input signal. The inductor is connected to a source of the first transistor and grounded on another side. The second transistor has a source connected to a drain of the first transistor, a grounded gate and a drain connected to a power supply, and outputs an amplified signal. The third transistor has a drain and a gate connected to the drain, and is connected to the power supply on the drain. The fourth transistor has a drain and a gate connected to a source of the third transistor, and is grounded on a source. The first capacitor connects nodes between the drain of the first transistor and the source of the third transistor.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: March 30, 2021
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Toshiki Seshita, Yasuhiko Kuriyama
  • Patent number: 10958296
    Abstract: A concurrent multi-band linearized transmitter (CMLT) has a concurrent d a multi-band predistortion block (CDMPB) and a concurrent multi-band transmitter (CMT) connected to the CDMPB, The CDMPB can have a plurality of digital baseband signal predistorter blocks (DBSPBs), an analyzing and modeling (A&M) stage, and a signal observation feedback loop. Each DBSPB can have a plurality of inputs, each corresponding to a single frequency band of the multi-band input signal, and its output corresponding to a single frequency band; each output connect corresponding to an input of the CMLT. The A&M stage can have a plurality of outputs connected to and updating the parameters of the DBSPBs, and a plurality of inputs connected to either both outputs of the signal observation loop or the output of the subsampling loop and to outputs of the DBSPBs. The A&M stage can perform signals' time alignment, reconstruction of signals and compute parameters of DBSPBs.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: March 23, 2021
    Inventor: Fadhel M. Ghannouchi
  • Patent number: 10944365
    Abstract: An envelope tracking (ET) amplifier circuit is provided. The ET amplifier circuit includes an amplifier circuit configured to amplify a radio frequency (RF) signal based on an ET modulated voltage. The ET modulated voltage corresponds to a time-variant voltage envelope, which can be misaligned from a time-variant signal envelope of the RF signal due to inherent temporal delay in the ET amplifier circuit. As a result, the amplifier circuit may suffer degraded linearity performance. In this regard, a voltage processing circuit is provided in the ET amplifier circuit and configured to operate in a low-bandwidth mode and a high-bandwidth mode. In the high-bandwidth mode, the voltage processing circuit is configured to cause the ET modulated voltage to be modified to help improve delay tolerance of the ET amplifier circuit. As a result, it may be possible to reduce linearity degradation of the amplifier circuit to a predetermined threshold.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: March 9, 2021
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, James M. Retz
  • Patent number: 10931241
    Abstract: An apparatus includes at least one processing device configured to obtain samples of an input signal to be amplified and, in real-time, pre-distort at least some of the samples using pre-distortion values from at least one lookup table. The pre-distorted samples are to be converted into an analog signal that is amplified by at least one power amplifier. The pre-distortion values at least partially compensate for a non-linear operation of the at least one power amplifier. The at least one processing device is also configured to compare an output signal generated by the at least one power amplifier to an expected signal to identify errors between the output and expected signals. The at least one processing device is further configured to update one or more pre-distortion values in the at least one lookup table based on the identified errors.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: February 23, 2021
    Assignee: Raytheon Company
    Inventors: Thomas F. Brukiewa, Jonathan K. Lau, Brandon H. Daugherty, Daniel B. Kilfoyle
  • Patent number: 10931238
    Abstract: Disclosed are systems, devices, modules, methods, and other implementations, including a method for digital predistortion that includes receiving, by a digital predistorter, a first signal that depends on amplitude variations based on an input signal, u, with the variations of the first signal corresponding to time variations in non-linear characteristics of a transmit chain that includes a power amplifier. The method further includes receiving, by the digital predistorter, the input signal u, generating, by the digital predistorter, based at least in part on signals comprising the input signal u and the first signal, a digitally predistorted signal v to mitigate the non-linear behavior of the transmit chain, and providing the predistorted signal v to the transmit chain.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: February 23, 2021
    Assignee: NanoSemi, Inc.
