L-c Type Oscillators Patents (Class 331/167)
  • Patent number: 8928423
    Abstract: A narrow band receiver or transceiver for processing electrical signals. The narrow band receiver or transceiver includes an amplifier, a voltage controlled oscillator and a tuning assembly comprising at least one control loop for tuning of the voltage controlled oscillator. At least a gain control of the amplifier is coupled to the control loop for simultaneously tuning the output amplitude of the voltage controlled oscillator and the gain of the amplifier. A compensation of the effect of variation on the gain of the amplifier, which includes an LC tank circuit, is performed by using an information in another LC tank circuit of the voltage controlled oscillator in the control loop.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: January 6, 2015
    Assignee: EM Microelectronic-Marin S.A.
    Inventors: Armin Tajalli, Marc Morin
  • Patent number: 8928418
    Abstract: Systems and methods for reducing process sensitivity in integrated circuit (“IC”) fabrication. An integrated circuit structure is provided that includes a first integrated circuit device having at least one parameter influenced by process variation in a first manner. The integrated circuit structure further includes a second integrated device having the least one parameter influenced by the process variation in a second manner. The first manner is opposite of the second manner. The second integrated device is configured to offset or reduce the influence of the process variation on the at least one parameter in the first integrated circuit device.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, Anthony R. Bonaccio, Ramana M. Malladi
  • Patent number: 8922288
    Abstract: An oscillator circuit comprising first and second resonator terminals for connecting to respective terminals of a resonator. The oscillator circuit also comprises a first inverting amplifier connected between the first and second resonator terminals in a first mode of operation; and a back to back pair of second inverting amplifiers connected between the first and second resonator terminals in a second mode of operation. There is also provided a controller configured to compare an operational parameter of the oscillator circuit to a switchover threshold, and switch the oscillator circuit from the first mode of operation to the second mode of operation when the operational parameter exceeds the switchover threshold.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: December 30, 2014
    Assignee: NXP, B.V.
    Inventors: Johannes Hubertus Antonius Brekelmans, Reinier Hoogendoorn, Nenad Pavlovic
  • Patent number: 8912857
    Abstract: A phase locked loop system, comprises: a voltage controlled oscillator circuit, comprising a first plurality of switchable varactors for selecting a frequency band of the VCO, that has a gain that changes with frequency band, and a second plurality of switchable varactors for varying the gain in the selected band. The PLL system has a PLL feedback circuit comprising a switching device for switching the feedback circuit to an open loop state wherein a plurality of predefined tuning voltages can be applied to the VCO; a frequency measurement device for measuring the synthesized VCO frequency; and a control unit operable to determine the gain with respect to the synthesized frequency and the tuning voltages.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: December 16, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hugues Beaulaton, Thierry Cassagnes, Stéphane Colomines, Didier Salle
  • Patent number: 8896389
    Abstract: The present disclosure relates to an oscillation circuit including a differential negative resistance element, a resonance circuit connected to the differential negative resistance element, and a stabilization circuit connected in parallel with the negative resistance element to suppress parasitic oscillation. The stabilization circuit includes a variable shunt resistor and an adjusting device for adjusting the shunt resistor.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 25, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Koyama, Ryota Sekiguchi
  • Patent number: 8896390
    Abstract: A circuit of inductance/capacitance (LC) voltage control oscillator (VCO) includes an LC VCO unit, a peak detector and a processing unit. The LC VCO unit receives a current control signal and outputs an oscillating voltage signal. The peak detector receives the oscillating voltage signal to obtain an averaged voltage value. The processing unit receives the averaged voltage value to accordingly output the current control signal and feedback to the LC VCO unit. The processing unit also detects whether or not the averaged voltage value has reached to a saturation state and a corresponding critical current. After the current control signal reaches to the critical current, the current control signal is set within a variance range near the critical current.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: November 25, 2014
    Assignee: Novatek Microelectronics Corp.
    Inventor: Chih-Hung Chen
  • Patent number: 8890633
    Abstract: According to an example embodiment, a device includes a resonant circuit configured and arranged to provide a peak current flow at a resonance frequency. A trimming circuit provides variable impedances to the resonant circuit and thereby changes the resonance frequency for the resonant circuit. A driver circuit is configured to generate a trimming signal that oscillates at a desired frequency. A switch circuit couples and decouples the driver circuit to the resonant circuit for driving the resonant circuit with the trimming signal. An amplitude detection circuit detects amplitudes for signals generated in response to the trimming signal being connected to the resonant circuit. A processing circuit correlates detected amplitudes from the amplitude detection circuit with different impedance values of the variable trimming circuit.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: November 18, 2014
    Assignee: NXP B.V.
