Waveguide Patents (Class 333/208)
  • Patent number: 9044754
    Abstract: Instant invention is about a micro chip comprising plurality of layers of LTCC wherein a reaction chamber is formed in plurality of top layers to load samples. A heater embedded in at least one of the layers below the reaction chamber and a temperature sensor is embedded in at least one of the layers between the heater and the reaction chamber for analyzing the sample. The temperature sensor can be placed outside the chip to measure the chip temperature.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: June 2, 2015
    Assignee: Bigtec Private Limited
    Inventors: Kishore Krishna Kumar, Raviprakash Jayaraman, Sankaranand Kaipa Narasimha, Renjith Mahiladevi Radhakrishnan, Sathyadeep Viswanathan, Chandrasekhar Bhaskaran Nair, Pillarisetti Venkata Subbarao, Manjula Jagannath, Shilpa Chennakrishnaiah
  • Publication number: 20150137911
    Abstract: In order to prevent electrical characteristics from degrading, a band-pass filter includes: a dielectric substrate having an upper surface and a lower surface opposed to each other, the dielectric substrate extending in a waveguide axial direction; a pair of conductor layers respectively arranged on the upper surface and the lower surface of the dielectric substrate; two rows of through hole groups for sidewalls, which are formed at predetermined intervals in the waveguide axial direction so as to electrically connect the pair of conductor layers; and a plurality of through holes for electrically connecting the pair of conductor layers, the plurality of through holes being formed in parallel to the waveguide axial direction and arranged in a center of a waveguide formed in a region surrounded by the pair of conductor layers and the two rows of the through hole groups for sidewalls.
    Type: Application
    Filed: April 1, 2013
    Publication date: May 21, 2015
    Inventor: Takafumi Kai
  • Patent number: 9019047
    Abstract: The present invention relates to a waveguide E-plane filter component (1) comprising a first and second main part (2: 4) with a corresponding first and second waveguide section part (3, 5). The main parts (2, 4) are arranged to be mounted to each other, such that an open side (8) of the first waveguide section part (3) is arranged to face an open side (9) of the second waveguide section part (5). The E-plane filter component (1) further comprises at least one electrically conducting foil (10, 11) that is arranged to be placed between the main part (2, 4), Said foil (10, 11) have a longitudinal extension (L) and comprises a filter part (12) that is arranged to run between the waveguide section parts (3, 5), and is divided into a first filter part (13) and a second filter part (14) by an imaginary symmetry line (15) running along the longitudinal extension (L) in the middle of the filter part (12).
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: April 28, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Piotr Kozakowski, Anatoli Deleniv
  • Patent number: 8988171
    Abstract: A bandpass filter of the present invention includes: rectangular waveguides which are divided into two in a center of a broad plane; and a metal plate which has a substantially ladder shape, is disposed between the rectangular waveguides in parallel with a narrow plane of the rectangular waveguides, and has a pair of beams and plurality of fins that connect the pair of beams. At least one other waveguide is formed by dividing a waveguide path within the rectangular waveguides vertically with respect to a direction which is parallel with the broad plane. At least three resonators are formed within the rectangular waveguides by the metal plate, and each of the other waveguides couples resonators together which crosses at least one of the plurality of resonators so as to form a pole outside a pass band.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: March 24, 2015
    Assignee: NEC Corporation
    Inventor: Takafumi Kai
  • Publication number: 20150077198
    Abstract: The present invention provides a dielectric waveguide resonator comprising a pair of rectangular parallelepiped-shaped dielectric blocks being in contact with each other through respective contact surfaces thereof. The dielectric waveguide resonator has an outer periphery coated with an electrically conductive film except for the contact surfaces, and is configured to resonate in a TE mode. A probe composed of an electrically conductive film is formed on at least one of the contact surface. Thus, it becomes possible to provide a dielectric waveguide resonator having a simple structure, requiring no adjustment structure, and comprising a structure for conversion between a dielectric waveguide and a coaxial line.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Applicant: TOKO, INC.
    Inventor: Yukikazu YATABE
  • Patent number: 8941443
    Abstract: A cavity filter having a piezoelectric tuning element is tuned by determining a desired oscillating frequency for the piezoelectric tuning element and applying that frequency through a phase-locked loop. The phase-locked loop maintains the piezoelectric tuning element at the desired frequency.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: January 27, 2015
    Assignee: Rockwell Collins, Inc.
