Including Atomic Particle Or Radiant Energy Impinging On A Semiconductor Patents (Class 330/308)
  • Patent number: 10145910
    Abstract: A system activates a switch between a disengaged state and an engaged state, receives, via the second optical excitation source, a light signal includes a high intensity signal provided by the second optical excitation source, and causes at least one of the photocomponent or the optical detection circuit to operate in a non-saturated state responsive to the activation of the switch.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 4, 2018
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Kenneth Michael Jackson, Gregory Scott Bruce, Wilbur Lew
  • Patent number: 10063200
    Abstract: Feedback circuit for power amplifier. In some embodiments, a radio-frequency amplifier can include a bipolar junction transistor configured to amplify a signal, and having an input and an output. The radio-frequency amplifier can further include a feedback circuit implemented between the output and input of the bipolar junction transistor. The feedback circuit can include a parallel assembly of a field-effect transistor and a resistive element such that the resistive element is bypassed when the field-effect transistor is ON and an overall resistance of the feedback circuit includes the resistive element when the field-effect transistor is OFF. Such a feedback circuit can be configured to be capable of providing a plurality of resistance values between the output and input of the bipolar junction transistor to facilitate different gains of the bipolar junction transistor.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: August 28, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventors: Andy Cheng Pang Wu, Yu-Jui Lin, Peter Phu Tran
  • Patent number: 9954622
    Abstract: A TIA converts a current signal received at its terminal to a voltage signal. The TIA includes an amplifier that includes an input node connected to the terminal and that converts a current signal received at the input node to a voltage signal; a first diode whose cathode is connected to the terminal; a second diode whose anode is connected to the terminal; a first current source connected to an anode of the first diode, the first current source supplying a first forward current to the first diode; a second current source connected to a cathode of the second diode, the second current source supplying a second forward current to the second diode; and a controller that controls forward currents respectively generated by the first current source and the second current source in accordance with an increase and decrease in the voltage signal.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: April 24, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yoshiyuki Sugimoto, Taizo Tatsumi
  • Patent number: 9948401
    Abstract: A circuit may include amplifier circuitry configured to receive a current signal at an amplifier input node, convert the current signal to a voltage signal, and output the voltage signal at an amplifier output node. The circuit may also include overload circuitry configured to receive a replica DC input voltage and a replica DC output voltage. The overload circuitry may be further configured to detect that the current signal exceeds a threshold level based on the replica DC input voltage and the replica DC output voltage. In addition, the overload circuitry may be configured to, in response to and based on detecting that the current signal exceeds the threshold level, direct DC current of the current signal through a DC shunt path and direct AC current of the current signal through an AC shunt path. The AC shunt path may be different from the DC shunt path.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: April 17, 2018
    Assignee: Finisar Corporation
    Inventors: Theron Lee Jones, Richard Dean Davis
  • Patent number: 9893681
    Abstract: A method and circuit are provided for implementing enhanced CMOS inverter based optical Transimpedance Amplifiers (TIAs). A transimpedence amplifer (TIA) includes a photo-detector, and the TIA is formed by a first TIA inverter and a second TIA inverter. The first TIA inverter has an input from a cathode side of the photo-detector and the second inverter has an input from an anode side of the photo-detector. A replica TIA is formed by two replica inverters, coupled to a respective input to a first operational amplifier and a second operational amplifier. The first operational amplifier and the second operational amplifier have a feedback configuration for respectively regulating a set voltage level at the cathode side of the photo-detector input of the first inverter and at the anode side of the photo-detector input of the second inverter.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: February 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Matthew B. Frank, Raymond A. Richetta
  • Patent number: 9859986
    Abstract: The present disclosure includes a photodetector element (11) that converts an optical signal into an electric current signal; a transimpedance amplifier (12a) that converts the electric current signal into a voltage signal; a differential amplifier (12d) that converts the voltage signal into a differential signal, by performing differential amplification of a difference between the voltage signal and a threshold voltage; an LOS detection circuit that detects a no-signal section of the optical signal; and an MCU that repeatedly executes offset cancellation processing, the offset cancellation processing including threshold voltage change processing in which the threshold voltage is changed such that an offset voltage of the differential signal is reduced, the MCU 13 skipping the threshold voltage change processing in the no-signal section.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: January 2, 2018
    Assignee: FUJIKURA LTD.
