Temperature Or Light Responsive Patents (Class 331/66)
  • Patent number: 9562984
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by a plurality of wireless seismic data acquisition units in a seismic system. The receiver is capable of replicating local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver is capable of replicating local version of remote common time reference for the purpose of time stamping local node events. The receiver is capable of being placed in a low power, non-operational state over periods of time during which the seismic data acquisition unit continues to record seismic data, thus conserving unit battery power. The system implements a method to correct the local time clock based on intermittent access to the common remote time reference. The method corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 7, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 9484926
    Abstract: A semiconductor circuit device includes an oscillation circuit, an output circuit that outputs a signal output from the oscillation circuit, a temperature sensing element, a characteristic adjustment circuit that adjusts characteristics of the oscillation circuit on the basis of a signal output from the temperature sensing element, a first wiring via which power is supplied to the output circuit, and a second wiring via which a reference voltage is supplied to the output circuit in which at least one of the first wiring and the second wiring overlaps the temperature sensing element in a plan view.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: November 1, 2016
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Takehiro Yamamoto
  • Patent number: 9465124
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by a plurality of wireless seismic data acquisition units in a seismic system. The receiver is capable of replicating local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver is capable of replicating local version of remote common time reference for the purpose of time stamping local node events. The receiver is capable of being placed in a low power, non-operational state over periods of time during which the seismic data acquisition unit continues to record seismic data, thus conserving unit battery power. The system implements a method to correct the local time clock based on intermittent access to the common remote time reference. The method corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 11, 2016
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 9444466
    Abstract: A method of adjusting a frequency of a resonation device including a resonator element and a heating element includes performing the frequency adjustment of the resonator element while heating the resonator element by the heating element.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: September 13, 2016
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Kensaku Isohata
  • Patent number: 9184698
    Abstract: A system includes an oscillator referenced to a frequency extracted from periodic intensity modulations of incident light. The incident light can be intensity modulated based on the frequency of the AC voltage that powers artificial lighting. The system includes a light-sensitive element configured to generate an output signal indicative of an intensity of incident light and a controller. The controller can receive a first input signal based on the output signal from the light-sensitive element. In the presence of artificial lighting, the first input signal has a frequency based on a reference frequency at which an intensity of light incident on the light-sensitive element periodically varies. The controller can generate a control signal based in part on the reference frequency. The controller can provide the generated control signal to the adjustable oscillator to thereby adjust the oscillator frequency.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: November 10, 2015
    Assignee: Google Inc.
    Inventors: Robert Francis Wiser, Daniel James Yeager
  • Patent number: 9112508
    Abstract: According to one embodiment, a radio frequency (RF) transceiver includes a local oscillator generator (LOGEN) circuit configured to receive an adaptive supply voltage. The LOGEN circuit is coupled to a variable power supply for providing the adaptive supply voltage. A process monitor for the LOGEN circuit is in communication with the variable power supply through a power supply programming module. As a result, the adaptive supply voltage can be adjusted according to data supplied by the process monitor. A method for adaptively powering a LOGEN circuit comprises providing power to an RF device, monitoring a process corner of said LOGEN circuit, determining a supply voltage corresponding to the process corner, and adjusting the supply voltage to adaptively power the LOGEN circuit.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: August 18, 2015
    Assignee: BROADCOM CORPORATION
    Inventors: Yuyu Chang, Ahmad Yazdi, Hooman Darabi
  • Patent number: 9065383
    Abstract: An oscillation circuit includes a first variable capacitance part which includes a first variable capacitance element whose capacitance is controlled on the basis of a potential difference between a first control voltage and a first reference voltage, and is connected to the oscillation circuit, a second variable capacitance part which includes a second variable capacitance element whose capacitance is controlled on the basis of a potential difference between a first control voltage and a second reference voltage, and is connected to the oscillation circuit.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: June 23, 2015