    Inventor: Robert Newgard
  • Publication number: 20140368300
    Abstract: A waveguide filter, a preparation method thereof, and a communication device to resolve a problem in which a prepared high-resonance-frequency waveguide filter cannot meet an application requirement due to a low precision of an existing machining process. The waveguide filter includes a substrate made of a silicon material, where an etching cavity having a flat side wall is formed in the substrate, a depth of the etching cavity is not greater than 0.7 mm, and an angle between the side wall of the etching cavity and a vertical direction is not smaller than 1 degree, and a waveguide port is disposed on the substrate, where the waveguide port is connected to the etching cavity and electrically connected to the etching cavity.
    Type: Application
    Filed: August 5, 2014
    Publication date: December 18, 2014
    Inventors: Yanzhao Zhou, Yufeng Dai, Xiang Wei
  • Patent number: 8912867
    Abstract: A waveguide filter, comprising a housing defining a passage through which electromagnetic waves can travel and a plurality of adjustable projections extending through the housing into the passage. The passage is absent any fixed protrusions. The plurality of adjustable projection s comprises a set of coupling projections, wherein each pair of adjacent coupling projections in the set of coupling projections defines there between a resonant cavity. Each coupling projection in the set of coupling projections acts as a coupling element for at least one resonant cavity and is adjustable for trimming the coupling of that at least one resonant cavity. The plurality of adjustable projections further comprises a set of tuning projections, wherein a tuning projection from the set of tuning projections is positioned between each pair of adjacent coupling projections and is adjustable for trimming a resonance frequency of an associated resonant cavity.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: December 16, 2014
    Assignee: Apollo Microwaves, Ltd.
    Inventor: Giuseppe Frenna
  • Patent number: 8888995
    Abstract: High power RF energy supplied to a reaction chamber at a resonant frequency is used to break the covalent bonds of a hydrocarbon material without heat. An RF signal generator may be used to supply RF energy to a resonant ring through a four port coupler. The phase of the RF energy passing through the resonant ring may be adjusted to achieve an integral multiple of a resonant wavelength. Wavelength and intensity may be adjusted to sublimate or pyrolyze the hydrocarbon material to yield a useful gaseous product.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: November 18, 2014
    Assignee: Harris Corporation
    Inventors: Victor Hernandez, Lisa Patton
  • Publication number: 20140320237
    Abstract: A radiofrequency filter exhibiting at least one resonant mode comprises: at least one cavity at least partially closed using conductive walls, having a cylindrical outer surface defined by a directing curve described by a generatrix and having a point of symmetry, an axis passing through a point of symmetry and parallel to the generatrix being a longitudinal axis of the cavity. At least one dielectric element is arranged in the cavity and comprises: a first portion having a thickness according to the longitudinal axis and a section according to a plane perpendicular to the longitudinal axis whose vertices are distributed according to a polygon, at least two vertices being short-circuited between them by the conductive walls of the cavity, via an electrical or radiofrequency contact between the vertices and walls, at least one pyramidal portion comprising an apex and a base coinciding with an extreme section of the first portion.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Inventors: Damien PACAUD, Nicolas JOLLY
  • Publication number: 20140292447
    Abstract: To provide a radio wave half mirror for a millimeter wave band which can flatten transmittance characteristics and a method of flattening the transmittance of the radio wave half mirror for a millimeter wave band. A radio wave half mirror 20 includes a metal plate 21 that has an outward shape closing a transmission line 11 and a slit 22 for transmitting electromagnetic waves that is provided in the metal plate 21 along a long side of an opening of the transmission line 11. The thickness L of the metal plate 21 in a direction in which the electromagnetic waves pass through the slit 22 is set on the basis of the transmittance characteristics of the electromagnetic waves.