    Inventor: Sven Simons
  • Patent number: 8884708
    Abstract: The present invention provides a digitally controlled oscillator device capable of realizing a reduction in DNL. The digitally controlled oscillator device includes, for example, an amplifier circuit block, coil elements and a plurality of unitary capacitor units coupled in parallel between oscillation output nodes. Each of the unitary capacitor units is provided with capacitive elements, and a switch which selects whether the capacitive elements should be allowed to contribute as set parameters for an oscillation frequency. The switch is driven by an on/off control line extending from a decoder circuit. The on/off control line is shielded between the oscillation output nodes by a shield section.
    Type: Grant
    Filed: October 13, 2012
    Date of Patent: November 11, 2014
    Assignee: Renesas Mobile Corporation
    Inventor: Takahiro Nakamura
  • Patent number: 8884718
    Abstract: A substantially temperature-independent LC-based oscillator uses bias control techniques. Temperature independence may be achieved by controlling the harmonic frequency content of the output of the oscillator by controlling the amplitude. Amplitude control may be achieved by inserting a control mechanism in the feedback loop of the oscillator.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: November 11, 2014
    Assignee: Si-Ware Systems
    Inventors: Nabil M. Sinoussi, Mohamed M. Weheiba, Ahmed A. Helmy, Ahmed H. A. Razek, Ayman Ahmed
  • Patent number: 8884713
    Abstract: This invention compensates for the unintentional magnetic coupling between a first and second inductor of two different closely spaced inductors separated by a conversion circuit. A cancellation circuit formed from transistors senses the magnetic coupling in the first inductor and feeds a current opposite to the induced magnetic coupling captured by the second inductor such that the coupled magnetic coupling can be compensated and allows the first and second inductors to behave independently with regards to the coupled magnetic coupling between the first and second inductors. This allows the distance between the first and second inductors to be minimized which saves silicon area. In addition, the performance is improved since the overall capacitance in both circuits can be decreased. This cancellation technique to reduce the magnetic coupling between two closed placed inductively loaded circuits allows the design of a more compact and faster performing circuit.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: November 11, 2014
    Assignee: Tensorcom, Inc.
    Inventor: KhongMeng Tham
  • Patent number: 8878614
    Abstract: A PLL circuit includes an oscillator, a detection block, an integral path and a proportional path. The oscillator generates an oscillation signal. The detection block detects a phase difference between the oscillation signal and a reference signal and generates an integral signal that represents an integral value of the phase difference and a proportional signal that represents a current value of the phase difference. The integral path includes a regulator that receives the integral signal and supplies a regulated integral signal to the oscillator, and the regulator has a feedback loop including an error amplifier. The proportional path supplies the proportional signal, separately from the integral signal, to the oscillator. The oscillator generates the oscillation signal having an oscillation frequency controlled by both of the regulated integral signal and the proportional signal such that the phase of the oscillation signal is locked to the phase of the reference signal.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 4, 2014
    Assignee: MegaChips Corporation
    Inventors: Wenjing Yin, Anand Gopalan
  • Patent number: 8874631
    Abstract: A random number generation apparatus includes: a random noise generation element comprising a source region and a drain region, a tunnel insulation film, a gate electrode, and a charge trap portion provided between the tunnel insulation film and the gate electrode and being capable of trapping charges, random noise being generated in a drain current flowing between the source region and the drain region on the basis of charges trapped in the charge trap portion; a random number conversion circuit for converting random noise generated from the random noise generation element to a random number; a first test circuit for performing a random number test to test quality of the random number output from the random number conversion circuit; and an initialization circuit for pulling out charges in the charge trap portion of the random noise generation element to the semiconductor substrate through the tunnel insulation film and thereby initializing the charge trap portion.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: October 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mari Matsumoto, Tetsufumi Tanamoto, Shinichi Yasuda
  • Patent number: 8866558
    Abstract: A standing wave oscillator includes a cross-coupled differential transistor pair having a pair of input terminals and a pair of output terminals; and a resonant circuit coupled to the input terminals of the cross-coupled differential transistor pair. The resonant circuit includes: a capacitance between the input terminals of the cross-coupled differential transistor pair; and a differential dual-mode coplanar waveguide (CPW) having opposite differential ends thereof connected to respective input terminals of the cross-coupled differential transistor pair. CPW ground lines of the differential dual-mode coplanar waveguide each have a first end thereof connected to the first supply voltage and have a second end thereof floating or unterminated.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: October 21, 2014
