Having Conductor Of Particular Shape (e.g., Tapered Longitudinally Or Of Noncircular Cross Section) Patents (Class 336/223)
  • Publication number: 20140152118
    Abstract: A planar spiral induction coil includes a strip-shaped coil having at least one turn. The at least one turn has a width that changes as a distance from a beginning of the strip-shaped increases in a length direction of the strip-shaped coil. each turn of the at least one turn has a respective width that causes an equal current to flow through each turn of the at least one turn.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ki Young Kim, Mikhail Makurin, Vladimir Parfenyev, Nikolay Olyunin, Keum Su Song
  • Patent number: 8736413
    Abstract: In a laminated inductor element, a magnetic ferrite layer sandwiched between two conductor patterns is thinner than other magnetic ferrite layers. Therefore, a crack occurs in the magnetic ferrite layer due to firing. As a result of the occurrence of this crack, a stress applied to each layer is relaxed, and it becomes possible to avoid warpage, a crack, or the like. In addition, in the laminated type inductor element, the two conductor patterns are electrically connected by two via holes, and subjected to a same potential. Since the two conductor patterns correspond to a same wiring pattern and a coil of coil conductor is defined by the two conductor patterns, even if upper and lower coil conductors are electrically in contact with each other due to the crack, the two conductor patterns are not put into a short-circuited state.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: May 27, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tomoya Yokoyama, Tetsuya Ikeda
  • Patent number: 8722443
    Abstract: An IC device (100) includes an IC body (106) having a base layer (108) and first and second upper layers (114, 116) on the base layer. The IC body includes a cavity region (104) extending through said base and first upper layers and at least a portion of said second upper layer. In the IC device, a portion of said second upper layer in the cavity region comprises a planar inductive element (102) having first and second contacting ends (140, 142). In the IC device, at least one support member (128, 130, 132) extends at least partially into said cavity region from said IC body in at least a first direction parallel to said base layer and intersects at least a portion of said planar inductive element.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: May 13, 2014
    Assignee: Harris Corporation
    Inventors: David M. Smith, Jeffrey A. Schlang
  • Patent number: 8723631
    Abstract: A printed circuit board includes metallization layers are stacked along a vertical direction and separated mechanically from one another by electrically insulating layers. A coil extends along a vertical winding axis and has turns formed by conductive tracks made in respective metallization layers, the turns being electrically connected to one another by pads going through at least one of the electrically insulating layers. A superimposition, in a plane parallel to the metallization layers, of the conductive tracks of the coil, made in a first metallization layer and a second metallization layer, that are immediately consecutive in the vertical direction, forms a pattern having two axial symmetries relative to X and Y axes orthogonal to each other and parallel to the metallization layers. The conductive tracks of each of the superimposed metallization layers are devoid, of themselves, of axial symmetry relative to the X or Y axes.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 13, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventor: Philippe Klein
  • Patent number: 8717136
    Abstract: A thin film inductor having yokes, one or more of which is laminated, and one or more conductors passing between the yokes. The laminated yoke or yokes help reduce eddy currents and/or hysteresis losses.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Robert E. Fontana, Jr., William J. Gallagher, Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Patent number: 8686821
    Abstract: An inductor structure including a plurality of solenoids and at least one connecting line is provided. One of the solenoids serves as a core, and the remaining solenoids are sequentially wound around the core solenoid. Axes of the solenoids are substantially directed to the same direction. Each connecting line is correspondingly connected between ends of two adjacent solenoids to serially connect the solenoids.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: April 1, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Yung-Chung Chang, Meng-Sheng Chen, Chang-Chih Liu, Li-Chi Chang, Cheng-Hua Tsai
  • Patent number: 8669839
    Abstract: A laminated inductor includes: a laminate constituted by multiple insulator layers; external electrodes formed on the outside of the laminate; and a coil conductor formed spirally inside the laminate, wherein the coil conductor has leaders that electrically connect to the external electrodes and a coil body other than the leaders, wherein the coil conductor has conductive patterns formed on the insulator layers, and via hole conductors that penetrate through the insulator layers and electrically connect the multiple conductor patterns, wherein all of the conductor patterns constituting the coil body are either a C-shaped pattern or line-shaped pattern, wherein the coil body has a partial structure where two or more C-shaped pattern layers are stacked together successively, and wherein the number of C-shaped patterns in the coil body is greater than that of line-shaped patterns.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: March 11, 2014