    Type: Application
    Filed: March 17, 2014
    Publication date: October 2, 2014
    Applicant: ANRITSU CORPORATION
    Inventor: Takashi Kawamura
  • Publication number: 20140266961
    Abstract: A mode filter provides a low-loss transmission path for RF signals propagating in a first mode, while substantially suppressing at least one second mode. The mode filter includes a proximal port and a distal port, having a respective characteristic cross sectional dimension Dp1 and Dp2, and an electrically conductive hollow tube having a longitudinal axis that extends a length L between a distal end of the proximal port and a proximal end of the distal port. A cross section transverse to the longitudinal axis is non-uniform along length L and has a minimum internal characteristic dimension Dmin at least at a first longitudinal position and a maximum internal characteristic dimension Dmax at least at a second longitudinal position. The mode filter is configured to suppress the at least one second mode by at least 5 dB, and Dmax is less than 2.5 times the greater of Dp1 and Dp2.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: SPACE SYSTEMS/LORAL, LLC
    Inventor: Behzad Tavassoli Hozouri
  • Patent number: 8818319
    Abstract: Various embodiments implement waveguides for signal distribution or signal filtering in satellite receivers. According to some embodiments, a low noise block downconverter (LNB) is implemented using waveguides configured for signal distribution, band pass filtering, low pass filtering, high pass filtering, or band stop filtering. For some embodiments, the waveguides may be formed by the LNB chassis and the ground plane of a printed circuit board mounted to the LNB chassis.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 26, 2014
    Assignee: Entropic Communications, Inc.
    Inventor: Martin Christopher Alderton
  • Publication number: 20140176379
    Abstract: A waveguide filter is provided. The waveguide filter includes a pipe and a first rib structure. The pipe includes a first inner wall. The first rib structure includes a first rib. The first rib is disposed in the pipe and formed on the first inner wall. The first rib includes a first section and a second section, wherein the first section and the second section extend on a first straight line and are perpendicular to the first inner wall, and a first gap is formed between the first section and the second section, and a first gap distance of the first gap is between 0.1 to 1.2 mm.
    Type: Application
    Filed: September 10, 2013
    Publication date: June 26, 2014
    Applicant: Wistron NeWeb Corp.
    Inventors: Shun-Chung KUO, Chang-Hsiu HUANG
  • Patent number: 8686812
    Abstract: A waveguide for transmission of data signals therealong. Data signals are typically received from and/or transmitted to a remote location and subsequently passed to or emitted from the apparatus which allows the data to be processed. The waveguide includes a channel which has a cross-sectional shape, the angular orientation of which is changed at least one point along the length of the same so as to provide a waveguide which is less sensitive to interferences. The waveguide, in one embodiment, can also include recessed portions and/or ridges along the length of the channel which ensures that the waveguide can be formed in a more reliable and controlled manner.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: April 1, 2014
    Assignee: Raven Manufacturing Limited
    Inventors: Matthew Pike, Raymond Lloyd
  • Patent number: 8680953
    Abstract: The invention relates to a low-pass filter for electromagnetic signals, made up of a series of rejection elements defined by stubs (2) of length ?g/4, with a small or zero distance between them, these elements being tuned to different frequencies determining the rejection band.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: March 25, 2014
    Inventors: Iván Arregui Padilla, Israel Arnedo Gil, José María Lopetegui Beregaña, Miguel Ángel Gómez Laso, José Antonio Marcotegui Iturmendi
  • Patent number: 8680936
    Abstract: A surface mountable transition block for perpendicular transitions between a microstrip or stripline and a waveguide. The transition block configuration allows for a reduction in the overall cost of a microwave circuit assembly because the circuit board to which the transition block is attached can be an FR-4 type circuit board as opposed to more expensive microwave circuit board materials.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: March 25, 2014
    Assignee: Delphi Technologies, Inc.
    Inventors: George J. Purden, David W. Zimmerman
  • Publication number: 20140049342
    Abstract: The present invention relates to a waveguide E-plane filter component (1) comprising a first and second main part (2: 4) with a corresponding first and second waveguide section part (3, 5). The main parts (2, 4) are arranged to be mounted to each other, such that an open side (8) of the first waveguide section part (3) is arranged to face an open side (9) of the second waveguide section part (5). The E-plane filter component (1) further comprises at least one electrically conducting foil (10, 11) that is arranged to be placed between the main part (2, 4), Said foil (10, 11) have a longitudinal extension (L) and comprises a filter part (12) that is arranged to run between the waveguide section parts (3, 5), and is divided into a first filter part (13) and a second filter part (14) by an imaginary symmetry line (15) running along the longitudinal extension (L) in the middle of the filter part (12).