    Inventors: Takayuki Tanaka, Minako Hayashi
  • Patent number: 9768747
    Abstract: Methods and systems for accurate gain adjustment of a transimpedance amplifier using a dual replica and servo loop is disclosed and may include, in a transimpedance amplifier (TIA) circuit comprising a first TIA, a second TIA, and a third TIA, each comprising a configurable feedback impedance, and a control loop, where the control loop comprises a gain stage with inputs coupled to outputs of the first and second TIAs and an output coupled to the configurable feedback impedance of the second and third TIAs: configuring a gain level of the first TIA by configuring its feedback impedance, configuring a gain level of the third TIA by configuring a reference current applied to an input of the first TIA, and amplifying a received electrical signal to generate an output voltage utilizing the third TIA. The reference current may generate a reference voltage at one of the inputs of the gain stage.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: September 19, 2017
    Assignee: Luxtera, Inc.
    Inventors: Stefan Barabas, Joseph Balardeta, Simon Pang, Scott Denton
  • Patent number: 9762186
    Abstract: A Regulated Cascode (RGC)-type burst mode optic pre-amplifier having an extended linear input range. The burst mode optic pre-amplifier comprises an RGC-type Trans Impedance Amplifier (TIA), wherein a current path is added in the circuit of the RGC-type TIA to control a linearity state of the RGC-type TIA, and a main voltage gain is controlled in other circuit blocks after the RGC-type TIA.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: September 12, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Young Ho Kim
  • Patent number: 9584075
    Abstract: A method and circuit are provided for implementing enhanced CMOS inverter based optical Transimpedance Amplifiers (TIAs). A transimpedence amplifer (TIA) includes a photo-detector, and the TIA is formed by a first TIA inverter and a second TIA inverter. The first TIA inverter has an input from a cathode side of the photo-detector and the second inverter has an input from an anode side of the photo-detector. A replica TIA is formed by two replica inverters, coupled to a respective input to a first operational amplifier and a second operational amplifier. The first operational amplifier and the second operational amplifier have a feedback configuration for respectively regulating a set voltage level at the cathode side of the photo-detector input of the first inverter and at the anode side of the photo-detector input of the second inverter.
    Type: Grant
    Filed: April 25, 2015
    Date of Patent: February 28, 2017
    Assignee: International Business Machines Corporation
    Inventors: Matthew B. Frank, Raymond A. Richetta
  • Patent number: 9571045
    Abstract: A method and circuit are provided for implementing enhanced CMOS inverter based optical Transimpedance Amplifiers (TIAs). A transimpedance amplifier (TIA) includes a photo-detector, and the TIA is formed by a first TIA inverter and a second TIA inverter. The first TIA inverter has an input from a cathode side of the photo-detector and the second inverter has an input from an anode side of the photo-detector. A replica TIA is formed by two replica inverters, coupled to a respective input to a first operational amplifier and a second operational amplifier. The first operational amplifier and the second operational amplifier have a feedback configuration for respectively regulating a set voltage level at the cathode side of the photo-detector input of the first inverter and at the anode side of the photo-detector input of the second inverter.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: February 14, 2017
    Assignee: International Business Machines Corporation
    Inventors: Matthew B. Frank, Raymond A. Richetta
  • Patent number: 9560301
    Abstract: A circuit includes a signal line and a pixel unit cell. The pixel unit cell includes one or more light sensing elements, a conversion circuit, and a selection switch between the conversion circuit and the signal line. In the pixel unit cell, the conversion circuit is configured to convert charge carriers from the one or more light sensing elements to a voltage signal at an output node of the conversion circuit.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: January 31, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yuichiro Yamashita, Jhy-Jyi Sze
  • Patent number: 9537458
    Abstract: Provided herein is a feedback amplifier including an amplifier circuit configured to amplify an input signal input from an input terminal and output the amplified input signal to an output terminal; a feedback circuit configured to apply a feedback resistance value to a signal output to the output terminal, and to control a gain of the amplifier circuit by adjusting the input signal by a bias voltage applied with a feedback resistance value determined; a packet signal sensor configured to generate a fixed resistance control signal for controlling a fixed resistance value included in the feedback resistance value through a comparison between the output from the output terminal with a minimum signal level; and a fixed resistance controller configured to control the fixed resistance value included in the feedback resistance value in response to the fixed resistance control signal.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: January 3, 2017