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Ichirou Yokoyama, Taisuke Suzuki, Yasuyuki Taki, Kazuhiko Oyama
  • Patent number: 8659382
    Abstract: A non-encapsulated-winding stereo wound-core dry-type amorphous alloy transformer. The core of the transformer has a stereo structure. Three lower yokes are placed on a base of a lower clamp, and an upper clamp and the lower clamp are connected with each other by several press screws. Low-voltage windings include a foil-wound or wire-wound cylindrical structure, while its high-voltage windings are wound with oxygen-free copper wires wrapped in an insulate paper and processed through vacuum pressure impregnation. Upper and lower padding blocks support and compress the high-voltage and low-voltage windings, so that the product is formed in a rigid stereo frame structure.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 25, 2014
    Assignee: Guangdong Haihong Co., Ltd.
    Inventors: Kaixuan Xu, Xianqing Guo
  • Publication number: 20140049352
    Abstract: In order to be able to industrially produce a transposed conductor having jointly transposed partial conductors located next to one another, the invention proposes that the rounding of at least one edge (15) of a single conductor (11) of a single conductor group (12) that limits a contact surface (14) between two single conductors (11) located next to one another is embodied with a smaller radius (r2) than the radii (r1) of the roundings of the outer edges (13) of the single conductor group (12).
    Type: Application
    Filed: February 23, 2012
    Publication date: February 20, 2014
    Applicant: ASTA ELEKTRODRAHT GMBH
    Inventors: Thomas Trimmel, Martin Trimmel
  • Patent number: 8621744
    Abstract: A method of manufacturing an inductor for a microelectronic device comprises providing a substrate (610), forming a first plurality of inductor windings (111, 211, 411, 620, 2030) over the substrate, forming a magnetic inductor core (112, 212, 412, 810) over the first plurality of inductor windings, and forming a second plurality of inductor windings (113, 213, 413, 1010) over the magnetic inductor core. In another embodiment, the method comprises forming the inductor on a sacrificial substrate (1610) such that the inductor can subsequently be mounted onto a carrier tape (1810). In yet another embodiment, a method of manufacturing a substrate for a microelectronic device comprises forming an inductor within a build-up layer (101, 102, 103, 104) of a substrate.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: January 7, 2014
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Gloria Alejandra Camacho-Bragado
  • Patent number: 8624369
    Abstract: A balance filter packaging chip having a balun mounted therein and a manufacturing method thereof are provided. The balance filter packaging chip includes a device substrate; a balance filter mounted on the device substrate; a bonding layer stacked on a certain area of the device substrate; a packaging substrate having a cavity formed over the balance filter, and combined with the device substrate by the bonding layer; a balun located on a certain area over the packaging substrate; and an insulator layer for passivating the balun. Accordingly, the present invention can reduce an element size and simplify a manufacturing process.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: January 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kuang-woo Nam, Yun-kwon Park, In-sang Song, Jea-shik Shin, Seok-mo Chang, Seok-chul Yun
  • Patent number: 8618902
    Abstract: A laminated inductor, which offers high inductance while suppressing increase in direct-current resistance, has a rectangular solid laminate and a pair of terminal electrodes formed only on the bottom face of the laminate, wherein a folded conductor piece is provided on the first magnetic layer in a manner constituting around one turn worth of the windings, with one end placed near the first corner and the other end placed at a position toward the center and away from this one end so as not to overlap with the one end, while one of multiple sets of coil conductor pieces, each set constituting around one turn worth of the windings, is placed on multiple magnetic layers in the laminate.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: December 31, 2013
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Kenichirou Nogi, Masanori Nagano, Mayumi Hoshino
  • Patent number: 8610525