    Type: Application
    Filed: May 18, 2011
    Publication date: February 20, 2014
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventors: Piotr Kozakowski, Anatoli Deleniv
  • Patent number: 8598960
    Abstract: A method and apparatus for a polarizer. The apparatus comprises a dielectric rod, a first array of slots, and a second array of slots. The first array of slots and the second array of slots are formed in sidewalls of the dielectric rod. The first array of slots is substantially opposite to the second array of slots. The first array of slots and the second array of slots are configured to shift a first component orthogonal to a second component in a signal traveling through the dielectric rod by around 90 degrees with respect to each other. The dielectric rod may be a solid material or comprised of layers of dielectric substrates with metal tabs.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: December 3, 2013
    Assignee: The Boeing Company
    Inventors: Bruce Larry Blaser, John B. O'Connell
  • Publication number: 20130314179
    Abstract: A transmission line which allows electromagnetic waves in a predetermined frequency range of a millimeter waveband to propagate in a TE10 models formed by a first waveguide and a second waveguide. A resonator is formed by electric wave half mirrors fixed to the first waveguide and the second waveguide. The second waveguide has a structure in which a first transmission line forming body has a plate shape and has a square hole forming the first transmission line formed to pass therethrough from one surface toward an opposite surface, a second transmission line forming body has a plate shape and has a square hole forming the second transmission line formed to pass therethrough from one surface toward an opposite surface, and the first transmission line forming body and the second transmission line forming body are connectable and separable.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 28, 2013
    Applicant: ANRITSU CORPORATION
    Inventors: Takashi Kawamura, Akihito Otani, Hiroshi Hasegawa
  • Publication number: 20130300522
    Abstract: Embodiments of the present disclosure provide a radio frequency (RF) conductive medium for reducing the undesirable insertion loss of all RE hardware components and improving the Q factor or “quality factor” of RF resonant cavities. The RF conductive medium decreases the insertion loss of the RF device by including one or more conductive pathways in a transverse electromagnetic axis that are immune to skin effect loss and, by extension, are substantially free from resistance to the conduction of RF energy.
    Type: Application
    Filed: April 29, 2013
    Publication date: November 14, 2013
    Applicant: Nanoton, Inc.
    Inventor: Nanoton, Inc.
  • Publication number: 20130293322
    Abstract: Various embodiments implement waveguides for signal distribution or signal filtering in satellite receivers. According to some embodiments, a low noise block downconverter (LNB) is implemented using waveguides configured for signal distribution, band pass filtering, low pass filtering, high pass filtering, or band stop filtering. For some embodiments, the waveguides may be formed by the LNB chassis and the ground plane of a printed circuit board mounted to the LNB chassis.
    Type: Application
    Filed: June 29, 2012
    Publication date: November 7, 2013
    Inventor: Martin Christopher ALDERTON
  • Patent number: 8514034
    Abstract: A waveguide having a non-conductive material with a high permeability (?, ?r for relative permeability) and/or a high permittivity (?, ?r for relative permittivity) positioned within a housing. When compared to a hollow waveguide, the waveguide of this invention, reduces waveguide dimensions by ? 1 ? r * ? r . The waveguide of this invention further includes ridges which further reduce the size and increases the usable frequency bandwidth.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: August 20, 2013
    Assignee: UT-Battelle, LLC
    Inventor: Yoon W. Kang
  • Publication number: 20130135159
    Abstract: An adaptor with a lower portion designed to be connectable to an upper horizontal opening serving as electromagnetic aperture of a reflector frame of a surface-mountable antenna device and an upper portion of the adaptor being designed to accommodate a waveguide of testing or tuning equipment.