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Masayuki Ishikawa, Takehiro Yamamoto, Yosuke Itasaka
  • Publication number: 20150145609
    Abstract: A clock signal generation circuit includes a CR oscillator circuit having a capacitor, a resistor, and an amplifier circuit, and a voltage generation circuit adapted to generate a power supply voltage, and then supply the CR oscillator circuit 170 with the power supply voltage VDOS. An oscillation frequency of the CR oscillator circuit in a case in which a power supply voltage VDDL is a fixed voltage has a positive temperature characteristic. The voltage generation circuit generates the power supply voltage VDOS having a negative temperature characteristic based on a work function difference between transistors, and then supplies the power supply voltage VDOS as a power of the amplifier circuit of the CR oscillator circuit.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventors: Teppei HIGUCHI, Masafumi TANAKA, Katsuhiko MAKI
  • Publication number: 20150130546
    Abstract: A temperature control device includes a temperature detector, a difference operation unit, a controller, a saturation processing circuit unit, a rewritable storage unit, and a conversion unit. The difference operation unit operates a digital value corresponding to a difference value between a detected temperature value and a target temperature. The controller calculates a manipulated variable using the digital value operated by the difference operation unit. The saturation processing circuit unit includes a digital circuit to limit an output value of the controller to a pre-set upper limit value. The rewritable storage unit stores the upper limit value read from a storage area of the rewritable storage unit and input into the saturation processing circuit unit. The conversion unit converts the output value of the saturation processing circuit unit into an analog signal to output the converted value as a control command value to the heater.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 14, 2015
    Inventor: TSUKASA KOBATA
  • Patent number: 9007134
    Abstract: A constant-temperature piezoelectric oscillator includes: a piezoelectric vibrator; an oscillation circuit; a frequency voltage control circuit; a temperature control section; and an arithmetic circuit, wherein the temperature control section includes a temperature-sensitive element, a heating element, and a temperature control circuit, the frequency voltage control circuit includes a voltage-controlled capacitance circuit capable of varying the capacitance value in accordance with the voltage, and a compensation voltage generation circuit, and the arithmetic circuit makes the compensation voltage generation circuit generate a voltage for compensating a frequency deviation due to a temperature difference between zero temperature coefficient temperature Tp of the piezoelectric vibrator and setting temperature Tov of the temperature control section based on a frequency-temperature characteristic compensation amount approximate formula adapted to compensate the frequency deviation, and then applies the voltage t
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: April 14, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Jun Matsuoka, Tadayoshi Soga, Akitoshi Ogino, Yuichi Oinuma
  • Publication number: 20150097630
    Abstract: A method includes generation of a first current proportional to absolute temperature and formation of a second current representative of the temperature variation of the threshold voltages of the transistors of the inverter and limited to a fraction of the first current. This fraction is less than one. The inverter is supplied with a supply current equal to the first current minus the limited second current.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 9, 2015
    Inventors: Bruno Gailhard, Michel Cuenca
  • Publication number: 20150077190
    Abstract: A package structure of crystal oscillator with embedded thermistor is disclosed. The package structure comprises a ceramic substrate. A crystal oscillation device is mounted in the accommodation space of the ceramic substrate. A cover is used to seal the accommodation space. At least one thermistor is embedded in the ceramic substrate. A patterned metal interconnection in the ceramic substrate is electrically connected with the crystal oscillation device and the thermistor, respectively. The present invention describes as follows: the thermistor is directly embedded in the ceramic substrate to avoid the short-circuit problem caused by electroplating a thermistor exposed and shorten a distance between the thermistor and the crystal oscillation device. Thus, the thermistor can more precisely sense the operating temperature of the crystal oscillation device to timely compensate frequency drift caused by changing the temperature of the crystal oscillation device.
    Type: Application
    Filed: December 12, 2013
    Publication date: March 19, 2015
    Applicant: TXC CORPORATION
    Inventors: CHIEN-WEI CHIANG, TING YEH
  • Publication number: 20150059467
    Abstract: An oscillator circuit includes a resistor configured to control an oscillating frequency. The resistor includes a positive temperature coefficient resistor and a negative temperature coefficient resistor. The positive temperature coefficient resistor has a resistance, which increases in response to increase in temperature. The negative temperature coefficient resistor has a resistance, which decreases in response to increase in temperature.