    Abstract: A laminated inductor having an internal conductive wire forming region, as well as a top cover region and bottom cover region formed in a manner sandwiching the internal conductive wire forming region between top and bottom; wherein the internal conductive wire forming region has a magnetic part formed with soft magnetic alloy grains, as well as helical internal conductive wires embedded in the magnetic part and constituted by a conductor; and at least one of the top cover region and bottom cover region (or preferably both) is/are formed with soft magnetic alloy grains whose constituent elements are of the same types as those of, and whose average grain size is greater than that of, the soft magnetic alloy grains constituting the magnetic part in the internal conductive wire forming region.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: December 17, 2013
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Hitoshi Matsuura, Takayuki Arai, Kenji Otake
  • Patent number: 8593247
    Abstract: There is provided a chip-type coil component, including: a body formed by laminating a plurality of magnetic layers, and having a lower surface provided as a mounting area, an upper surface corresponding thereto, two end surfaces, and two lateral surfaces; conductor patterns formed on the magnetic layers, respectively, and connected to each other to have a coil structure; and external electrodes formed on at least one external surface of the body, and electrically connected to the conductor patterns, the external electrodes each being formed on the lower surface and spaced apart from edges thereof. Short circuits between electronic components may be prevented and sticking strength between the chip-type coil component and a substrate may be increased.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: November 26, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dong Jin Jeong, Jae Wook Lee
  • Patent number: 8564395
    Abstract: A super high power transformer includes a base, a plurality of plate bodies, and a plurality of isolating bodies. The base further includes a main core part, a plurality of opening slots, and a plurality of side wing parts. The main core part has a penetrating hole at the center thereof. Each of the plate bodies has an open hole for slipping on the main core part and a guided slot that has a pole lead on both sides thereof. Each of the isolating bodies has a through hole for slipping on the main core part and a guided slot. There is also a pole lead positioned on both sides of the guided slot. To be slipped on the main core part, the plurality of plate bodies and the insulating bodies are alternately stacked up with the plate bodies staggering in turning a 90-degree angle apart sequentially.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: October 22, 2013
    Assignee: Yujing Technology Co., Ltd
    Inventor: Cheng-Yu Pan
  • Patent number: 8558652
    Abstract: Provided is a laminated inductor having a magnetic body, a conductor part covered in a manner directly contacting the magnetic body, and external terminals provided on the outside of the magnetic body and conducting to the conductor part; wherein the magnetic body is a laminate constituted by layers containing soft magnetic alloy grains, and the soft magnetic alloy grain contacting the conductor part is flattened on the conductor part side.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: October 15, 2013
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Takayuki Arai, Hitoshi Matsuura, Kenji Otake
  • Patent number: 8549731
    Abstract: Ceramic inductors are made from stacked sheets of co-fired ceramic. At least one of the ceramic sheets has a slot with a conductor disposed in the slot. The conductor has a thickness equal to a thickness of the ceramic sheet containing the slot. The conductor has a large thickness (compared to prior art co-fired ceramic inductors) and therefore can carry large currents. The present ceramic inductor can be used in power electronics applications due to the ability to carry large currents. The present ceramic inductor preferably has an inductance that decreases with increasing current. A decreasing inductance characteristic tends to increase energy efficiency in a voltage regulator when the inductor is used as an output inductor. Specifically, the variable inductance tends to substantially increase energy efficiency at low current loads without adversely affecting efficiency at high loads.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: October 8, 2013
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Michele H. Lim, J. D. van Wyk
  • Patent number: 8552829
    Abstract: A transformer device includes a glass substrate having a first side and a second side arranged opposite the first side. A first recess is formed at the first side of the glass substrate. A second recess is formed at the second side of the glass substrate. The first and second recesses are arranged opposite to each other. A first coil is arranged in the first recess and a second coil is arranged in the second recess.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: October 8, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Friedrich Kroener, Carsten von Koblinski
  • Patent number: 8536969