    Assignee: Her Majesty the Queen in Right of Canada, as Represented by the Minister of Industry, Through the Communications Research Centre Canada
    Inventors: Ming Li, Khelifa Hettak, Rony E. Amaya, Adrian Momciu, Luc A. Desormeaux, Valek Szwarc
  • Patent number: 8860519
    Abstract: Methods and means related to an electronic circuit having an inductor and a memcapacitor are provided. Circuitry is formed upon a substrate such that an inductor and non-volatile memory capacitor are formed. Additional circuitry can be optionally formed on the substrate as well. The capacitive value of the memcapacitor is adjustable within a range by way of an applied programming voltage. The capacitive value of the memcapacitor is maintained until reprogrammed at some later time. Oscillators, phase-locked loops and other circuits can be configured using embodiments of the present teachings.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: October 14, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Gilberto Medeiros Ribeiro, John Paul Strachan
  • Patent number: 8860516
    Abstract: A piezoelectric oscillator includes: a piezoelectric resonator element having a piezoelectric substrate and an excitation electrode formed on a surface of the piezoelectric substrate; a semiconductor circuit element provided with an oscillation circuit for oscillating the piezoelectric resonator element and having a first insulating film formed on a principal surface; a package for airtightly housing the semiconductor circuit element and the piezoelectric resonator element; and a protruding section having at least of a thin film circuit component formed on the first insulating film and connected to the oscillation circuit; and a second insulating film formed on the first insulating film and covering the thin film circuit component. In the oscillator, the piezoelectric resonator element is fixed to an upper surface of the protruding section.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 14, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Shinji Nishio
  • Patent number: 8854151
    Abstract: An electrical resonance network comprising a first capacitor and a first inductor whose resonance frequency can be tuned by means of a second capacitor and/or a second inductor. The resulting effective capacitor- or inductor value of a network period is controlled by a variable coupling respectively decoupling interval by means of at least one coupling switch. The coupling respectively decoupling interval is synchronized by a sign change of a current and/or voltage in the network.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: October 7, 2014
    Inventor: Markus Rehm
  • Patent number: 8847695
    Abstract: A substantially temperature-independent LC-based oscillator is achieved using an LC tank that generates a tank oscillation at a phase substantially equal to a temperature null phase. The temperature null phase is a phase of the LC tank at which variations in frequency of an output oscillation of the LC-based oscillator with temperature changes are minimized. The LC-based oscillator further includes frequency stabilizer circuitry coupled to the LC tank to cause the LC tank to oscillate at the phase substantially equal to the temperature null phase.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: September 30, 2014
    Assignee: Si-Ware Systems
    Inventors: Bassel Hanafi, Sherif Hosny, Ayman Ahmed
  • Patent number: 8836443
    Abstract: Integrated circuits with phase-locked loops are provided. Phase-locked loops may include an oscillator, a phase-frequency detector, a charge pump, a loop filter, a voltage-controlled oscillator, and a programmable divider. The voltage-controlled oscillator may include multiple inductors, an oscillator circuit, and a buffer circuit. A selected one of the multiple inductors may be actively connected to the oscillator circuit. The voltage-controlled oscillators may have multiple oscillator circuits. Each oscillator circuit may be connected to a respective inductor, may include a varactor, and may be powered by a respective voltage regulator. Each oscillator circuit may be coupled to a respective input transistor pair in the buffer circuit through associated coupling capacitors. A selected one of the oscillator circuits may be turned on during normal operation by supplying a high voltage to the selected one of the oscillator circuit and by supply a ground voltage to the remaining oscillator circuits.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 16, 2014
    Assignee: Altera Corporation
    Inventors: Weiqi Ding, Sergey Shumarayev, Wilson Wong, Ali Atesoglu, Sharat Babu Ippili
  • Patent number: 8830007
    Abstract: An ultra-low phase noise voltage controlled oscillator uses a single bipolar transistor Colpitts oscillator circuit and a noise-reducing negative feedback path consisting of a capacitor and a second element which may be a second capacitor, an inductor or a resistor. The negative feedback path is kept separate from any DC biasing paths in the circuit. A pair of varactor diodes are used to provide resonant frequency control.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: September 9, 2014
    Assignee: Scientific Components Corporation
    Inventor: Doron Gamliel
  • Patent number: 8816790