    Type: Application
    Filed: June 23, 2014
    Publication date: March 5, 2015
    Inventor: Takashi Enomoto
  • Patent number: 8901983
    Abstract: The temperature compensated timing signal generator comprises a crystal oscillator that generates a reference time signal, and a divider circuit that receives the reference time signal as input and outputs a coarse time unit signal, the coarse time unit signal having an actual frequency deviating from a desired frequency as a function of temperature of the crystal oscillator. The signal generator also includes a high frequency oscillator configured to generate an interpolation signal having a frequency greater than the frequency of the crystal oscillator. A finite state machine computes a deviation compensating signal as a function of temperature, the signal comprises an integer part representative of an integer number of pulses to be inhibited or injected in the divider circuit and a fractional part representative of how much the output of a new time unit signal pulse should further be delayed to compensate for any remaining deviation.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: December 2, 2014
    Assignee: Micro Crystal AG
    Inventors: David Ruffieux, Nicola Scolari
  • Patent number: 8896359
    Abstract: The temperature compensated timing signal generator comprises a crystal oscillator that generates a reference time signal, and a divider circuit that receives the reference time signal as input and outputs a coarse time unit signal, the coarse time unit signal having an actual frequency deviating from a desired frequency as a function of temperature of the crystal oscillator. The signal generator also includes a high frequency oscillator that generates an interpolation signal having a frequency greater than the frequency of the crystal oscillator. A finite state machine computes a deviation compensating signal as a function of the temperature signal, the signal comprises an integer part representative of an integer number of pulses to be inhibited or injected in the divider circuit and a fractional part representative of how much the output of a new time unit signal pulse should further be delayed to compensate for any remaining deviation.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 25, 2014
    Assignee: Micro Crystal AG
    Inventors: David Ruffieux, Nicola Scolari
  • Patent number: 8830004
    Abstract: A crystal resonator comprises a first vibrating region provided on a crystal wafer, a second vibrating region provided on the crystal wafer, the second vibrating region having a different thickness and positive/negative orientation of the X-axis from those of the first vibrating region, and excitation electrodes which are provided respectively on the first vibrating region and the second vibrating region for causing the vibrating regions to vibrate independently. Frequencies that change by different amounts from each other relative to a temperature change can be retrieved from one vibrating region and the other vibrating region. Thus, based on an oscillating frequency of the vibrating region in which a clear frequency change occurs relative to the temperature, the oscillating frequency of the other vibrating region can be controlled. Thereby, increases in the complexity of the crystal oscillator can be suppressed.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 9, 2014
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Mitsuaki Koyama, Toshihiko Kagami, Takeshi Matsumoto, Takeru Mutoh, Manabu Ishikawa, Shinichi Sato
  • Patent number: 8816785
    Abstract: An oscillator which oscillates electromagnetic waves includes a negative differential resistance element, a resonator configured to prescribe oscillation frequencies of the electromagnetic waves, a voltage modulation unit configured to modulate the negative differential resistance element, a stabilizing circuit configured to suppress parasitic oscillation, and a bias circuit, including a power supply and a line, used to control an operating point voltage of the negative differential resistance element. The voltage modulation unit is connected to the bias circuit through the stabilizing circuit.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: August 26, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Ryota Sekiguchi
  • Publication number: 20140225677
    Abstract: A device comprising, a mirror which is configured to oscillate in response to an oscillation signal, wherein the device is configured such that oscillation of the mirror will induce a signal; and a circuit in operable cooperation with the mirror such that an induced signal can be measured by the circuit and wherein the circuit is configured to provide an oscillation signal proportional to the measured induced signal; wherein the device is configured such that the mirror can receive the oscillation signal so that the oscillation signal is filtered due to oscillation limitations of mirror, to provide a filtered signal.
    Type: Application
    Filed: September 30, 2011
    Publication date: August 14, 2014
    Inventors: Eric Chevallaz, Marc Pastre, Francois Krummenacher, Maher Kayal
  • Patent number: 8803616
    Abstract: The LC tank of a VCO includes a main varactor circuit and temperature compensation varactor circuit coupled in parallel with the main varactor circuit. The main varactor is used for fine tuning. The temperature compensation varactor circuit has a capacitance-voltage characteristic that differs from a capacitance-voltage characteristic of the main varactor circuit such that the effects of common mode noise across the two varactor circuits are minimized. The LC tank also has a plurality of switchable capacitor circuits provided for coarse tuning. To prevent breakdown of the main thin oxide switch in each of the switchable capacitor circuits, each switchable capacitor circuit has a capacitive voltage divider circuit that reduces the voltage across the main thin oxide switch when the main switch is off.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: August 12, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Gang Zhang
  • Publication number: 20140210563
    Abstract: A crystal controlled oscillator of the present disclosure includes: an oscillator circuit for oscillator output, a first oscillator circuit, a second oscillator circuit, a heating unit, a pulse generator, a frequency difference detector, an addition unit, a circuit unit, a frequency measuring unit, a determination unit, and a signal selector. The signal selector is configured to: select a control signal where electric power supplied to the heating unit is smaller than supplied electric power in the detection range in a case where a frequency in a set period at the train of pulses is out of the detection range at the high temperature side; select a control signal where electric power supplied to the heating unit becomes a preset value in a case where a frequency in the set period at the train of pulses is out of the detection range at the low temperature side.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Applicant: NIHON DEMPA KOGYO CO., LTD.