    Type: Application
    Filed: January 25, 2013
    Publication date: May 30, 2013
    Applicant: HUBER+SUHNER AG
    Inventor: HUBER+SUHNER AG
  • Publication number: 20130135062
    Abstract: A radio-wave half mirror for millimeter waveband is fixed inside a transmission line propagating electromagnetic waves of millimeter waveband in a single mode so as to transmit a part of incident electromagnetic waves and reflect a part thereof. The radio-wave half mirror includes: a half mirror body where a slit for transmitting electromagnetic waves is provided on a metal plate; and a dielectric plate that is provided on one surface side of the half mirror body so as to form a dielectric resonator which resonates at a frequency determined by the thickness and the permittivity, and has a transmittance characteristic having a degree of inclination substantially the same as that of the half mirror body in a slope which is inverse to a slope of a transmittance characteristic of the half mirror body in a desired frequency range of the millimeter waveband.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 30, 2013
    Applicant: ANRITSU CORPORATION
    Inventor: ANRITSU CORPORATION
  • Publication number: 20130113578
    Abstract: A method for manufacturing a resonance tube includes: mixing powder materials, to form homogeneous powder particles, where the powder materials comprise iron powder with a weight proportion of 50% to 90%, at least one of copper powder and steel powder with a weight proportion of 1% to 30%, and an auxiliary material with a weight proportion of 1% to 20%; pressing and molding the powder particles, to form a resonance tube roughcast; sintering the resonance tube roughcast in a protective atmosphere, to form a resonance tube semi-finished product; and electroplating the resonance tube semi-finished product, to form the resonance tube. In the method, the resonance tube, and the filter according to embodiments of the present invention, the resonance tube is manufactured by using multiple powder materials.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 9, 2013
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventor: Huawei Technologies Co., Ltd.
  • Patent number: 8432238
    Abstract: The present invention relates to a flexible cap system optimized for thermally-compensated technology microwave resonators. More specifically, this invention proposes a multiple-membrane flexible wall system for thermally-compensated filters and OMUX. The use of a multi-membrane flexible wall, in particular as sealing cap for a resonant cavity of an OMUX channel, makes it possible: to reduce the thermal resistance of the flexible wall, while maintaining an equivalent level of mechanical stresses exerted on said wall for a given displacement; or to reduce the mechanical stresses exerted on the flexible wall for a given displacement, while maintaining one and the same thermal resistance for said wall; or to increase the deformation of the flexible wall by maintaining an equivalent level of mechanical stresses and by maintaining an equivalent thermal resistance.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: April 30, 2013
    Assignee: Thales
    Inventors: Joël Lagorsse, Michel Blanquet, Emmanuel Hayard
  • Patent number: 8393071
    Abstract: An oscillator device manufacturing method includes: placing an oscillator provided with electrodes on a convex pedestal provided on an assembly table; arranging, on the assembly table, a frame member including an opening surrounded by a frame thereof and provided with electrode pads on the frame such that the opening is positioned at the pedestal; connecting the electrode pads to the electrodes of the oscillator placed on the pedestal via wires, while the frame member is arranged on the assembly table; removing the frame member from the assembly table together with the oscillator after the connecting, and bonding the frame member connected to the oscillator to a substrate. By using the method, the oscillator device including the oscillator suspended in air above the substrate can be efficiently manufactured. In stead of using the frame member, a frame body in which frame members are arrayed can be employed.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: March 12, 2013
    Assignee: Fujitsu Limited
    Inventors: Hajime Kubota, Masayuki Itoh, Masakazu Kishi
  • Publication number: 20130049902
    Abstract: A multi-mode cavity filter, comprising: a dielectric resonator body incorporating a piece of dielectric material, the piece of dielectric material having a shape such that it can support at least a first resonant mode and a second substantially degenerate resonant mode; a conductive layer substantially covering the dielectric resonator body but having one or more apertures therein allowing access to the dielectric resonator body; and a coupling structure arranged in an aperture of the one or more apertures, comprising at least one coupling path for at least one of coupling an input signal to the first and second resonant modes and coupling an output signal from the first and second resonant modes, the coupling path having an open-circuit end located adjacent to an edge of the aperture for controlling a strength of electric field generated by the coupling structure.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: MESAPLEXX PTY LTD
    Inventors: David Robert Hendry, Steven John Cooper, Peter Blake Kenington
  • Publication number: 20130049901
    Abstract: A multi-mode cavity filter, comprising a resonator body of dielectric material capable of supporting at least two degenerate electromagnetic standing wave modes and having a face, and a conductive pattern on at least part of the face for coupling a radio frequency signal between the pattern and the resonator body.