    Abstract: Oscillators are described that have a highly stable output frequency versus the variation of supply voltage and different operating conditions such as temperature. The concepts are broadly applicable to various types of oscillators. The highly stable output is achieved with the use of self biasing loops. The circuits associated with providing constant harmonic output current can be used with the concept of a phi-null oscillator to further stabilize the output frequency.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: August 26, 2014
    Inventor: Nabil Mohamed Sinoussi
  • Patent number: 8810322
    Abstract: A wideband frequency generator has two or more oscillators for different frequency bands, disposed on the same die within a flip chip package. Coupling between inductors of the two oscillators is reduced by placing one inductor on the die and the other inductor on the package, separating the inductors by a solder bump diameter. The loosely coupled inductors allow manipulation of the LC tank circuit of one of the oscillators to increase the bandwidth of the other oscillator, and vice versa. Preventing undesirable mode of oscillation in one of the oscillators may be achieved by loading the LC tank circuit of the other oscillator with a large capacitance, such as the entire capacitance of the coarse tuning bank of the other oscillator. Preventing the undesirable mode may also be achieved by decreasing the quality factor of the other oscillator's LC tank and thereby increasing the losses in the tank circuit.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: August 19, 2014
    Assignee: Qualcomm Incorporated
    Inventors: Rajagopalan Rangarajan, Chinmaya Mishra, Maulin Bhagat, Zhang Jin
  • Patent number: 8810329
    Abstract: An LC oscillator tank that generates a tank oscillation at a phase substantially equal to a temperature null phase. The oscillator further includes frequency stabilizer circuitry coupled to the LC oscillator tank to cause the LC oscillator tank to operate at the temperature null phase. In one aspect of the disclosure, a feedback loop may split the output voltage of the LC tank into two voltages having different phases, where each voltage is independently transformed into a current through programmable transconductors, The two currents may be combined to form a resultant current which is then applied to the LC tank. The phase of the resultant current is such that the LC tank operates at an impedance condition that achieves frequency stability across temperature.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: August 19, 2014
    Inventors: Nabil M. Sinoussi, Bassel Hanafi
  • Patent number: 8810328
    Abstract: A circuit arrangement for the inductive transfer of energy is disclosed. The circuit arrangement includes an oscillator; and a device for detecting the load of the oscillator and for setting the circuit arrangement into one of multiple operating states depending on the detected load. The device determines the load of the oscillator using an electrical variable occurring in the oscillator.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: August 19, 2014
    Assignee: Braun GmbH
    Inventors: Philipp Jung, Joachim Lepper, Jan Christian Langsdorf, Thomas Hohmann
  • Patent number: 8803616
    Abstract: The LC tank of a VCO includes a main varactor circuit and temperature compensation varactor circuit coupled in parallel with the main varactor circuit. The main varactor is used for fine tuning. The temperature compensation varactor circuit has a capacitance-voltage characteristic that differs from a capacitance-voltage characteristic of the main varactor circuit such that the effects of common mode noise across the two varactor circuits are minimized. The LC tank also has a plurality of switchable capacitor circuits provided for coarse tuning. To prevent breakdown of the main thin oxide switch in each of the switchable capacitor circuits, each switchable capacitor circuit has a capacitive voltage divider circuit that reduces the voltage across the main thin oxide switch when the main switch is off.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: August 12, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Gang Zhang
  • Patent number: 8797105
    Abstract: The present disclosure provides a tunable signal source having a plurality of oscillator cores having a coupling input, a coupling output, and a power output that is common to each of the plurality of oscillator cores. Also included is a plurality of tunable phase shifters wherein corresponding ones of the plurality of tunable phase shifters are communicatively coupled between the coupling input and the coupling output of corresponding ones of the plurality of oscillator cores, thereby forming a loop of alternating ones of the plurality of oscillator cores and alternating ones of the plurality of tunable phase shifters.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: August 5, 2014
    Assignee: Cornell University
    Inventors: Ehsan Afshari, Yahya M. Tousi
  • Patent number: 8786376
    Abstract: A voltage controlled oscillator, includes a tank circuit including an inductor having a value L, interconnected with first and second variable capacitors, having values CVAR1 and CVAR2, and a fixed capacitor CFIXED, to cause oscillation of the oscillator at a controlled frequency f osc = ( 2 ? ? ) - 1 ? ( L ? { C VAR ? ? 2 + C FIXED ? C VAR ? ? 1 C FIXED + C VAR ? ? 1 } ) - 1 / 2 CVAR1 controls coarse frequency tuning of the oscillator, and CVAR2 may control fine tuning of the oscillator. The variable capacitors may be formed using accumulation-mode MOS varactors.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: July 22, 2014
    Assignee: Peraso Technologies, Inc.