    Inventors: KAZUO AKAIKE, KAORU KOBAYASHI
  • Publication number: 20140203879
    Abstract: A temperature controlled oscillator includes an oscillation unit and a filter unit. The oscillation unit is configured to generate at least one reference voltage based on a supply voltage and a ground voltage, and to generate an oscillation signal having a period varying according to a temperature, the oscillation unit configured to generate the oscillation signal based on a filter voltage and the at least one reference voltage. The filter unit is configured to generate the filter voltage based on the oscillation signal.
    Type: Application
    Filed: January 21, 2014
    Publication date: July 24, 2014
    Inventors: Sung-Jin KIM, Jae-Jin PARK
  • Patent number: 8754718
    Abstract: A piezoelectric device includes an insulating substrate, a piezoelectric vibration device that is mounted on a device mounting pad, a metal lid member that seals the piezoelectric vibration device in an airtight manner, an external pad that is arranged outside the insulating substrate, an oscillation circuit, a temperature compensation circuit, and a temperature sensor. The lid member and the temperature sensor or the lid member and the IC component are connected to each other so as to be heat-transferable, and a heat transfer member having thermal conductivity higher than that of the material of the insulating substrate is additionally included.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: June 17, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Kyo Horie
  • Publication number: 20140125420
    Abstract: A piezoelectric device includes an insulating substrate, a piezoelectric vibration device that is mounted on a device mounting pad, a metal lid member that seals the piezoelectric vibration device in an airtight manner, an external pad that is arranged outside the insulating substrate, an oscillation circuit, a temperature compensation circuit, and a temperature sensor. The lid member and the temperature sensor or the lid member and the IC component are connected to each other so as to be heat-transferable, and a heat transfer member having thermal conductivity higher than that of the material of the insulating substrate is additionally included.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 8, 2014
    Applicant: Seiko Epson Corporation
    Inventor: Kyo HORIE
  • Patent number: 8717109
    Abstract: A temperature invariant digitally controlled oscillator is disclosed. The digitally controlled oscillator is configured to generate an output clock with stable frequency. The temperature invariant digitally controlled oscillator comprises a digitally controlled oscillator, a temperature sensor, a temperature decision logic circuit, and a temperature conditioner. The digitally controlled signal is provided to adjust the oscillation frequency of the digitally controlled oscillator by changing its capacitances. The stabilization of the silicon temperature is achieved with the temperature sensor, the temperature decision logic circuit, and the temperature conditioner.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: May 6, 2014
    Assignee: Realtek Semiconductor Corp.
    Inventor: Hong-Yean Hsieh
  • Patent number: 8710938
    Abstract: An electronic device may include a voltage controlled oscillator (VCO) and a temperature sensor. The electronic device may also include a controller configured to cooperate with the VCO and the temperature sensor to determine both a temperature and a frequency error of the VCO for each of a plurality of most recent samples. Each of the most recent samples may have a given age associated therewith. The controller may also be configured to align the temperature, the frequency error, and the given age for each of most recent samples in a three-dimensional (3D) coordinate system having respective temperature, frequency error and age axes. The controller may also be configured to estimate a predicted frequency error of the VCO based upon the aligned temperature, frequency error, and given age of the most recent samples.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: April 29, 2014
    Assignee: BlackBerry Limited
    Inventors: Grant Henry Robert Bartnik, Ryan Jeffrey Hickey
  • Patent number: 8686806
    Abstract: An apparatus and a method for compensating for a mismatch in temperature coefficients of two oscillator frequencies to match a desired frequency ratio between the two oscillator frequencies over a temperature range. In one embodiment of a temperature sensor, first and second oscillators of different temperature characteristics are coupled to a differential frequency discriminator (DFD) circuit. The DFD circuit compensates for the different characteristics in order to match a frequency difference between the first and second frequencies over a temperature range.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: April 1, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Emmanuel P. Quevy, Manu Seth
  • Publication number: 20140077888