    Inventors: Alexandre Megretski, Zohaib Mahmood, Yan Li, Kevin Chuang, Helen H. Kim, Yu-Chen Wu
  • Patent number: 10911029
    Abstract: The present invention is a computationally-efficient compensator for removing nonlinear distortion. The compensator operates in a digital post-compensation configuration for linearization of devices or systems such as analog-to-digital converters and RF receiver electronics. The compensator also operates in a digital pre-compensation configuration for linearization of devices or systems such as digital-to-analog converters, RF power amplifiers, and RF transmitter electronics. The multi-dimensional compensator effectively removes linear and nonlinear distortion in these systems by accurately modeling the state of the device by tracking multiple functions of the input, including but not limited to present signal value, delay function, derivative function (including higher order derivatives), integral function (including higher order integrals), signal statistics (mean, median, standard deviation, variance), covariance function, power calculation function (RMS or peak), or polynomial functions.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: February 2, 2021
    Assignee: Innovation Digital, LLC
    Inventors: Scott R. Velazquez, Yujia Wang
  • Patent number: 10879851
    Abstract: An exemplary embodiment of a low noise amplifier has integral noise cancellation to provide a low noise figure and operation over a frequency range of 40 GHz-60 GHz. An amplifier amplifies an input signal as well as noise present with the amplified signal and amplified noise being out of phase and in phase, respectively, with the corresponding inputs. An auxiliary amplifier amplifies the same inputs and generates an amplified signal and amplified noise both being out of phase relative to the inputs. A summation circuit combines all of these amplified signals with the noise being cancelled since the auxiliary amplifier provides the same amount of amplification as the amplifier and the amplified noise signals being summed are 180 degrees out of phase to each other. Preferably, the amplifier, auxiliary amplifier and the summation device utilize CMOS transistors disposed on an SOI substrate with impedance stabilization over the frequency range.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: December 29, 2020
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Manouchehr Ghanevati, Timothy R. LaRocca, John M. Trippett
  • Patent number: 10840859
    Abstract: An amplification apparatus includes: at least one voltage converter for converting a voltage of supplied power which is supplied from an external power supply source to the amplification apparatus, to a lower voltage; and at least one amplifier unit operable by supplied power which has the lower voltage as converted by the at least one voltage converter, for amplifying a radio frequency signal.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: November 17, 2020
    Assignee: TOKYO KEIKI INC.
    Inventors: Takayuki Ushikubo, Hiroyuki Tachikawa, Shunichi Hirano
  • Patent number: 10826437
    Abstract: Systems and methods for communicating electromagnetic signals and/or power and, more particularly for example, to power combiners and similar systems and methods for communicating electromagnetic signals and/or power generated by amplifiers to loads, are described herein. In at least example embodiment, a power amplifier system includes first and second amplifier circuits and a power combiner circuit coupled to each of the first and second amplifier circuits and having a first microstrip transmission line component, a slotline formation, and an additional coupling component that is capable of being at least indirectly coupled to a load, where the first microstrip transmission line component and additional coupling component are electromagnetically coupled by way of the slotline formation.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 3, 2020
    Assignee: NXP USA, Inc.
    Inventors: Oleksandr Nikolayenkov, Geoffrey Tucker
  • Patent number: 10826444
    Abstract: Disclosed is a method for producing a stage for amplifying the power of a variable envelope signal including at least one amplifier. For each amplifier, a form of ideal variation in average power POUTL is selected. For each value of each setting parameter and for each average input power value, a value of an optimisation criterion is calculated on the basis of the mathematical expectation of at least one optimisation parameter. An optimum value of each setting parameter is determined and the amplification stage is produced with a number of amplifiers in parallel determined on the basis of an average output power value and with, for each amplifier, matching circuits providing the optimum values of the setting parameters. The invention also relates to an amplification stage produced in this manner.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 3, 2020
    Assignee: CENTRE NATIONAL D'√ČTUDES SPATIALES C N E S
    Inventors: Geoffroy Soubercaze-Pun, Luc Lapierre
  • Patent number: 10826440
    Abstract: Apparatus and method for extended operational bandwidth amplifiers with fractional instantaneous bandwidth feed forward correction. In one embodiment, the method includes amplifying a radio frequency (RF) input signal to provide an amplified RF signal and introducing a first delay in the amplified RF signal. The method also includes receiving an error signal of the amplified RF signal and centering a correction bandwidth with respect to the amplified RF signal. The method also includes amplifying the error signal and combining the amplified RF signal and the amplified error signal to reduce an error in the amplified RF signal. The first delay is smaller than a second delay caused by the error path.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: November 3, 2020