    Type: Application
    Filed: June 4, 2012
    Publication date: February 28, 2013
    Applicant: MESAPLEXX PTY LTD
    Inventors: David Robert HENDRY, Steven John Cooper, Peter Blakeborough Kenington
  • Publication number: 20130038407
    Abstract: A waveguide E-plane filter component comprising a first main part and a second main part which in turn comprise a corresponding first and second waveguide section part. The main parts are arranged to be mounted to each other, each waveguide section part comprising a bottom wall, corresponding side walls and an open side, where the open sides are arranged to face each other. The waveguide E-plane filter component further comprises at least one electrically conducting foil that is arranged to be placed between the main parts, said foil comprising a filter part that is arranged to run between the waveguide section parts, the filter part comprising apertures, in said foil.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 14, 2013
    Applicant: Telefonaktiebolaget L M Ericsson (PUBL)
    Inventors: Anatoli Deleniv, Piotr Kozakowski, Ove Persson
  • Patent number: 8373611
    Abstract: A probe and an antenna, more particularly, a probe and antenna using a waveguide, which reduces the multiple reflection of electromagnetic waves. The probe includes: and the antenna each include a waveguide and a resonance unit is entirely or partially disposed in the inside of the waveguide, and comprising the resonance unit including a conductor.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: February 12, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Soon-Soo Oh, Jung-Ick Moon, Joung-Myoun Kim, Soon-Ik Jeon, Chang-Joo Kim
  • Publication number: 20130016025
    Abstract: Embodiments provide a novel fabrication method and structure for reducing structural weight in radio frequency cavity filters and radio subsystems such as antennas and filters. The novel structures are fabricated by electroplating the required structure over a mold, housing, or substrate. The electrodeposited composite layer may be formed by several layers of metal or metal alloys with compensating thermal expansion coefficients. The first or the top layer is a high conductivity material or compound such as silver having a thickness of several times the skin-depth at the intended frequency of operation. The top layer provides the vital low loss performance and high Q-factor required for such filter structures while the subsequent compound layers provide the mechanical strength.
    Type: Application
    Filed: September 25, 2012
    Publication date: January 17, 2013
    Inventors: IAN BURKE, JASON COOK, AHMAD KHANIFAR
  • Publication number: 20120293283
    Abstract: A method of tuning the frequency of a waveguide filter including the step of removing dielectric material from one or both of the first and second opposed exterior side surfaces of the waveguide filter to cause a change in the center frequency of the waveguide filter. In one embodiment, dielectric material is removed from one or both of the first and second opposed exterior side surfaces of the waveguide filter in unequal amounts wherein the tuned waveguide filter includes first and second slits defined in the respective first and second opposed exterior side surfaces which extend unequal first and second distances into the body of the waveguide filter.
    Type: Application
    Filed: August 2, 2012
    Publication date: November 22, 2012
    Applicant: CTS CORPORATION
    Inventor: Reddy Vangala
  • Patent number: 8309925
    Abstract: A method comprising polarizing and coupling an electromagnetic beam to a first-order transverse electric (TE1) mode with respect to a parallel plate waveguide (PPWG) integrated resonator comprising two plates and a cavity, sending the electromagnetic beam into the PPWG integrated resonator to excite the cavity by the TE1 mode and cause a resonance response, and obtaining wave amplitude data that comprises a resonant frequency, and obtaining the refractive index of fluids filling the cavity via the shift in resonant frequency.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: November 13, 2012
    Assignee: William Marsh Rice University
    Inventors: Rajind Mendis, Daniel M. Mittleman
  • Publication number: 20120256707
    Abstract: Various embodiments of millimeter-wave systems on a printed circuit board, including a microstrip, a probe, and an RF integrated circuit, as well as methods for manufacturing said systems. Various embodiments have holes extending through lamina in the PCB, thereby improving radiation propagation. Various embodiments have conductive cages created by multiple through-holes extending through lamina in the PCB, thereby increasing radiation propagation. The manufacture of such systems is easier and less expensive than the manufacture of current systems.
    Type: Application
    Filed: June 20, 2012
    Publication date: October 11, 2012
    Applicant: Siklu Communication Ltd.