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Heung Lee, Dong Min Kang, Seong Il Kim, Ho Kyun Ahn, Hyung Sup Yoon, Jong Won Lim, Chull Won Ju
  • Patent number: 9490757
    Abstract: A method and circuit are provided for implementing an enhanced bias configuration for CMOS inverter based optical Transimpedance Amplifiers (TIAs). An operational amplifier is provided in a feedback configuration that forces an input of the CMOS inverter to a set voltage level by regulation of the inverter power supply. A photo-detector sees a more stable bias voltage, and the responsivity of the photo-detector is more robust and the TIA has improved performance across process corners.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: November 8, 2016
    Assignee: International Business Machines Corporation
    Inventors: Matthew B. Frank, Jonathan E. Proesel, Raymond A. Richetta
  • Patent number: 9425901
    Abstract: In order to be able to receive any digital optical signals in the bandwidth range from zero bits per second to the high Gbits/second range with as little circuit complexity as possible and to be able to process said signals with the least possible energy requirement for reprocessing, the invention proposes a circuit arrangement as well as a method for receiving digital optical signals by means of at least one light-receiving component connected upstream of at least one signal input port, particularly by means of at least one photodiode, wherein the unipolar current signal coming from the light-receiving component through the signal input port is transformed into a bipolar current signal by means of a compensation current provided by at least one current source, the value of said current being defined by means of at least one digital register.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: August 23, 2016
    Assignee: SILICON LINE GmbH
    Inventors: Martin Groepl, Holger Fritsche, Holger Hoeltke
  • Patent number: 9407218
    Abstract: A multi-stage transimpedance amplifier (TIA) which includes a common gate amplifier configured to receive a current signal, the common gate amplifier is configured to convert the current signal into an amplified voltage signal. The multi-stage TIA further includes a capacitive degeneration amplifier configured to receive the amplified voltage signal, the capacitive degeneration amplifier is configured to equalize the amplified voltage signal to form an equalized signal. The multi-stage TIA further includes an inverter configured to receive the equalized signal, the inverter is configured to increase a signal strength of the equalized signal to form an output signal. The multi-stage TIA further includes a feedback configured to receive the output signal, wherein the feedback is connected to an input and an output of the inverter.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: August 2, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Ching Huang, Chan-Hong Chern, Ming-Chieh Huang, Chih-Chang Lin
  • Patent number: 9197174
    Abstract: An analog baseband filter for a radio transceiver is provided. An analog baseband filter for a multi-mode multi-band radio transceiver includes a current-voltage conversion amplifier converting a current received at the analog baseband filter into a voltage and adjusting a gain of an output voltage of the current-voltage conversion amplifier using a plurality of resistors, and a source follower circuit compensating for temperature for the output voltage of the current-voltage conversion amplifier.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: November 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Kwon Kim, Jong-Woo Lee, Jae-Hyun Lim
  • Patent number: 9191242
    Abstract: A differential signal detecting device includes a secondary amplifier; a front-end receiver and a final amplifier which are respectively connected to the secondary amplifier; and a signal outputter which is connected to the final amplifier. The front-end receiver receives two externally inputted channels of differential signals and an externally inputted reference threshold voltage, differentiates and transduces the two channels of differential signals. The secondary amplifier receives and amplifies the signals which are outputted by the front-end receiver, and outputs the signals amplified again. The final amplifier differentiates and amplifies the signals outputted by the secondary amplifier and outputs the two channels of differentiated signals. The signal outputter receives the two channels of differentiated signals which are outputted by the final amplifier and processes the two channels of differentiated signals with a logical conjunction before outputting.
    Type: Grant
    Filed: November 3, 2013
    Date of Patent: November 17, 2015
    Assignee: IPGoal Microelectronics (Sichuan) Co., Ltd.