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventor: Rodney W. Hagen
  • Patent number: 10819294
    Abstract: A circuit includes first and second gain stages and an output transistor. The second gain stage includes a transconductance amplifier and a variable impedance circuit coupled to an output of the transconductance amplifier. The variable impedance circuit is configured to implement a first impedance level at frequencies below a first frequency threshold and to implement a second impedance level at frequencies above a second frequency level. The first impedance level is larger than the second impedance level. The output transistor has a control input coupled to the variable impedance circuit. At frequencies above the second frequency threshold, the second impedance level is configured to be inversely related to current through the output transistor.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: October 27, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sovan Ghosh, Amal Kumar Kundu, Laxmi Vivek Tripurari, Anand Subramanian
  • Patent number: 10812166
    Abstract: An approach to predistortion of a first set of signals for an antenna array allows beam-steering without corrupting spectrum away from the main beam and where other users may be located. In some implementations, the predistorter uses fewer than one predistorter per signal (i.e., per power amplifier or per antenna), and/or has the computational complexity of such fewer predistorters, to generate predistortions of the first set of signals for amplification and transmission via the antenna array.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: October 20, 2020
    Assignee: NanoSemi, Inc.
    Inventors: Helen H. Kim, Alexandre Megretski, Yan Li, Kevin Chuang, Zohaib Mahmood, Yanyu Huang
  • Patent number: 10802563
    Abstract: A server power supply device and method are provided. The server power supply device includes: a filter capacitor, a voltage collecting unit and a processing unit. One terminal of the filter capacitor is connected to a mains electricity input terminal, the other terminal of the filter capacitor is grounded, and a capacitance of the filter capacitor is greater than a preset standard capacitance. The voltage collecting unit is connected to the mains electricity input terminal and the processing unit, and the voltage collecting unit is configured to collect a first voltage inputted from the mains electricity input terminal. The processing unit is configured to process a current inputted from the mains electricity input terminal based on the first voltage collected by the voltage collecting unit, to generate a first current and supply power to a server with the first current.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: October 13, 2020
    Assignee: ZHENGZHOU YUNHAI INFORMATION TECHNOLOGY CO., LTD.
    Inventor: Junjie Gu
  • Patent number: 10797750
    Abstract: An example apparatus for supporting digital pre-distortion (DPD) and full duplex (FDX) in cable network environments is provided and includes a first path for signals being transmitted out of the apparatus, a second path for signals being received into the apparatus, a DPD actuator located on the first path, an amplifier located on the first path, an echo cancellation (EC) actuator located on the second path, and a data interface including a plurality of channels connecting the apparatus to a signal processor. DPD coefficients, EC coefficients and delay parameters are provided over the data interface from the signal processor to the apparatus. The DPD actuator predistorts signals on the first path using the DPD coefficients compensating for distortions introduced by the amplifier, and the EC actuator reduces interferences in signals on the second path using the EC coefficients and the delay parameters, facilitating FDX communication by the apparatus.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: October 6, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Hang Jin, John T. Chapman
  • Patent number: 10764798
    Abstract: Discovery of a neighbor radio access system by a user mobile communications device serviced in a radio access network (RAN) for reporting to a serving system in the RAN. User mobile communications device serviced by a RAN is configured to scan one or more frequency ranges (e.g., bands) to discover other neighbor radio access systems. This is opposed to, for example, the user mobile communications device only searching for transmitted communications signals at specific center frequency (e.g., an EARFCN). There may be other radio access systems that operate neighbor cells and in other frequency bands in proximity the RAN serving the user mobile communications device. Discovered neighboring radio access systems can be reported by the user mobile communications device to its serving RAN in a measurement report, which can then be used by the serving RAN for other functionalities, such as trigger handovers of user mobile communications device for example.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: September 1, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Kalle Ahmavaara, Hithesh Nama
  • Patent number: 10739388