    Inventors: Sorin Voinigescu, Ekaterina Laksin
  • Patent number: 8779862
    Abstract: An oscillator having a plurality of operatively coupled ring oscillators arranged in hyper-matrix architecture. The operatively coupled ring oscillators are either identical or non-identical and are coupled through a common inverter or tail current transistors. Due to the arrangement of the ring oscillators in a hyper-matrix structure, the ring oscillators are synchronized and resist any variation in frequency or phase thereby maintaining a consistent phase noise performance.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: July 15, 2014
    Assignee: STMicroelectronics International N.V.
    Inventor: Prashant Dubey
  • Publication number: 20140191816
    Abstract: Embodiments of the present invention provide a design structure and method for compensating for a change in frequency of oscillation (FOO) of an LC-tank VCO that includes a first node; second node; inductor; first capacitive network (FCN) that allows the design structure to obtain a target FOO; compensating capacitive (CCN) network that compensates for a change in the design structure's FOO; second capacitive network (SCN) that allows the design structure to obtain a desired FOO; a filter that supplies a voltage to the SCN and is coupled to the SCN; a transconductor that compensates for a change in the design structure's FOO; and a sub-circuit coupled to the SCN that generates and supplies voltage to the CCN sufficient to allow the CCN to compensate for a reduction in the design structure's FOO. The first and second nodes are coupled to the inductor, FCN, CCN, SCN, and sub-circuit.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 10, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herschel A. Ainspan, Ram Kelkar, Anjali R. Malladi, Ramana M. Malladi
  • Patent number: 8773215
    Abstract: There is provided a tank based oscillator. The oscillator includes one or more active devices, one or more passive devices, and a tank circuit decoupled from the active devices using at least one of the one or more passive devices. A coupling ratio between the tank circuit and the one or more active devices is set such that a maximum value of an oscillation amplitude of the tank circuit is limited based upon a breakdown of only the one or more passive devices.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Bodhisatwa Sadhu, Jean-Oliver Plouchart, Scott K. Reynolds, Alexander V. Rylyakov, Jose A. Tierno
  • Publication number: 20140167867
    Abstract: A variable inductor is disclosed. In accordance with some embodiments of the present disclosure, a variable inductor may comprise a single-turn conductor comprising a first inductor terminal, a second inductor terminal, a first base portion extending from the first inductor terminal to a first intersection location, a second base portion extending from the second inductor terminal to a second intersection location, and a switched portion extending from the first intersection location to the second intersection location, and a switch comprising a first conductive terminal coupled to the first intersection location and a second conductive terminal coupled to the second intersection location.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: Intel IP Corporation
    Inventors: Rizwan Ahmed, Curtiss Roberts, Chi Taou Tsai
  • Patent number: 8754719
    Abstract: A divider for use in an integrated circuit chip, such as a clock generator chip, includes a ramp generator circuit configured to generate a ramp signal and a synchronous detector circuit configured to receive the ramp signal and an input clock signal and to responsively control the ramp signal generator circuit to generate an output clock signal at an output of the synchronous detector circuit. In some embodiments, the synchronous detector circuit may include a voltage threshold detector circuit configured to receive the ramp signal and to generate a detection signal responsive thereto and a synchronous latch circuit having a clock input configured to receive the input clock signal and a data input configured to receive the detection signal. The synchronous latch circuit may be configured to control the ramp generator circuit.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: June 17, 2014
    Assignee: Integrated Device Technology Inc.