    Inventor: Fangping Fan
  • Patent number: 9178474
    Abstract: Provided is a feedback amplifier. The feedback amplifier includes: an amplification circuit unit amplifying a burst packet signal inputted from an input terminal and outputting the amplified voltage to an output terminal; a feedback circuit unit disposed between the input terminal and the output terminal and controlling whether to apply a fixed resistance value to a signal outputted to the output terminal; a packet signal detection unit detecting a peak value of a burst packet signal from the output terminal and controlling whether to apply the fixed resistance value; and a bias circuit unit generating a bias voltage, wherein the feedback circuit unit determines a feedback resistance value to change the fixed resistance value in response to at least one control signal and adjusts a gain by receiving the bias voltage.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: November 3, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sang-Heung Lee, Seong-il Kim, Dong Min Kang, Jong-Won Lim, Chull Won Ju, Hyung Sup Yoon, Jae Kyoung Mun, Eun Soo Nam
  • Patent number: 9130682
    Abstract: A circuit sets an output potential at a radio frequency (RF) output of a pin photoreceiver that includes an ohmic terminal resistor connected between a supply voltage and the RF output. The circuit includes a control loop with an ohmic replication resistor having a resistance approximately equal to a resistance of the ohmic terminal resistor. The control loop further includes a sub-circuit configured to measure a voltage difference across the ohmic replication resistor and to reproduce the voltage difference as the supply voltage at an output terminal of the control loop.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: September 8, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventor: Heinz-Gunter Bach
  • Patent number: 9065407
    Abstract: A high speed transimpedance amplifier includes an inverting unit, at least one gain module, and a feedback resistor. The inverting unit has an input terminal coupled to a photodiode for receiving an input voltage, and an output terminal for outputting a first voltage. The at least one gain module has an input terminal coupled to the output terminal of the inverting unit for receiving the first voltage, and an output terminal for outputting an output voltage. Each gain module includes a first gain inverting unit and a second gain inverting unit which are coupled to each other. The first gain inverting unit and the second gain inverting unit dominate bandwidth of the high speed transimpedance amplifier. The feedback resistor is coupled to the input terminal of the inverting unit and the output terminal of the at least one gain module for determining a transimpedance of the high speed transimpedance amplifier.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: June 23, 2015
    Assignee: TM Technology Inc.
    Inventors: He-hong Zou, Chih-Yang Wang
  • Patent number: 9035696
    Abstract: An amplifier includes a first input terminal, a second input terminal, a TIA, and a compensation circuit. The TIA includes a first transistor, a second transistor, a first current source connected to the first input terminal and an emitter of the first transistor, a second current source connected to the second input terminal and an emitter of the second transistor, a first load resistor connected to a collector of the first transistor, and a second load resistor connected to a collector of the second transistor. A bias voltage is supplied to bases of the first and second transistors, the compensation circuit adjusts a first load current and a second load current based on voltage signals, and the TIA outputs the voltage signals based on collector voltages of the first and second transistors.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: May 19, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yoshiyuki Sugimoto
  • Patent number: 9030263
    Abstract: A TIA circuit and method are provided that merge the automatic gain control function with the bandwidth adjustment function to allow the TIA circuit to operate over a wide dynamic range at multiple data rates. The TIA circuit has an effective resistance that is adjustable for adjusting the gain and the bandwidth of the TIA circuit. The mechanism of the TIA circuit that is used to adjust the effective resistance, and hence the gain and bandwidth of the TIA circuit, is temperature independent, and as such, the performance of the TIA circuit is not affected by temperature variations.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 12, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Michael Robinson, Vishant Tyagi, Peter Ho
  • Patent number: 8994457
    Abstract: A method of forming a circuit includes forming a transimpedance amplifier having a first input node and a second input node. The method also includes forming a feedback circuit having a first transistor having a drain terminal connected to the first input node, a source terminal, and a gate terminal, a second transistor having a drain terminal connected to the second input node, a source terminal, and a gate terminal, and a third transistor having a drain terminal connected to the source terminal of the first transistor and the source terminal of the second terminal.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jonathan E. Proesel, Alexander V. Rylyakov, Clint L. Schow, Jose A. Tierno
  • Patent number: 8988114
    Abstract: Systems and methods for low-power voltage tamper detection are described. In some embodiments, an integrated circuit may include source-follower circuitry configured to produce a scaled down supply voltage. The integrated circuit may also include undervoltage detection circuitry coupled to the source-follower circuitry, the undervoltage detection circuitry configured to output a first signal having a first logic value if the scaled down supply voltage is greater than a low threshold voltage or a second logic value if the scaled down supply voltage is smaller than the low threshold voltage. Additionally or alternatively, the integrated circuit may include overvoltage detection circuitry coupled to the source-follower circuitry, the overvoltage detection circuitry configured to output a second signal having the first logic value if the scaled down supply voltage is smaller than a high threshold voltage or the second logic value if the scaled down supply voltage is greater than the high threshold voltage.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: March 24, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sanjay K. Wadhwa, Alfredo Olmos, Fabio Duarte De Martin
  • Patent number: 8981853
    Abstract: A differential or pseudo-differential TIA includes an auxiliary differential amplifier input transistor pair cross-coupled to the output nodes to cancel undesired output signal components. The advantages of a classical differential topology are retained while performance at a high data rate is significantly improved.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: March 17, 2015
    Assignee: STMicroelectronics S.R.L.