    Abstract: A harmonic distortion separation method, nonlinear character determination method, apparatus and system where a phase difference between an inherent harmonic and a generated harmonic is determined by using multiple groups of input power, output power and fundamental magnitudes of a memoryless nonlinear transfer function of a nonlinear model of a system to be measured, and power of a harmonic generated by the system to be measured is separated by using the phase difference. In an embodiment, the phase difference between the inherent harmonic and the generated harmonic is first determined by using an assumption that a model coefficient is a constant according to the set nonlinear model, then the harmonic separation is performed by using the phase difference, and the power of the harmonic generated by the system to be measured is calculated.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: August 11, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Hao Chen, Zhenning Tao
  • Patent number: 10742172
    Abstract: A power amplifier includes a power splitter that splits a first signal into a second signal and a third signal, a first amplifier that amplifies the second signal within an area where the first signal has a power level greater than or equal to a first level and that outputs a fourth signal, a second amplifier that amplifies the third signal within an area where the first signal has a power level greater than or equal to a second level higher than the first level and that outputs a fifth signal, an output unit that outputs an amplified signal of the first signal, a first and a second LC parallel resonant circuit, and a choke inductor having an end to which a power supply voltage is supplied and another end connected to a node of the first and second LC parallel resonant circuits.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: August 11, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Kiichiro Takenaka
  • Patent number: 10742182
    Abstract: A receiving circuit may include an amplifier. The amplifier may include a first amplification circuit and a second amplification circuit. The first amplification circuit may be configured to differentially amplify a first input signal and a reference signal and configured to generate output signals. The second amplification circuit may be configured to differentially amplify a second input signal and the reference signal and configured to generate the output signals.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: August 11, 2020
    Assignee: SK hynix Inc.
    Inventors: Sun Ki Cho, Dae Han Kwon
  • Patent number: 10720891
    Abstract: The present invention addresses method, apparatus and computer program product for stabilization of the direct learning algorithm for wideband signals. Thereby, a signal to be amplified is input to a pre-distorter provided for compensating for non-linearity of the power amplifier, and the pre-distorted output signal from the pre-distorter is forwarded to the power amplifier. Parameters of the pre-distorter are adapted based on an error between the linearized signal output from the power amplifier and the signal to be amplified using an adaptive direct learning algorithm, and the linear system of equations formed by the direct learning algorithm are solved using a conjugate gradient algorithm, wherein, once per direct learning algorithm adaptation, at least one of the initial residual and the initial direction of the conjugate gradient algorithm are set based on the result of the previous adaptation.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: July 21, 2020
    Assignee: Nokia Solutions And Networks GMBH And Co. KG
    Inventors: Christian Reichl, Shavantha Kularatna, Rene Roeschke, Bjoern Jelonnek
  • Patent number: 10715191
    Abstract: A method for characterizing nonlinear distortion of a transmitter, an associated transmitter and a characterization circuit thereof are provided. The method includes: utilizing a transmitting chain circuit within the transmitter to generate an output signal according to a test signal; utilizing a loop back circuit within the transmitter to generate a loop back signal according to the output signal; calculating a plurality of distorted indices respectively corresponding to a plurality of test samples of the test signal according to a plurality of loop back samples of the loop back signal, wherein the plurality of test samples correspond to the plurality of loop back samples, respectively; dividing the plurality of distortion indices into multiple groups according to power of the plurality of test samples; calculating an average value of distortion indices within each group of the multiple groups; and characterizing the nonlinear distortion of the transmitter according to the average value.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: July 14, 2020
    Assignee: Realtek Semiconductor Corp.
    Inventors: Yuan-Shuo Chang, Shin-Lin Cheng
  • Patent number: 10700647
    Abstract: A source follower with an input node and an output node includes a first transistor, a second transistor, and a DC (Direct Current) tracking circuit. The first transistor has a control terminal, a first terminal coupled to a first node, and a second terminal coupled to a second node. The second transistor has a control terminal, a first terminal coupled to a ground voltage, and a second terminal coupled to the first node. The DC tracking circuit sets the second DC voltage at the second node to a specific level. The specific level is determined according to the first DC voltage at the first node. The output node of the source follower is coupled to the first node.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: June 30, 2020
    Assignee: MEDIATEK INC.