    Inventor: Justin O'Day
  • Patent number: 8742862
    Abstract: A current reuse voltage controlled oscillator with improved differential output is disclosed. In an exemplary embodiment, an apparatus includes a PMOS transistor and an NMOS transistor coupled together for current reuse and configured to provide differential oscillator outputs. The apparatus also includes a common mode rejection (CMR) circuit coupled between the PMOS and the NMOS transistors, the CMR circuit includes an inductor having a least one tap that can be selectively coupled to a ground to reduce common mode signals at the differential oscillator outputs.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: June 3, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Mazhareddin Taghivand
  • Patent number: 8742859
    Abstract: A tunable inductor circuit is disclosed. The tunable inductor circuit includes a first inductor. The tunable inductor circuit also includes a second inductor in parallel with the first inductor. The tunable inductor circuit also includes a switch coupled to the second inductor. A resistance of the switch is added in parallel to the first inductor based on operation of the switch.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: June 3, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Zhang Jin, Li Liu, Chiewcham Narathong
  • Patent number: 8736393
    Abstract: A digitally controlled variable capacitance integrated electronic circuit module (100) comprises a set of basic cells in a matrix arrangement. Each basic cell itself comprises a functional block (11) which can be switched between two individual capacitance values, a control block (12), and a control junction connecting the control block and the functional block of said basic cell. The functional blocks and the control blocks are grouped into separate regions (110, 120) of the matrix arrangement, to reduce capacitive interaction between output paths and power supply paths of the module. The functional blocks can still be switched in a winding path order within the matrix arrangement. A module of the invention can be used in an oscillator capable of producing a signal at 4 GHz.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: May 27, 2014
    Assignee: ST-Ericsson SA
    Inventors: Guillaume Herault, Herve Marie
  • Patent number: 8736392
    Abstract: Techniques for providing transformer-based CMOS oscillators capable of operation with low voltage power supplies. In an exemplary embodiment, an LC tank is provided at the drains of a transistor pair, and the inductance of the LC tank is mutually magnetically coupled to an inductance between the gates of the transistor pair. A separate complementary transistor pair is also coupled to the LC tank. A further exemplary embodiment provides an LC tank at the gates of a transistor pair, as well as for three-way coupling amongst a tank inductance, an inductance between the gates of the transistor pair, and an inductance between the gates of a complementary transistor pair.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: May 27, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Mazhareddin Taghivand
  • Patent number: 8729975
    Abstract: A method and circuit for implementing differential resonant clocking with a DC blocking capacitor, and a design structure on which the subject circuit resides are provided. An on-chip inductor and an on-chip capacitor are connected between a pair of differential active clock load nodes to form a resonant tank circuit. The on-chip inductor has a selected value based upon a value of a load capacitor of the differential active clock load nodes to determine the resonant frequency. The on-chip capacitor has a selected value substantially greater than the value of the load capacitor.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: May 20, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kenneth A. Van Goor, David I. Sanderson
  • Patent number: 8717109
    Abstract: A temperature invariant digitally controlled oscillator is disclosed. The digitally controlled oscillator is configured to generate an output clock with stable frequency. The temperature invariant digitally controlled oscillator comprises a digitally controlled oscillator, a temperature sensor, a temperature decision logic circuit, and a temperature conditioner. The digitally controlled signal is provided to adjust the oscillation frequency of the digitally controlled oscillator by changing its capacitances. The stabilization of the silicon temperature is achieved with the temperature sensor, the temperature decision logic circuit, and the temperature conditioner.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: May 6, 2014
    Assignee: Realtek Semiconductor Corp.