    Inventors: Wissam Yussef Sabri Eyssa, Enrico Stefano Temporiti Milani, Daniele Baldi
  • Patent number: 8970300
    Abstract: Improved preamplifier circuits for converting single-ended input current signals to differential output voltage signals, including first and second transimpedance amplifiers with input transistors operating according to bias currents from a biasing circuit, output transistors and adjustable feedback impedances modified using an automatic gain control circuit, as well as a reference circuit controlling the bias currents according to an on-board reference current and the single-ended input or the differential output voltage signals from the transimpedance amplifiers.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: March 3, 2015
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Oliver Piepenstock, Gerd Schuppener, Frank Gelhausen, Ulrich Schacht
  • Patent number: 8957365
    Abstract: A light reception circuit includes a direct current (DC) level shift circuit that shifts a DC voltage level of a first signal or a second signal and outputs a third signal or a fourth signal, or outputs both of the third signal and the fourth signal so that a DC voltage level of the first signal output from a cathode of a photodiode that generates a signal by photo conversion and a DC voltage level of the second signal output from an anode of the photodiode agree, and a differential amplifier that amplifies a difference between the third signal and the second signal, between the first signal and the fourth signal, or the third signal and the fourth signal, based on the third signal, the forth signal output from the DC level shift circuit, impedance of the DC level shift circuit being lower than input impedance of the differential amplifier.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: February 17, 2015
    Assignee: Fujitsu Limited
    Inventor: Yukito Tsunoda
  • Patent number: 8921755
    Abstract: The detection circuit with correlated double sampling comprises two transimpedance amplifiers connected by means of a sampling capacitor. A photodiode is connected to the input of the first transimpedance amplifier. The circuit comprises an anti-blooming circuit connected between the input and output of the first transimpedance amplifier. The anti-blooming circuit comprises means for comparing the output voltage of the first transimpedance amplifier with a setpoint voltage defined by means of the output voltage of the second transimpedance amplifier. The means for comparing are connected to means for applying a feedback current to the input of the first transimpedance amplifier when the difference between the output voltage and the setpoint voltage reaches a limit value.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 30, 2014
    Assignee: Societe Francaise de Detecteurs Infrarouges—Sofradir
    Inventors: Nicolas Ricard, Frederic Salvetti
  • Patent number: 8907729
    Abstract: The differential trans-impedance amplifier uses trans-resistance(s) connected between the input nodes of a first differential amplifier, to implement a trans-impedance differential amplifier in a differential fashion and has two identical resistances, each connected between the photodiode and a respective DC voltage rail of a common bias network of the photodiode adapted to reverse bias the photodiode. The biasing resistances may be much larger than the trans-resistance(s) to prevent drawing any significant signal current from the photodiode. The amplifier may retain the advantages of a classical differential topology while effectively overcoming drawbacks that arise in high data rate applications.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: December 9, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Enrico Stefano Temporiti Milani, Wissam Yussef Sabri Eyssa, Gabriele Minoia
  • Patent number: 8890621
    Abstract: An amplifier circuit includes: an input pad to receive a current signal; a conversion section to convert the current signal into a voltage signal; an inductor electrically connected in series between the input pad and the conversion section; and a storage element, one end of the storage element electrically coupled between the inductor and the conversion section, the other end of the storage element electrically coupled to a ground.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: November 18, 2014
    Assignee: Fujitsu Limited
    Inventor: Hideki Oku
  • Patent number: 8890051
    Abstract: A photodetecting device 1 includes a photodiode PD and an integrating circuit 10. The integrating circuit 10 includes an amplifier circuit 20, a capacitive element C, a first switch SW1, and a second switch SW2. The second switch SW2 is provided between a reference potential input terminal to which a reference potential Vref is input and a terminal of the capacitive element C on the inverting input terminal side of the amplifier circuit 20, and the second switch is opened or closed according to the level of a second reset signal Reset2, and is capable of applying the reference potential Vref to the terminal of the capacitive element. Thus, an integrating circuit and a photodetecting device capable of achieving both low power consumption and high speed can be realized.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: November 18, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Haruhiro Funakoshi, Shinya Ito
  • Patent number: 8884208
    Abstract: According to one embodiment, a light receiving circuit having a trans-impedance amplifier and an output circuit is provided. The trans-impedance amplifier includes a photodiode, a feedback resistor and a first transistor having a channel of a first conductive type. The photodiode converts an optical signal into an electrical signal. Ends of the feedback resistor are connected respectively to the photodiode and a node. A gate of the first transistor receives the electrical signal from the photodiode. A signal corresponding to a signal from a drain of the first transistor is output to the node. The output circuit includes a second transistor having a channel of the first conductive type, and generates an output signal from a drain of the second transistor. A gate of the second transistor is connected to the node.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: November 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Shigeyuki Sakura