    Inventor: Che-Hsun Kuo
  • Patent number: 10693509
    Abstract: Digital predistortion methods with power-specific capture selection are disclosed. An example method includes receiving a feedback signal indicative of a power amplifier output and establishing boundaries of multiple ranges of powers in the received signal by analyzing signal statistics in windowed intervals of multiple trial captures. At least one range established in this manner may include the highest value, and at least one other range may include the lowest value of the maximum powers determined for the trial captures. The method further includes updating a power amplifier model based on one or more captures of the feedback signal in each of the K ranges, and using the model to apply digital predistortion to an input signal. By specifically targeting regions of lower power and combining these with high-power captures, the model can be made more representative of the signal as a whole, and signal quality may be improved.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: June 23, 2020
    Assignee: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY
    Inventor: Steve Summerfield
  • Patent number: 10693425
    Abstract: An embodiment of the invention is a time-delay invariant predistortion approach to linearize power amplifiers in wireless RF transmitters. The predistortion architecture is based on the stored-compensation or memory-compensation principle by using a combined time-delay addressing method, and therefore, the architecture has an intrinsic, self-calibrating time-delay compensation function. The predistortion architecture only uses a lookup table to conduct both the correction of non-linear responses of a power amplifier and the compensation of any time-delay effects presented in the same system. Due to the time-delay invariant characteristic, the predistortion design has a wider dynamic range processing advantage for wireless RF signals, and therefore can be implemented in multi-carrier and multi-channel wireless systems.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: June 23, 2020
    Assignee: Dali Wireless, Inc.
    Inventors: Dali Yang, Jia Yang
  • Patent number: 10686415
    Abstract: Various examples are directed to a power amplifier circuit, comprising a digital predistortion circuit, first and second power amplifiers, and a bias feedback circuit. The digital predistortion circuit may be configured to generate a predistorted input signal based at least in part on an input signal. The first power amplifier may be configured to generate a first amplified signal based at least in part on the predistorted input signal. The second power amplifier may be configured to generate a second amplified signal based at least in part on the predistorted input signal. The bias feedback circuit may be configured to adjust at least one of a bias of the first power amplifier or a bias of the second power amplifier to align a first nonlinear behavior of the first power amplifier with a second nonlinear behavior of the second power amplifier.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: June 16, 2020
    Inventors: Patrick Pratt, Rafael Celedon
  • Patent number: 10659124
    Abstract: A multiantenna communication device forms a directional beam by adding an antenna weight to respective signals of a plurality of antenna elements. The multiantenna communication device includes: a processor that executes performing distortion compensation on a transmission signal by using a distortion compensation coefficient; a plurality of power amplifiers that are provided corresponding to the antenna elements, and that amplify the transmission signal subjected to the distortion compensation by the processor; a multiplexer that multiplexes signals output from the power amplifiers to feed back; and an analog/digital (A/D) converter that A/D converts a multiplex feedback signal that is obtained by the multiplexer, wherein the processor executes updating the distortion compensation coefficient by using the multiplex feedback signal A/D converted by the A/D converter and the transmission signal.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: May 19, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Takenori Ohshima, Yoji Ohashi, Hiroyoshi Ishikawa, Atsushi Honda, Toru Maniwa, Alexander Nikolaevich Lozhkin, Toshio Kawasaki, Yuichi Utsunomiya, Tomoya Ota
  • Patent number: 10658982
    Abstract: Apparatus and method for dynamically linearizing multi-carrier power amplifiers. In one example, the method includes storing a correction set including a plurality of correction solutions and loading the correction set into an RF power amplifier linearizer. The method includes determining a first carrier configuration of an RF transmitter during a first timeslot of operation of the RF transmitter and sending a first correction solution index to the RF power amplifier linearizer. The first correction solution index corresponds to a first correction solution of the plurality of correction solutions. The method also includes determining that a carrier configuration change is initiated to operate the RF transmitter with a second carrier configuration during a second timeslot of operation of the RF transmitter and sending a second correction solution index to the RF power amplifier linearizer. The second correction solution index corresponds to a second correction solution of the plurality of correction solutions.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 19, 2020
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Dennis M. Drees, Mitchell R. Blozinski, Rodney W. Hagen
  • Patent number: 10652057