    Abstract: A semiconductor device. The semiconductor device includes: an oscillator; a semiconductor chip that includes an oscillation circuit connected to the oscillator, a timer circuit that generates a timing signal of a frequency according to a oscillation frequency of the oscillation circuit, and a frequency correction section that corrects a frequency of the timing signal based on temperature data; and a discrete device that includes at least one of a temperature sensing device that detects a peripheral temperature, that supplies the detected temperature as temperature data to the frequency correction section, and that is provided as a separate body to the semiconductor chip, or a capacitor that is electrically connected to both the oscillator and the oscillation circuit and that is provided as a separate body to the semiconductor chip, wherein the oscillator, the semiconductor chip and the discrete device are contained within a single package.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 20, 2014
    Applicant: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Yosuke IWASA
  • Patent number: 8674779
    Abstract: One aspect of the present invention includes a reference current generator circuit. The circuit includes a bias circuit configured to generate a reference current along a first current path and a second current along a second current path. The reference current and the second current can be proportional. The circuit also includes a first pair of transistors connected in series and configured to conduct the reference current in the first current path. The circuit further includes a second pair of transistors connected in series and configured to conduct the second current in the second current path. The second pair of transistors can be coupled to the first pair of transistors to provide a collective resistance value of the second pair of transistors that is proportional to temperature.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: March 18, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Ming Xiao, Jian Wang, Jun Yi
  • Patent number: 8669822
    Abstract: A method of manufacturing a MEMS resonator formed from a first material having a first Young's modulus and a first temperature coefficient of the first Young's modulus, and a second material having a second Young's modulus and a second temperature coefficient of the second Young's modulus, a sign of the second temperature coefficient being opposite to a sign of the first temperature coefficient at least within operating conditions of the resonator. The method includes the steps of forming the resonator from the first material; applying the second material to the resonator; and controlling the quantity of the second material applied to the resonator by the geometry of the resonator.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: March 11, 2014
    Assignee: NXP, B.V.
    Inventor: Robert J. P. Lander
  • Patent number: 8659361
    Abstract: A function generator circuit includes a temperature detecting circuit outputting a detection voltage corresponding to an ambient temperature and having a linear temperature characteristic. Zeroth-order, first-order and second-order component generating circuits generate a zeroth-order component, a first-order component and a second-order component, respectively, of the control signal. A third-order component generating circuit generates a third-order component of the control signal based on the detection voltage. An adder-subtractor generates the control signal by obtaining a sum of the zeroth-order component, the first-order component, and the third-order component and adding or subtracting the second-order component to or from the sum. The second-order component generating circuit corrects a temperature at an inflection point of the control signal.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: February 25, 2014
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Ryosuke Matsuwake, Minoru Sakai
  • Publication number: 20140009235
    Abstract: An oven controlled crystal oscillator includes a crystal unit, a temperature control circuit, and a circuit board. The temperature control circuit is configured to control a temperature of the crystal unit. The crystal unit includes a flange that projects outward to an entire outer periphery in one end. The circuit board includes a depressed portion in which the flange is partially inserted. The temperature control circuit includes a power transistor, a thermistor as a temperature sensor, and a metal pattern. The power transistor becomes a heat source. The metal pattern commonly connects a ground terminal of the crystal unit, a collector of the power transistor, and a ground terminal of the thermistor. The crystal unit is positioned in a state where the flange is partially inserted in the depressed portion. The crystal unit is connected to the metal pattern.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 9, 2014
    Inventors: TAKAHIRO YOSHIMURA, JUNICHI ARAI
  • Patent number: 8504164
    Abstract: Techniques are generally described for low average power communications that can be used for communications between one or more bionic implants and/or one or more control units. Bionic implants and/or control units can be adapted to provide stimulus control and/or sensory or other feedback back from the bionic implants. An example system may include implant devices configured to exchange brief messages between other devices. Some examples may rely on coarse message timing that can be derived from a quartz tuning fork type of resonator. Carrier frequency control can be derived from an on-chip MEMS resonator adapted for high frequency use. An electrical stimulation power supply in each implant can be configured for use in nerve/muscle excitation and/or as a polarizing voltage source for the MEMS resonator. Various compensation mechanisms are described that can be used to compensate for the imprecise and/or temperature dependent frequency in the MEMS resonator.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: August 6, 2013