  • Patent number: 8872592
    Abstract: A transimpedance amplifier includes a first inverter having a first input node and a first output node. The first input node is configured to be coupled to an input signal. A second inverter has a second input node and a second output node. The second input node is configured to receive a reference voltage terminal. The first inverter and the second inverter are configured to provide a differential output voltage signal between the first output node and the second output node.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Ching Huang, Chan-Hong Chern, Tao Wen Chung, Ming-Chieh Huang, Chih-Chang Lin
  • Patent number: 8866551
    Abstract: A dual compensation operational amplifier is suitable for use in an environment that experiences fluctuations in ambient energy levels. A dual compensation impedance can be determined to nullify or compensate for effects of an input offset voltage or an input bias current or both. Adjustments to the dual compensation impedance can be made based on calibration data for various environmental conditions so that the dual compensation impedance can be either pre-set for anticipated conditions in different target operational environments, or automatically adjusted in-situ. Target operational environments that may benefit from such a dual compensation impedance include remote areas that experience extreme or variable temperatures, high altitudes, space, or high radiation environments.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: October 21, 2014
    Assignee: Crane Electronics, Inc.
    Inventors: Cuon Lam, Jay Kuehny, David Perchlik
  • Patent number: 8848947
    Abstract: A low-noise pre-amplifier with an active load element is integrated into a microphone. The microphone has an acoustic sensor coupled to the intrinsic pre-amplifier. A controllable current source is coupled to the intrinsic pre-amplifier and supplies a pre-amplifier bias current. A current source controller is coupled to the current source and controls the amplitude of the pre-amplifier bias current to maintain the intrinsic pre-amplifier at a bias point at which the intrinsic pre-amplifier amplifies microphone signals produced by the acoustic sensor. The intrinsic pre-amplifier may be actively regulated at the pre-determined bias point using negative feedback. Alternatively, the intrinsic pre-amplifier may be set to the pre-determined bias point by sweeping the pre-amplifier bias current for the intrinsic pre-amplifier over a range of currents.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 30, 2014
    Assignee: BlackBerry Limited
    Inventor: Jens Kristian Poulsen
  • Patent number: 8841972
    Abstract: An electronic device, a fiber-optic communication system comprising the electronic device and a method of operating the electronic device are provided. The electronic device comprises a transimpedance-type amplifier having a transimpedance stage comprising an amplifier which is coupled in series with an input node. A feedback resistor is coupled in series between an output node of the amplifier and an inverting input node of the amplifier to provide a virtual ground node which is coupled to the input node, the inverting input node of the amplifier and to the feedback resistor. A current source is coupled to the virtual ground node so as to compensate for an offset current in an input signal which is coupled to the input node of the electronic device. Further, the electronic device comprises a control stage which is configured to control the current source as a function of a current through the feedback transistor.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 23, 2014
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Gerd Schuppener
  • Patent number: 8786373
    Abstract: Techniques for bypassing a supply voltage for an amplifier are disclosed. In an exemplary design, an apparatus includes an amplifier and an adjustable bypass circuit. The amplifier (e.g., a power amplifier) receives a supply voltage from a supply source. The adjustable bypass circuit is coupled to the supply source and provides bypassing for the supply voltage. The adjustable bypass circuit includes an adjustable capacitor or a fixed capacitor coupled to an adjustable resistor. The supply source may be (i) a power supply source providing a fixed supply voltage for the amplifier or (ii) an envelope tracker providing a variable supply voltage for the amplifier.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: July 22, 2014
    Inventors: Calogero D. Presti, Jose Cabanillas
  • Patent number: 8781028
    Abstract: Integrated receiving circuit for radiofrequency signals an amplifying element using the multiplication zone of a reverse biased semiconductor junction operating in Geiger mode for amplifying an input radiofrequency signal (Vin) and converting it into a digital signal. And a digital part for digitally processing the digital signal.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: July 15, 2014
    Assignee: Ecole Polytechnique Federale de Lausanne (EPFL)
    Inventors: Edoardo Charbon, Marek Gersbach, Maximilian Sergio
  • Patent number: 8779858
    Abstract: An amplifier circuit comprises a measurement path with an amplifier (1) for providing an output voltage (Vout) depending on a measuring current (Ipd) with a first and a second amplifier input (11, 12), and an amplifier output (13). A return path of the amplifier circuit comprises a first filter (2), an auxiliary amplifier (3) and a second filter (4). In this case, the first filter (2) is designed to filter a DC voltage from the output voltage (Vout) and is connected to the amplifier output (13). The auxiliary amplifier (3) serves to convert an input voltage (Vfil) into an output current (Ifil) and has a first and a second auxiliary amplifier input (31, 32) and an auxiliary amplifier output (33). In this case, the first auxiliary amplifier input (31) is connected to the first filter (2). The second filter (4) is designed to filter noise from the output current (Ifil) and couples the auxiliary amplifier output (33) to the first amplifier input (11).