    Abstract: An all digital outphasing transmitter includes, at least one decomposition unit for decomposing an input signal to generate a first sub-signal and a second sub-signal; at least one outphasing signal generator to convert said first sub-signal to an outphasing signal; at least one delta sigma modulator to convert said second sub-signal to a delta sigma modulated signal; at least one mixing unit for mixing the outphasing signal and delta sigma modulated signal to generate a first and second mixed signal; at least one first amplifier for amplifying the first mixed signal; at least one second amplifier for amplifying the second mixed signal; at least one combiner for combining the first and second amplified mixed signals to generate a delta sigma modulated output signal and at least one band pass filter for filtering the delta sigma modulated output signal to recover the input signal envelope back on to the output signal.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: May 12, 2020
    Assignee: ASELSAN ELEKTRONIK SANAYI VE TICARET ANONIM SIRKETI
    Inventor: Bulent Sen
  • Patent number: 10644658
    Abstract: The present disclosure relates to an apparatus and a method for transmitting a signal using a power amplifier in a wireless communication system in which a transceiver comprises a digital pre-distorter configured to distort an input signal based on a distortion control value, a power amplifier configured to amplify an output signal from the digital pre-distorter, an antenna configured to transmit an output signal from the power amplifier, an echo signal canceller configured to remove an echo signal which returns to the power amplifier due to a return loss of a path between the power amplifier and the antenna, from a feedback signal obtained at an output stage of the power amplifier, and a digital pre-distortion adaptation unit configured to determine the distortion control value based on an output signal from the echo signal canceller.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: May 5, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Munwoo Lee, Youngyoon Woo, Martynovich Pavel, Jaebum Kim, Donggeun Lee, Sungchul Hong
  • Patent number: 10637490
    Abstract: Method and apparatus for nonlinear signal processing include mitigation of outlier noise in the process of analog-to-digital conversion and adaptive real-time signal conditioning, processing, analysis, quantification, comparison, and control. Methods, processes and apparatus for real-time measuring and analysis of variables include statistical analysis and generic measurement systems and processes which are not specially adapted for any specific variables, or to one particular environment. Methods and corresponding apparatus for mitigation of electromagnetic interference, for improving properties of electronic devices, and for improving and/or enabling coexistence of a plurality of electronic devices include post-processing analysis of measured variables and post-processing statistical analysis.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: April 28, 2020
    Inventor: Alexei V. Nikitin
  • Patent number: 10637450
    Abstract: A frequency multiplier (200) generates an output signal with a frequency 3 times of the input signal frequency. The frequency multiplier (200) comprises four cascaded stages. A first stage (201) is configured to receive an input signal and generate harmonics signals of the input signal. A second stage (202) is a passive filter, a frequency response of the passive filter has either a peak or a dip around an upper frequency end of a frequency band of the input signal. A third stage (203) is configured to mix the 1st and the 2nd order harmonics signals to generate 3rd order harmonic signals. A fourth stage (204) is configured to suppress the 1st and even-order harmonics signals and output a signal dominated with a frequency 3 times of the input signal frequency.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: April 28, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Mingquan Bao
  • Patent number: 10624606
    Abstract: An ultrasound diagnostic apparatus according to a present embodiment includes driving pulse generating circuitries and a transmission control circuitry. The transmission control circuitry turns on a switching element of respective driving pulse generating circuitries of the driving pulse generating circuitries to be grounded, and thereby controls so as to make an output impedance of the respective driving pulse generating circuitries become a low impedance. The transmission control circuitry turns off the switching element of the respective driving pulse generating circuitries, and thereby controls so as to make the output impedance become a high impedance by means of a resistance value of the resistance.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: April 21, 2020
    Assignee: Canon Medical Systems Corporation
    Inventors: Wataru Kameishi, Hiroyuki Shibanuma, Satoshi Kamiyama, Masaaki Ishitsuka, Tomohiro Fujita, Teruki Hagihara, Shuta Fujiwara
  • Patent number: 10581469
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for correcting distortion of radio signals A transmit radio signal corresponding to an output of a transmitting radio signal processing system is obtained. A pre-distorted radio signal is then generated by processing the transmit radio signal using a nonlinear pre-distortion machine learning model. The nonlinear pre-distortion machine learning model includes model parameters and at least one nonlinear function to correct radio signal distortion or interference. A transmit output radio signal is obtained by processing the pre-distorted radio signal through the transmitting radio signal processing system. The transmit output radio signal is then transmitted to one or more radio receivers.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: March 3, 2020
    Assignee: DeepSig Inc.