    Inventor: Hong-Yean Hsieh
  • Patent number: 8717113
    Abstract: An oscillator and a semiconductor integrated circuit device with an internal oscillator capable of compensating the temperature characteristics even when there is a large parasitic capacitance too large to ignore directly between the output terminals of the oscillator. In an oscillator containing an inductance element L, and a capacitive element C, and an amplifier each coupled in parallel across a first and second terminal, the amplifier amplifies the resonance generated by the inductance element and capacitive element and issues an output from the first terminal and the second terminal, and in which a first resistance element with a larger resistance value than the parasitic resistance of the inductance element between the first terminal and the second terminal, is coupled in serial with the capacitive element between the first terminal and the second terminal.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: May 6, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Yoichi Iizuka, Yasuo Ikeda, Satoshi Onishi
  • Patent number: 8717115
    Abstract: A resonator circuit enabling temperature compensation includes an inductor coupled between a first node and a second node of the resonator circuit; a capacitor circuit coupled between the first node and the second node; and a temperature compensation circuit coupled between the first node and the second node. The temperature compensation circuit comprises a varactor coupled to receive a temperature control signal that sets the capacitance of the varactor. A method of generating a resonating output is also disclosed.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: May 6, 2014
    Assignee: Xilinx, Inc.
    Inventor: Parag Upadhyaya
  • Patent number: 8717114
    Abstract: Circuits, methods, apparatus, and code that provide low-noise and high-resolution electronic circuit tuning. An exemplary embodiment of the present invention adjusts a capacitance value by pulse-width modulating a control voltage for a switch in series with a capacitor. The pulse-width-modulated control signal can be adjusted using entry values found in a lookup table, by using analog or digital control signals, or by using other appropriate methods. The capacitance value tunes a frequency response or characteristic of an electronic circuit. The response can be made to be insensitive to conditions such as temperature, power supply voltage, or processing.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: May 6, 2014
    Assignee: Marvell World Trade Ltd.
    Inventors: Jody Greenberg, Sehat Sutardja
  • Patent number: 8717112
    Abstract: An inductance-capacitance (LC) oscillator including a first varactor cell, a first transistor, a second transistor and a first pair of differential transformers is provided. The first varactor cell provides a first variable capacitance to adjust/tune the frequency of a first differential oscillation signal generated by the LC oscillator, and outputting the first differential oscillation signal. The first transistor is coupled between a core dc supply voltage and a first terminal of the first varactor cell. The second transistor is coupled between a ground potential and a second terminal of the first varactor cell. The first pair of differential transformers is connected in cascade with the first transistor and the second transistor between the core dc supply voltage and the ground potential, and is used for increasing the output-swing of the first differential oscillation signal, and making a current flowing through the first transistor to be reused by the second transistor.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: May 6, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Hong-Yeh Chang, Yuan-Ta Chiu, Chia-Hung Chang, Chun-Jen Chen
  • Patent number: 8698570
    Abstract: A passive frequency divider in a CMOS process. More specifically, an electrical distributed parametric oscillator to realize a passive CMOS frequency divider with low phase noise. Instead of using active devices, which are the main sources of noise and power consumption, an oscillation at half of the input frequency is sustained by the parametric process based on nonlinear interaction with the input signal. For example, one embodiment is a 20 GHz frequency divider utilizing a CMOS varactor and made in a 0.13 ?m CMOS process. In this embodiment: (i) without any dc power consumption, 600 mV differential output amplitude can be achieved for an input amplitude of 600 mV; and (ii) the input frequency ranged from 18.5 GHz to 23.5 GHz with varactor tuning. In this embodiment, the output phase noise is almost 6 dB lower than that of the input signal for all offset frequencies up to 1 MHz. Also, a resonant parametric amplifier with a low noise figure (NF) by exploiting the noise squeezing effect.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: April 15, 2014
    Assignee: Cornell University
    Inventors: Ehsan Afshari, Wooram Lee
  • Patent number: 8686805
    Abstract: The disclosure relates to an oscillator for use in generating frequencies in a frequency synthesizer, comprising: a first inductor element forming a metal trace loop with at least one turn, and a first capacitive circuit arranged to form a first resonance circuit with the first inductor element and being connected to the first inductor element through at least one first connection terminal, wherein the first capacitive circuit comprises at least one capacitive element and an electrical components arrangement arranged to establish and maintain an oscillation.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: April 1, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventor: Tomas Nylén
  • Patent number: 8674772
    Abstract: An oscillating signal generator utilized in a phase-locked loop (PLL) includes: an oscillating circuit arranged to generate an oscillating signal according to at least a first control signal; and a control circuit, arranged to adjust the first control signal according to a temperature; and the first control signal is tuned between a first boundary and a second boundary, and when the temperature is closer to a first temperature boundary than a second temperature boundary, and the control circuit is arranged to make the first control signal to be closer to the first boundary than the second boundary such that the oscillating circuit outputs the oscillating signal of a predetermined frequency in a locked mode of the PLL.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: March 18, 2014
    Assignee: Mediatek Inc.