    Inventor: Lawrence J. Karr
  • Patent number: 8482356
    Abstract: A constant-temperature piezoelectric oscillator includes: a piezoelectric vibrator; an oscillation circuit; a frequency voltage control circuit; a temperature control section; and an arithmetic circuit, wherein the temperature control section includes a temperature-sensitive element, a heating element, and a temperature control circuit, the frequency voltage control circuit includes a voltage-controlled capacitance circuit capable of varying the capacitance value in accordance with the voltage, and a compensation voltage generation circuit, and the arithmetic circuit makes the compensation voltage generation circuit generate a voltage for compensating a frequency deviation due to a temperature difference between zero temperature coefficient temperature Tp of the piezoelectric vibrator and setting temperature Tov of the temperature control section based on a frequency-temperature characteristic compensation amount approximate formula adapted to compensate the frequency deviation, and then applies the voltage t
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 9, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Jun Matsuoka, Tadayoshi Soga, Akitoshi Ogino, Yuichi Oinuma
  • Publication number: 20130162358
    Abstract: One aspect of the present invention includes a reference current generator circuit. The circuit includes a bias circuit configured to generate a reference current along a first current path and a second current along a second current path. The reference current and the second current can be proportional. The circuit also includes a first pair of transistors connected in series and configured to conduct the reference current in the first current path. The circuit further includes a second pair of transistors connected in series and configured to conduct the second current in the second current path. The second pair of transistors can be coupled to the first pair of transistors to provide a collective resistance value of the second pair of transistors that is proportional to temperature.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Inventors: MING XIAO, Jian Wang, Jun Yi
  • Publication number: 20130141174
    Abstract: The invention concerns an oscillator generating a wave composed of a frequency of on the order of terahertz from a beat of two optical waves generated by a dual-frequency optical source (10). The oscillator comprises: a modulator (12) the transfer function of which is non-linear for generating harmonics with a frequency of less than one terahertz for each of the optical waves generated by the dual-frequency optical source, an optical detector (14) able to detect at least one harmonic for each of the optical waves generated by the dual-frequency optical source and transforming the harmonics detected into an electrical signal, a phase comparator (15) for comparing the electrical signal with a reference electrical signal, means (16) for controlling at least one element of the dual-frequency optical source with a signal obtained from the signal resulting from the comparison.
    Type: Application
    Filed: May 24, 2011
    Publication date: June 6, 2013
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE RENNES 1
    Inventors: Mehdi Alouini, Goulc'hen Loas, François Bondu, Marc Vallet, Marc-Olivier Brunel, Marco Romanelli
  • Publication number: 20130127551
    Abstract: A resonator-controlled oscillator arrangement comprises a resonator-controlled oscillator of which the operating frequency is adjustable and a control circuit for setting the operating frequency of the oscillator. The control circuit is operative to set the operating frequency in dependence upon prevailing ambient conditions. The control circuit has a control input for initiating a set-up procedure during which the operating frequency of the oscillator is set to a value remote from any resonance frequency of a coupled mode that would cause an activity dip.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 23, 2013
    Applicant: ADAPTALOG LIMITED
    Inventor: George Hedley Strorm Rokos
  • Patent number: 8446226
    Abstract: An oven controlled crystal oscillator includes a thermostatic bath, an inner circuit board, an outer circuit board, a heating element, and a temperature sensor. The inner circuit board comprising a crystal oscillation circuit is positioned inside the thermostatic bath and electrically connected with the outer circuit board via a pin. The outer circuit board has a temperature control circuit and a power supply circuit. The heating element and the temperature sensor electrically connect with the outer circuit board. A through slot is formed through the outer circuit board, and the thermostatic bath is inserted into the through slot. By inserting the thermostatic bath into the through slot of the outer circuit board, the height and the weight of the oven controlled crystal oscillator are reduced, the electric connection performance is enhanced, and thus the stability of the output frequency of the oven controlled crystal oscillator is improved.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: May 21, 2013
    Assignee: Guangdong Dapu Telecom Technology Co. Ltd.