    Inventors: Yigal Leiba, Elad Dayan
  • Publication number: 20120218160
    Abstract: A mode filter for an antenna having at least one element aperture is provided. The mode filter includes at least one waveguide extension to extend the at least one element aperture, and at least one two-by-two (2×2) array of quad-ridged waveguide sections connected to a respective at least one waveguide extension. When the at least one waveguide extension is positioned between the at least one element aperture and the at least one two-by-two (2×2) array of quad-ridged waveguide sections, undesired electromagnetic modes of the antenna are suppressed.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 30, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: James P. Montgomery, Shawn D. Rogers, Michael G. Guler
  • Patent number: 8213534
    Abstract: Disclosed herein is a transmission apparatus including a first transmission block configured to modulate a carrier-wave signal having a predetermined frequency on the basis of a first input signal, thereby outputting a first transmission signal; and a second transmission block configured to modulate a carrier-wave signal having a predetermined frequency on the basis of a second input signal, thereby outputting a second transmission signal; wherein a first input point for inputting the first transmission signal outputted from the first transmission block into a waveguide and a second input point for inputting the second transmission signal outputted from the second transmission block into the waveguide are shifted by a distance for providing a predetermined phase difference between the first transmission signal and the second transmission signal.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: July 3, 2012
    Assignee: Sony Corporation
    Inventors: Shigenori Uchida, Norihito Mihota, Kenichi Kawasaki
  • Patent number: 8179304
    Abstract: The invention relates to a direct-current blocking circuit, and a hybrid circuit device, a transmitter, a receiver, a transmitter-receiver and a radar device that have the direct-current blocking circuit. A dielectric substrate (2) is provided with a conductor layer (3) disposed parallel with the dielectric substrate (2), first and second planar lines (4, 5) each containing a part of the conductor layer (3), and a waveguide (6) containing a part of the conductor layer (3). The first and second planar lines (4, 5) are located on one surface (2a) side of the dielectric substrate (2) with respect to the conductor layer (3), and the waveguide (6) is located on another surface (2b) side of the dielectric substrate (2). In a transmission direction (X) of electric signals, as to the waveguide (6), its one end overlaps with one end of the first planar line (4), and its another end overlaps with one end of the second planar line (5).
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: May 15, 2012
    Assignee: Kyocera Corporation
    Inventors: Kazuki Hayata, Kazumi Nakazuru
  • Patent number: 8159136
    Abstract: A plasma lamp is described with resonant frequency tuning capability and associated methods for tuning. One tuning method allows plasma lamp manufacturer to set the frequency of lamps to several discrete predetermined values. For example, most lamps that are near the center of a frequency distribution can be tuned to a nominal value such as 918.7 MHz. Other frequencies can also be tuned to increase manufacturing yield and improve lamp performance.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: April 17, 2012
    Assignee: Luxim Corporation
    Inventors: Marc DeVincentis, Sandeep Mudunuri
  • Patent number: 8130063
    Abstract: A waveguide bandpass filter for use in microwave and millimeter-wave satellite communications equipment is presented. The filter is based on a substrate integrated waveguide (SIW) having several cascaded oversized SIW cavities. The filter is implemented in a printed circuit board (PCB) or a ceramic substrate using arrays of standard metalized via holes to define the perimeters of the SIW cavities. Transmission lines of a microstrip line, a stripline or coplanar waveguide are used as input and output feeds. The transmission lines have coupling slots for improved stopband performance. The filter can be easily integrated with planar circuits for microwave and millimeter wave applications.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: March 6, 2012
    Assignee: Her Majesty the Queen in right of Canada, as represented by The Secretary of State for Industry, Through the Communications Research Centre Canada
    Inventors: Xiao-Ping Chen, Ke Wu, Dan Drolet
  • Publication number: 20120007698
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Application
    Filed: August 8, 2011
    Publication date: January 12, 2012
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20110309899
    Abstract: A method for accurately guiding millimeter-waves includes the following steps: Filtering millimeter-waves by applying the millimeter-waves at a first shape aperture of a filter waveguide, resulting in filtered millimeter-waves exiting a second shape aperture of the filter waveguide. Transporting the filtered millimeter-waves over a distance of between 9 centimeters and 25 centimeters, by applying the filtered millimeter-waves to an extruded waveguide having a length of between 9 centimeters and 25, and having a cavity featuring a cross-section that is accurate to within +/?0.05 millimeters throughout the length of the extruded waveguide, resulting in transported millimeter-waves. And producing, on a reflector, an illumination pattern that is accurate to a degree that allows conforming to a first level of radiation pattern accuracy, by applying the transported millimeter-waves at a focal point of the reflector.
    Type: Application
    Filed: August 31, 2010
    Publication date: December 22, 2011
    Applicant: Siklu Communication Ltd.