    Inventor: Chih-Hsien Shen
  • Patent number: 8665033
    Abstract: A tunable oscillator circuit is disclosed. The tunable oscillator circuit includes an inductor/capacitor (LC) tank circuit comprising a primary inductor coupled in parallel with a first capacitor bank. The LC tank resonates to produce an oscillating voltage at a frequency. The tunable oscillator circuit also includes a 90 degree phase shift buffer coupled to the LC tank and a transconductor. The transconductor is coupled to the 90 degree phase shift buffer and a secondary inductor. The tunable oscillator circuit also includes a secondary inductor that is inductively coupled to the primary inductor and receives a gain-scaled oscillating current from the transconductor. By changing the transconductance, the gain-scaled oscillating current in the secondary inductor will change, thus the effective primary inductance and the oscillation frequency can be tuned.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: March 4, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Yiwu Tang, Jaehyouk Choi, Jongmin Park, Chiewcharn Narathong
  • Patent number: 8665034
    Abstract: Techniques for improved tuning control of varactor circuits are disclosed. For example, an apparatus comprises a plurality of varactors for tuning a frequency value. The plurality of varactors comprises approximately sqrt(2N) varactors, where N is a number of tuning steps and the plurality of varactors are respectively sized as 1x, 2x, 3x, 4x, . . . , approximately sqrt(2N)x, and where x is a unit of capacitance. A given one of the N tuning steps may be represented by more than one combination of varactors. This may be referred to as redundant numbering.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: March 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, Daniel J. Friedman, Alexander V. Rylyakov, Jose A. Tierno
  • Patent number: 8648664
    Abstract: An apparatus includes a first conductive loop coupled to conduct a first current and a second conductive loop coupled in parallel with the first conductive loop and further coupled to conduct a second current. A first conductive portion forms a part of the first conductive loop and the second conductive loop. The first conductive portion is coupled to conduct the first current and the second current. In at least one embodiment of the apparatus, the first conductive loop and the second conductive loop are planar inductors formed in a conductive layer on a substrate of an integrated circuit.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 11, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Adam B. Eldredge, Susumu Hara
  • Patent number: 8638176
    Abstract: A slew rate enhancing system includes first and second modules. The first module is configured to generate a first output signal in response to complementary first and second input signals. The second module is configured to generate a second output signal in response to the first and second input signals. The first module is configured to switch between tracking the first input signal and not tracking the first input signal during each half cycle of the first input signal based on values of the first input signal, the second input signal, and a predetermined threshold of the first module. The second module is configured to switch between tracking the first input signal and not tracking the second input signal during each half-cycle of the second input signal based on values of the first input signal, the second input signal, and a predetermined threshold of the second module.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: January 28, 2014
    Assignee: Marvell International Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 8633777
    Abstract: An integrated circuit is described. The integrated circuit includes an inductor that has a large empty area in the center of the inductor. The integrated circuit also includes additional circuitry. The additional circuitry is located within the large empty area in the center of the inductor. The additional circuitry may include a capacitor bank, transistors, electrostatic discharge (ESD) protection circuitry and other miscellaneous passive or active circuits.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: January 21, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Zhang Jin, Aristotele Hadjichristos, Ockgoo Lee, Hongyan Yan, Guy Klemens, Maulin P. Bhagat, Thomas Myers, Norman L. Frederick, Junxiong Deng, Aleksandar Tasic, Bhushan S. Asuri, Mohammad Farazian
  • Patent number: 8633776
    Abstract: A system and method for effectively performing a clock signal distribution procedure includes a clock generator configured to generate one or more clock signals that include electronic timing information. A clock load utilizes the electronic timing information from the clock signals to synchronize appropriate system processes. Capacitive coupling means are provided in a series configuration for transferring the clock signals from the clock generator to the clock load in accordance with an alternating-current direct-drive technique.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: January 21, 2014
    Assignees: Sony Corporation, Sony Electronics Inc.
    Inventors: Jeremy Chatwin, Bernard J. Griffiths