    Inventor: Chaosheng Liu
  • Patent number: 8390390
    Abstract: The present invention relates to an oven controlled crystal oscillator that can obtain stable oscillation frequency by reducing a temperature change in an oscillation element. The oven controlled crystal oscillator comprises; a heat-conducting plate mounted on one surface of a circuit board, a crystal resonator mounted on a surface of the heat-conducting plate opposite to the surface of the circuit board, an oscillation element constituting an oscillation circuit together with the crystal resonator, and a thermistor that detects temperature of the crystal resonator, a heating resistance which heats the crystal resonator, and a temperature control element including at least a power transistor, to constitute a temperature control circuit together with the thermistor and the heating resistance.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: March 5, 2013
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Manabu Ito, Hiroyuki Mitome, Takeo Oita
  • Publication number: 20130027141
    Abstract: A crystal resonator comprises a first vibrating region provided on a crystal wafer, a second vibrating region provided on the crystal wafer, the second vibrating region having a different thickness and positive/negative orientation of the X-axis from those of the first vibrating region, and excitation electrodes which are provided respectively on the first vibrating region and the second vibrating region for causing the vibrating regions to vibrate independently. Frequencies that change by different amounts from each other relative to a temperature change can be retrieved from one vibrating region and the other vibrating region. Thus, based on an oscillating frequency of the vibrating region in which a clear frequency change occurs relative to the temperature, the oscillating frequency of the other vibrating region can be controlled. Thereby, increases in the complexity of the crystal oscillator can be suppressed.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 31, 2013
    Applicant: NIHON DEMPA KOGYO CO., LTD.
    Inventors: MITSUAKI KOYAMA, TOSHIHIKO KAGAMI, TAKESHI MATSUMOTO, TAKERU MUTOH, MANABU ISHIKAWA, SHINICHI SATO
  • Patent number: 8314662
    Abstract: A temperature compensation method for a piezoelectric oscillator including a piezoelectric vibrator having a frequency temperature characteristic with a hysteresis characteristic, and an oscillation circuit which oscillates the piezoelectric vibrator and outputs an oscillation signal, wherein, to a temperature compensation circuit which can calculate a quantity of temperature compensation using frequency temperature information indicating a temperature characteristic of an oscillation frequency of the piezoelectric vibrator and temperature information of the piezoelectric vibrator at the time of oscillation of the oscillation signal, the oscillation signal and the frequency temperature information are outputted, includes: calculating, as the frequency temperature information, an intermediate value between elevated-temperature frequency temperature information of the piezoelectric vibrator that is generated in the case where ambient temperature of the piezoelectric vibrator is elevated, and lowered-temperature
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: November 20, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Kensaku Isohata, Masayuki Ishikawa
  • Patent number: 8284063
    Abstract: An apparent motion detector is provided with multiple response levels at differing degrees of sensitivity. The motion detector is based on use of a pyroelectric infrared sensor and conventional circuitry which generates an output signal the strength of which reflects transient temperature changes occurring within a field of view and distinguishable from background heat levels. The detector's response varies with the strength of the signal using a plurality of LED's which emit different colors or are driven at different intensities. The system generally will have a field of view defined by a lens system which is translucent to visible light and transparent to infrared. The lens system doubles as a back screen projection system for display of the indicator light.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: October 9, 2012
    Inventors: Bradford B. Jensen, Kim I. McCavit
  • Publication number: 20120249251
    Abstract: A function generating circuit for producing a control signal for an oscillating circuit that vibrates a crystal unit includes a temperature detecting circuit to detect an ambient temperature, and a Bezier-curve generating circuit to produce a Bezier curve as the control signal in response to the ambient temperature detected by the temperature detecting circuit.
    Type: Application
    Filed: March 5, 2012
    Publication date: October 4, 2012
    Inventors: Takayuki NAKAMURA, Minoru SAKAI
  • Publication number: 20120229221
    Abstract: Disclosed is an oscillator circuit which compensates for external voltage supply, temperature, and a process, includes: a reference voltage generation unit configured to generate reference voltage Vbp stabilized against a change in external voltage supply VDD and temperature; a temperature compensation unit configured to generate first reference voltage PVREF, second reference voltage IVREF, and third reference voltage RX_VREF; an internal voltage supply generation unit configured to generate internal voltage supply VPPI stabilized against the change in external voltage supply VDD and temperature by receiving the first reference voltage PVREF; a current supply unit configured to generate compensation current RX_IREF in proportion to or in inverse proportion to temperature by receiving the second reference voltage IVREF; a process compensation unit configured to perform process compensation by controlling an amount of the compensation current RX_IREF; and an oscillation signal generation unit configured to gen
    Type: Application
    Filed: November 5, 2010
    Publication date: September 13, 2012
    Applicant: ETACHIPS CO., LTD.