    Abstract: A transformer having a structure in which first and second substrates are vertically laminated, including: a plurality of input conductive lines disposed on the first substrate along a circumference thereof; a single output conductive line disposed co-planarly with the plurality of input conductive lines, and having one end connected to a ground; and an air bridge including a pair of conductive via holes formed in any one conductive line in an overlapped area in which the input and output conductive lines are intersected with each other to penetrate through the first substrate and a single piece of conductive line connecting the pair of conductive via holes to each other and disposed on the second substrate, thereby preventing a short-circuit between the input and output conductive lines.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: September 17, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Joong Jin Nam, Chul Hwan Yoon, Ki Joong Kim, Ju Young Park, Jun Goo Won, Youn Suk Kim
  • Patent number: 8536970
    Abstract: A multilayered miniature coil component, comprising a plurality of coil layers and insulating layers, the plurality of coil layers and insulating layers being alternately overlapped on each other. Each of the plurality of coil layers includes a plurality of coils and wires, each of the coils has a first and a second end, and a plurality of first conductive portions is disposed on each of the coil layers, at least one second conductive portion is disposed on at least one of the coil layers, and each of the plurality of insulating layers has a plurality of conductive through holes disposed correspondingly to the first conductive portions and the second conductive portions, thus through the plurality of wires, the first and the second conductive portions and the conductive through holes, the plurality of coils in each of the coil layers are composed as a circuit loop.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 17, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Kun-Yi Liang, Chien-Chang Wang, Chung-Chun Huang
  • Patent number: 8525630
    Abstract: A laminated inductor having a laminate structure constituted by magnetic layers and internal conductive wire-forming layers, wherein the magnetic layer is formed by soft magnetic alloy grains, the internal conductive wire-forming layer has an internal conductive wire and a reverse pattern portion around it, and the reverse pattern portion is formed by soft magnetic alloy grains whose constituent elements are of the same types as those of, and whose average grain size is greater than that of, the soft magnetic alloy grains constituting the magnetic layer.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: September 3, 2013
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Tomomi Kobayashi, Hitoshi Matsuura, Takayuki Arai, Masahiro Hachiya, Kenji Otake
  • Patent number: 8519815
    Abstract: An enhanced multi-layered structure is disclosed including an N number of inductor layers (N is an integer greater than one). Each inductor layer includes a substrate and at least one spiral inductors situated on the substrate. The inductor layers may be stacked and aligned with each other so that the electromagnetic fields of the spiral inductors on different inductor layers overlap (at least partially). The spiral inductors on the various inductor layers may be electrically coupled to each other so as to act at an overall inductor. The substrates may be very thin to reduce losses, increase the inductance, and lower the resistance of the overall inductor. The enhanced structure may further include ground planes disposed on top of and below the N inductor layers to provide shielding for the inductor layers. This enhanced structure enables a low loss, high Q inductor to be implemented in a high-performance circuit.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: August 27, 2013
    Assignee: TiVo Inc.
    Inventor: Gary L. Sanders
  • Patent number: 8514049
    Abstract: This disclosure provides an electronic component that can suppress a decrease in the resonant frequency. The electronic component includes a multilayer body having plural insulating layers stacked in a staking direction. Outer electrodes are provided on facing lateral sides of the multilayer body and extend in the stacking direction. Coil conductors are stacked together with the insulating layers to form a coil. The thickness in the stacking direction of at least one of the coil conductors that is directly connected to one of the outer electrodes is smaller than that of the coil conductors that are not directly connected to any of the outer electrodes.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: August 20, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shinichiro Sugiyama, Kaori Takezawa, Hiromi Miyoshi, Masayuki Yoneda
  • Patent number: 8505193
    Abstract: Integrated high frequency balanced-to-unbalanced transformers and inductors suitable for operation in high frequencies, such as radio frequencies. Embodiments disclosed give consideration to issues related to the layout of the top and bottom inductors for the minimization of capacitive effects between layers and methods of manufacturing thereof. The manufacturing process comprises forming of a first winding in a first metal layer; forming an insulating layer over at least the first metal layer; forming of a second winding in a second metal layer such that the second winding path has both a vertical and a horizontal displacement to the first conductive path, preferably with an overlap that is less than a full overlap; and forming shunts to ensure continuity of each of the first and second windings.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 13, 2013
    Assignee: Theta Microelectronics, Inc.