    Inventors: Timothy James O'Shea, James Shea
  • Patent number: 10581471
    Abstract: An electronic transmitter includes: a generator circuit to generate a baseband signal; a modulator circuit to modulate a carrier signal with the baseband signal; an emitter to emit the modulated signal at an intended recipient; and a distortion circuit to apply a final distortion to the baseband signal or the modulated signal. The final distortion is optimized to minimize the ability of unintended recipients to localize the emitter using correlation-based techniques, and to minimize any degradation to the data rate of the emitted signal at the intended recipient. In some cases, the transmitter is part of an electronic communication system that also includes a receiver at the intended recipient. The receiver is aware of the final distortion and includes a collector to collect the emitted signal, and a demodulator circuit to demodulate the collected signal using the final distortion to recover the baseband signal.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: March 3, 2020
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Jonathan P. Beaudeau, Prabahan Basu, David J. Couto, William D. Watson
  • Patent number: 10574192
    Abstract: A linearization circuit that reduces intermodulation distortion in an amplifier output receives a first signal that includes a first frequency and a second frequency and generates a difference signal having a frequency approximately equal to the difference of the first frequency and the second frequency. The linearization circuit generates an envelope signal based at least in part on a power level of the first signal and adjusts a magnitude of the difference signal based on the envelope signal. When the amplifier receives the first signal at an input terminal and the adjusted signal at a second terminal, intermodulation between the adjusted signal and the first signal cancels at least a portion of the intermodulation products that result from the intermodulation of the first frequency and the second frequency.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: February 25, 2020
    Assignee: Skyworks Solutions, Inc.
    Inventors: Yu Zhu, Boshi Jin, Steven Christopher Sprinkle, Florinel G. Balteanu, Oleksiy Klimashov, Dylan Charles Bartle, Paul T. DiCarlo
  • Patent number: 10574280
    Abstract: Embodiments of the present application disclose a passive intermodulation suppression method and a passive intermodulation suppression system. The method in the embodiments of the present application includes: obtaining, by using a target uplink controllable gain module, a first power Pt of an uplink signal sent by an antenna; obtaining a second power Pb of a signal that is output from an output port of a base station; configuring a target attenuation of the base station; and adjusting the initial gain value based on the target attenuation to keep a gain of the base station constant. According to the method described in the embodiments, the base station can maintain the target attenuation constant in a process of adjusting a gain of the target uplink controllable gain module, thereby reducing a PIM requirement of a passive intermodulation suppression system.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: February 25, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Lanping Gong, Lianghong Xiang, Weihong Xiao
  • Patent number: 10554245
    Abstract: A telecommunications system may include a distortion cancellation subsystem for use with a circulator device coupling an antenna to a transmit path and a receive path. The distortion cancellation subsystem may include a correction circuit and a cancellation circuit. In some aspects, the correction circuit may include a processing device or adaptive filter to correct imperfections in transmit signal samples generated by directional couplers. The correction circuit may also include a summing device to remove receive signal components from the transmit signal samples. The cancellation circuit may receive the output signal of the correction circuit via an adaptive filter. The output of the adaptive filter may be summed with a receive signal to minimize distortion of the receive signal.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: February 4, 2020
    Assignee: Andrew Wireless Systems GmbH
    Inventors: Charles B. Morrison, Gregory Allan Maca
  • Patent number: 10554183
    Abstract: A DPD operates at a sampling rate at which the input signal not up sampled at an upstream of the DPD is sampled. The DPD includes a polynomial structure comprising a pseudo-interpolation and sub-sample shift processing unit configured to pseudo-interpolate a sample point between the sample points of the input signal and shift the pseudo-interpolated sample point by a sub-sample, and an FIR (Finite Impulse Response) filter disposed at a downstream of the polynomial structure and including a sub-sample delay filter configured to delay the sample point of the input signal by the sub-sample. The DPD uses the polynomial structure and the FIR filter to compensate distortion by the sample point of the input signal and also compensate distortion by a sub-sample point between the sample points of the input signal for the digital predistorter.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: February 4, 2020