    Inventor: Sang Hun Kim
  • Patent number: 8245571
    Abstract: A component having an acceleration sensor having at least one freely oscillatory mass, and a resonator having at least one resonating structure, in which the at least one freely oscillatory mass of the acceleration sensor and the at least one resonating structure of the resonator are disposed on and/or in one chip. A corresponding production method for a component is also described.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: August 21, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Thorsten Pannek, Udo-Martin Gomez, Horst Muenzel
  • Patent number: 8248176
    Abstract: A disclosed current source circuit includes a current mirror circuit having two enhancement-type MOS transistors, a depletion-type MOS transistor configured to be connected to a drain of one of the two enhancement-type MOS transistors and to function as a constant current source, and a resistor configured to have a negative temperature property and be connected to a source of the one of the two enhancement-type MOS transistors.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: August 21, 2012
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Yoichi Takano, Koichi Yamaguchi, Koichi Kuwahara
  • Patent number: 8237515
    Abstract: Crystal oscillator control and calibration is disclosed. Temperature and frequency control circuits included on a printed circuit board (PCB) comprising a crystal oscillator are used to determine, for each of a plurality of set points in a range of sensed internal temperatures sensed by an internal temperature sensing circuit or device located adjacent to the oscillator in a thermally insulated region of the PCB, a corresponding compensation required to be applied to maintain a desired oscillator output frequency. The PCB is configured to use at least the determined compensation values and a sensed internal temperature to determine during operation of the PCB a compensation, if any, to be applied to maintain the desired oscillator output frequency.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: August 7, 2012
    Assignee: Broadcom Corporation
    Inventor: Pierce Keating
  • Patent number: 8203393
    Abstract: A voltage controlled oscillator having a temperature and process controlled output. A VCO in accordance with the present invention comprises a reference current source, a fixed current source, coupled in series with the reference current source, the fixed current source comprising a temperature independent current source, a third current source, coupled in parallel with the combination of the reference current source and the fixed current source, and an oscillator, coupled in series with the third current source, wherein a current used to control the oscillator is based on operating temperatures and processes of the reference current source and the third current source.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: June 19, 2012
    Assignee: QUALCOMM Atheros, Inc.
    Inventor: Christopher R. Leon
  • Patent number: 8203392
    Abstract: A circuit may comprise an amplifier powered by a first supply voltage, with a first input of the amplifier coupled to a stable reference voltage, and the output voltage of the amplifier provided as a designated supply voltage to an oscillator configured to produce a periodic signal having a specified frequency. The circuit may further include a control circuit coupled to a second input of the amplifier, to the output of the amplifier, and to ground, and configured to control the rate of change of the output voltage of the amplifier with respect to temperature. This rate of change may be specified according to a characterization of the oscillator over supply voltage and temperature, and may result in stabilizing the specified frequency across temperature. The periodic signal may therefore be unaffected by variations in the first supply voltage, and the amplitude of the periodic signal may be proportional to the stable reference voltage.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: June 19, 2012
    Assignee: Standard Microsystems Corporation
    Inventors: Paul F. Illegems, Srinivas K. Pulijala
  • Patent number: 8183940
    Abstract: A thermostatic-chamber temperature control device includes: a heating element for heating a thermostatic chamber; a bridge circuit having a temperature sensitive element whose resistance value varies in accordance with the temperature of the heating element; a detection circuit for detecting an unbalanced voltage of the bridge circuit; a PWM signal generating circuit for generating a PWM signal corresponding to the unbalanced voltage detected by the detection circuit; and a switching element that has a current output terminal connected to the heating element and a current input terminal connected to a power supply circuit and is driven on the basis of the PWM signal generated by the PWM signal generating circuit.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 22, 2012
    Assignee: Fujitsu Limited
    Inventors: Yoshito Koyama, Minoru Hirahara, Koji Nakamuta
  • Patent number: RE44368
    Abstract: An inventive temperature-compensated crystal oscillator has a construction such that a crystal oscillator element (5) is accommodated in a container (1) and an IC element (7) for controlling an oscillation output on the basis of the oscillation of the crystal oscillator element (5) is mounted on a lower surface of the container (1). A plurality of electrode pads (10) at least including plural crystal electrode pads connected to the crystal oscillator element (5), plural writing control electrode pads, and an oscillation output electrode pad, a ground electrode pad, a power source voltage electrode pad and an oscillation control electrode pad connected to surface mounting external terminals are arranged in a matrix configuration of m rows×n columns (wherein m and n are natural numbers not smaller than 2) in an IC element mounting area. The IC element (7) is electrically connected to the electrode pads (10).
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: July 16, 2013
    Assignee: Kyocera Corporation
    Inventors: Hidefumi Hatanaka, Ryoma Sasagawa