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 15, 2014
    Assignee: ams AG
    Inventors: Mark Niederberger, Vincenzo Leonardo
  • Patent number: 8766728
    Abstract: A trans-impedance amplifier (TIA) for an optical receiver is disclosed, in which the TIA enhances the dynamic range thereof but suppresses the variation of the input impedance thereof. The TIA enhances the dynamic range by subtracting from the photocurrent input therein, which varies the input impedance. The TIA also provides the variable gain amplifier with a feedback resistor. The variable gain of the amplifier compensates the variation of the input impedance due to the current subtraction.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: July 1, 2014
    Assignee: Sumitomo Electric Industries, Ltd
    Inventors: Makoto Ito, Yoshiyuki Sugimoto, Keiji Tanaka
  • Patent number: 8754711
    Abstract: A system for a feedback transimpedance amplifier with sub-40 khz low-frequency cutoff is disclosed and may include amplifying electrical signals received via coupling capacitors utilizing a transimpedance amplifier (TIA) having feedback paths comprising source followers and feedback resistors. Gate terminals of the source followers may be coupled to output terminals of the TIA. The feedback paths may be coupled prior to the coupling capacitors at inputs of the TIA. Voltages may be level shifted prior to the coupling capacitors to ensure stable bias conditions for the TIA. The TIA may be integrated in a CMOS photonics chip and the source followers may comprise CMOS transistors. The TIA may receive current-mode logic or voltage signals. The electrical signals may be received from a photodetector, which may comprise a silicon germanium photodiode differentially coupled to the TIA. Optical signals for the photodetector in the CMOS photonics chip may be received via optical fibers.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: June 17, 2014
    Assignee: Luxtera, Inc.
    Inventor: Brian Welch
  • Patent number: 8742316
    Abstract: Provided is a photo detector. The photo detector includes: an avalanche photodiode; a bias circuit supplying a bias voltage to one end of the avalanche photodiode; a detection circuit connected to the other end of the avalanche photodiode and detecting a photoelectric current occurring in the avalanche photodiode; and a coupling capacitor connected to the one end or the other end of the avalanche photodiode and supplying a coupling voltage to drive the avalanche photodiode in a Geiger mode.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: June 3, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Kisoo Kim, Eun Soo Nam, Jae-Sik Sim, Yong-Hwan Kwon, Bongki Mheen, Myungsook Oh
  • Patent number: 8742852
    Abstract: A differential amplifier capable of canceling an input offset current and expanding a linearly operating range is disclosed. The differential amplifier, which is preferably applicable to an optical receiver to convert a photocurrent into a voltage signal, includes a trans-impedance amplifier and an offset canceller that detects output offset and extracts input current to cancel the output offset. Moreover, the extracted input current traces the average level of the input voltage to widen the linearly operating range of the trans-impedance amplifier.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: June 3, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yoshiyuki Sugimoto
  • Patent number: 8736381
    Abstract: The invention concerns a detection device including a photodiode (Ph) designed to capture a luminous signal to transform it into a current (Iph) and including first and second terminals, a transimpedance amplifier circuit connected between the first terminal and the second terminal of the photodiode (Ph) and designed to amplify the current (Iph) coming from the photodiode (Ph). The transimpedance amplifier circuit includes a plurality of operational amplifiers (AOP1, AOP2, AOP3) connected in parallel and a gain resistor (Rgain) common to all the connected amplifiers.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 27, 2014
    Assignee: Schneider Electric Industries SAS
    Inventors: Laurent Chiesi, Hynek Raisigel
  • Patent number: 8731410
    Abstract: Methods and systems for split voltage domain receiver circuits are disclosed and may include amplifying complementary received signals in a plurality of partial voltage domains. The signals may be combined into a single differential signal in a single voltage domain. Each of the partial voltage domains may be offset by a DC voltage from the other partial voltage domains. The sum of the partial domains may be equal to a supply voltage of the integrated circuit. The complementary signals may be received from a photodiode. The amplified received signals may be amplified via stacked common source amplifiers, common emitter amplifiers, or stacked inverters. The amplified received signals may be DC coupled prior to combining. The complementary received signals may be amplified and combined via cascode amplifiers. The voltage domains may be stacked, and may be controlled via feedback loops. The photodetector may be integrated in the integrated circuit.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: May 20, 2014
    Assignee: Luxtera, Inc.