    Assignee: NEC CORPORATION
    Inventor: Yoshiaki Doi
  • Patent number: 10530399
    Abstract: An transmitter arrangement and a method therein are provided for linearization of an active antenna array. The active antenna array comprises a plurality of antenna elements, which are associated with a plurality of power amplifiers. The active antenna array is further associated with a precoder having a number of input and output ports. The method comprises obtaining a first signal provided to the antenna array via a first input port of the precoder. The method further comprises adapting a pre-distorting linearizer connected to the first input port based on the first signal and on feedback from the plurality of antenna elements, resulting from the propagation of the first signal via the precoder, and via the plurality of power amplifiers. Embodiments are also provided for adapting a pre-distorting linearizer based on a plurality of input signals and feedback from the plurality of antenna elements.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: January 7, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Bernt Johansson, Farshid Ghasemzadeh, Jan-Erik Thillberg, Leonard Rexberg
  • Patent number: 10530310
    Abstract: Digital pre-distortion may be provided. First, a radio frequency (RF) domain distortion correcting signal and a base band (BB) domain distortion correcting signal may be initialized. Then the RF domain distortion correcting signal may be generated from an input signal. The generated RF domain distortion correcting signal may correspond to an amplifier. Next, the BB domain distortion correcting signal may be generated from the input signal. The generated BB domain distortion correcting signal may correspond to the amplifier. Then the RF domain distortion correcting signal and the BB domain distortion correcting signal may be combined to form a hybrid distortion correcting signal. The hybrid distortion correcting signal may then be provided to input matching circuitry feeding the amplifier.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: January 7, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Hang Jin, John T. Chapman
  • Patent number: 10503122
    Abstract: Systems and methods are described for determining a phase measurement difference between a received modulated signal and a local clock signal. An adjusted local clock phase measurement may be determined by subtracting, from the phase measurement difference, a phase correction that is based on the frequency difference between the modulator signal's carrier frequency and the local clock's frequency. A phase modulation value may be generated by scaling the adjusted local clock phase measurement. The scaling may be based on a ratio of the modulated signal's carrier frequency and the local clock's frequency. The phase correction may be based on (i) a count of periods of the modulated signal occurring between each corrected phase measurement and (ii) a difference between the carrier frequency and the local clock frequency.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: December 10, 2019
    Assignee: Innophase, Inc.
    Inventor: Nicolo Testi
  • Patent number: 10505581
    Abstract: The invention relates to an electrical circuit (1) for transmitting a useful analogue signal which has a signal transmission path (16) with an input path (2) and an output path (3) and one or more switches (4-6), with which switch or switches the useful signal which is carried on the input path (2) can be connected through to the output path (3) by the switch or the switches (4-6) being switched to the switched-on state. According to the invention, the electrical circuit (1) comprises a compensation circuit (7) which has one or more auxiliary switches (17) of the same type as the switch or the switches (4-6), and the auxiliary switch or switches (17) is or are coupled to the signal transmission path (16) such that said auxiliary switch or switches generates or generate signal distortion in the switched-on state, which signal distortion substantially compensates for a distortion in the useful analogue signal which is generated by the switch or switches (4-6).
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: December 10, 2019
    Inventor: Thomas Meier
  • Patent number: 10498372
    Abstract: Various examples are directed to systems and methods for digital predistortion (DPD). A linear digital predistortion (DPD) circuit may be programmed to generate a pre-distorted signal linear component based at least in part on a complex baseband signal. A nonlinear DPD circuit may be programmed to generate a pre-distorted signal nonlinear component based at least in part on the complex baseband signal. A mixer circuit programmed to generate a pre-distorted signal based at least in part on the pre-distorted signal linear component and the pre-distorted signal nonlinear component.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 3, 2019
    Assignee: Analog Devices Global
    Inventor: Patrick Pratt