    Inventors: Yigal Leiba, Ovadia Haluba
  • Publication number: 20110298566
    Abstract: A TE011 cavity filter assembly is disclosed. The system includes at least one resonator operating in TE011 mode having a resonant frequency. The at least one resonator may include a cavity comprising an inner diameter and a cavity length. The at least one resonator may also include a first metal disc inside the cavity. The first metal disc may include a disc diameter and a void in the metal disc, which includes a void diameter and a void depth. The inner diameter of the cavity may be greater than the disc diameter creating a gap with a gap width and a gap depth. The TE011 cavity filter assembly may further include positive coupling.
    Type: Application
    Filed: June 2, 2010
    Publication date: December 8, 2011
    Inventors: Bahram Yassini, Ming Yu
  • Publication number: 20110279200
    Abstract: A structure and method for adjusting the bandwidth of a ceramic waveguide filter comprising, in one embodiment, a monoblock of dielectric ceramic material defining respective steps and respective input/output through-holes extending through the monoblock and the respective steps. In one embodiment, the steps are defined by notches in the monoblock and the input/output through-holes define openings terminating in the notch. The bandwidth of the ceramic waveguide filter may be adjusted by adjusting the height/thickness and direction of the steps relative to an exterior surface of the monoblock and/or the diameter of the input/output through-holes.
    Type: Application
    Filed: May 9, 2011
    Publication date: November 17, 2011
    Inventor: Reddy Vangala
  • Patent number: 8058935
    Abstract: An apparatus comprises a structure, an array of oscillator units, a plurality of waveguides in the structure, and a synchronizing cavity located within the structure. The array of oscillator units has a plurality of rows and a plurality of columns associated with the structure. Oscillator units in a row within the array of oscillator units are directly coupled to each other. The plurality of waveguides is configured to couple the array of oscillator units to the synchronizing cavity. The synchronizing cavity is configured to cause the array of oscillator units to operate at substantially a common frequency.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: November 15, 2011
    Assignee: The Boeing Company
    Inventors: Jonathan James Lynch, Perry A. Macdonald
  • Publication number: 20110254641
    Abstract: A multi-band filter is disclosed which includes an input manifold; an output manifold; and a plurality of filters connected in parallel between the input manifold and output manifold. The filters have a first section proximal to the input manifold which is matched to the input manifold and a second section proximal to the output manifold which is matched to the output manifold.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 20, 2011
    Applicant: Astrium Limited
    Inventor: Mark Anthony KUNES
  • Patent number: 8031014
    Abstract: A nonlinear solid-state device useful for frequency conversion of electromagnetic radiation and in particular for harmonic generation, comprising a waveguiding electromagnetically distributed structure (WEDS) which includes monolithically a synthetic nonlinear material (SNM). Input radiation coupled into the WEDS is converted into a higher frequency output radiation through a constricted oscillatory motion of charge carriers and phase matched harmonic frequency generation of radiation which builds up coherently over an interaction length many time larger than the radiation wavelengths. In one embodiment, microwave radiation is converted into terahertz radiation. In other embodiments, SNM based WEDS devices are adapted for frequency mixing and parametric oscillation.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: October 4, 2011
    Inventors: Avraham Gover, Menachem Nathan, Yotam Schatzberg
  • Patent number: 8022788
    Abstract: The invention relates to a process for the production of a microwave waveguide having a step of determining the zone or zones of the waveguide where an electric field concentration occurs. A step of produces at least one enlargement of the waveguide in the zone or zones thus determined. The invention also relates to a microwave filter in which the stubs are provided with such enlargement. The invention has application in microwave filters.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: September 20, 2011
    Assignee: Thales
    Inventor: Pablo Sarasa
  • Patent number: 8013694
    Abstract: The invention relates to a small and low-voltage operable dielectric waveguide device. First and second electrode are embedded in a dielectric part and are formed to be thinner than a skin depth for a frequency of electromagnetic wave propagating along a first dielectric part included in the dielectric part. Thereby, even if the first and second electrodes are arranged to be in contact with the first dielectric part, the propagating electromagnetic wave can transmit the first and second electrodes, and therefore the electromagnetic wave can propagate without being cut off and there is no influence on waveguide modes of the electromagnetic wave. Further, in a state where a transmission loss due to the embedded of the electrode is suppressed, an electric field with large electric field strength can be applied to the first dielectric part by the first and second electrodes, and a small and low-voltage operable dielectric waveguide device can be achieved.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: September 6, 2011
    Assignee: Kyocera Corporation
    Inventors: Nobuki Hiramatsu, Djuniadi A. Sagala, Tetsuya Kishino