    Inventor: Brian Welch
  • Patent number: 8729452
    Abstract: A variable gain amplifier canceling the dependence of the frequency bandwidth thereof on the gain is disclosed. The variable gain amplifier includes a differential stage with a cascade transistor put between an amplifying transistor and a load resistor. The amplifier further includes a current supplier and a current extractor. The current supplier extracts a current flowing in the second transistor by supplying an additional current to the amplifying transistor. The current extractor adds the additional current flowing in the load resistor which is extracted by the additional current by the current supplier. The bias condition of the load resistor is kept substantially constant independent of the equivalent impedance of the cascade transistor.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Taizo Tatsumi
  • Patent number: 8725005
    Abstract: A photodetector receiver circuit for an optical communication system includes an optical photodetector which receives optical signals and converts them into an electrical current. In one illustrative embodiment, a dynamic impedance module which switches the receiver circuit between a high impedance state and a low impedance state and a buffer stage which receives the electrical current and converts the electrical current into a voltage signal compatible with a digital circuit. A method for receiving an optical signal includes, receiving the optical signal and converting it into an electrical pulse train, switching a dynamic impedance module between a high impedance state and a low impedance state, transforming the electrical pulse train into an output voltage signal using a buffer stage, and receiving the output voltage signal by a digital circuit.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: May 13, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Kyung Hoae Koo, Marco Fiorentino, David A. Fattal
  • Patent number: 8723606
    Abstract: In accordance with an embodiment, a gain enhancement circuit includes an amplifier having an input terminal, a transistor coupled to the input terminal and a capacitance dynamically coupled to another input terminal of the amplifier by a switch, wherein the capacitance is a parasitic element of the transistor.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: May 13, 2014
    Inventors: Yannick De Wit, Ishwar Chandra Mudegowdar, Genis Chapinal
  • Patent number: 8717105
    Abstract: A photodetecting device 1 includes a photodiode PD and an integrating circuit 11. The integrating circuit 11 includes an amplifier circuit 20, a capacitive element C2, and a second switch SW2. The amplifier circuit 20 has a driving section including a PMOS transistor T1 and an NMOS transistor T2, the respective drain terminals thereof being connected to each other. A first switch SW1 comprising a PMOS transistor T10 is opened or closed according to the level of a first reset signal Reset1 input to the gate terminal. When the first reset signal Reset1 is at a low level, the first switch SW1 is closed to apply a power supply potential VDD to the gate terminal of the PMOS transistor T1, thereby turning off the PMOS transistor T1. Thus, an amplifier circuit, an integrating circuit and a photodetecting device capable of achieving both low power consumption and high speed can be realized.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: May 6, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Haruhiro Funakoshi, Shinya Ito
  • Patent number: RE45652
    Abstract: The invention relates to an amplifier capable of delivering a plurality of output signals, these output signals being controlled by a plurality of input signals. A multiple-input and multiple-output amplifier of the invention comprises a common input terminal, 4 signal input terminals, 4 signal output terminals, a common terminal amplifier, 4 active sub-circuits and a feedback network. Each active sub-circuit has a sub-circuit input terminal connected to one of the signal input terminals, a sub-circuit output terminal connected to one of the signal output terminals and a sub-circuit common terminal. The feedback network has four C terminals and one R terminal. Each of said C terminals of the feedback network is coupled to the sub-circuit common terminal of one of said active sub-circuits. The output terminal of the common terminal amplifier is coupled to said R terminal of the feedback network.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: August 11, 2015
    Assignee: Apple Inc.
    Inventors: Frederic Broyde, Evelyne Clavelier