    Inventor: Yannis Papananos
  • Patent number: 8508323
    Abstract: A transformer has primary coils and secondary coils that are arranged in a laminated manner in a direction of a winding axis and are mutually insulated. The secondary coils are composed of conducting plates in a plurality of layers arranged in the laminated manner in the direction of the winding axis, and the conducting plates are electrically connected in series. Connecting portions between the each conducting plates are arranged in an inner space of the primary coils.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: August 13, 2013
    Assignee: Denso Corporation
    Inventors: Masamichi Ishikawa, Shinjiro Yasui
  • Patent number: 8502633
    Abstract: There are is a planar transformer and a method of manufacturing the same that can prevent resin being coated from being separated from a conductor during the manufacturing of a transformer by forming a dummy pattern on a board. A planar transformer according to an aspect of the invention may include: a core part having a pair of cores electromagnetically coupled to each other; a board part having a plurality of boards disposed between the pair of cores and stacked upon one another; a pattern part having a power transmission pattern provided on at least one board of the plurality of boards of the board part and transmitting power being input, and a dummy pattern provided on the same board having the power transmission pattern thereon and separated from the power transmission pattern by a predetermined interval; and a resin part being coated over the at least one board of the plurality of boards, the at least one board having the pattern part thereon.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: August 6, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Geun Young Park, Sang Joon Seo, Jin An Jung, Kwang Seung Cho, Deuk Hoon Kim
  • Patent number: 8493168
    Abstract: An asymmetric differential inductor includes first and second conductive wirings spirally disposed on a substrate having a first input terminal, a second input terminal, a ground terminal, and a central conductive wiring. The central conductive wiring has a central contact connecting the ground terminal and a central end away from the ground terminal. The first conductive wiring extends across the central conductive wiring and has a first contact connecting the first input terminal and a first end connecting the central end. The second conductive wiring extends across the central conductive wiring and interlaces with the first conductive wiring and has a second contact connecting the second input terminal and a second end connecting the central end. Corresponding portions of wiring sections of the first and second conductive wirings at opposite sides of the central conductive wiring are asymmetrical to one another to thereby save substrate space and facilitate circuit layout.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: July 23, 2013
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Ming-Fan Tsai, Kuan-Yu Chen, Bo-Shiang Fang, Hsin-Hung Lee
  • Patent number: 8487734
    Abstract: Parasitic capacitance between upper and lower adjacent wirings of an inductor using a multilayer wiring layer in an insulating film formed on a base substrate is reduced. An inductor is characterized by having one go-around of go-around wiring (A-B or B-C) formed in each of at least two of adjacent wiring layers of a plurality of wiring layers 18 placed in an insulating film on a base substrate, and in that one end (B) of the one go-around of go-around wiring (A-B and B-C) formed in each of the at least two of wiring layers is connected to each other at a via and the one go-around of go-around wiring (A-B and B-C) formed in each of the at least two of wiring layers is placed at substantially the same position in a surface of the base substrate when viewed from an upper side of the base substrate.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: July 16, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Akira Tanabe
  • Patent number: 8451083
    Abstract: A coil component is provided with a magnetic substrate made of magnetic ceramic material, a thin-film coil layer containing a coil conductor formed on one principal surface of the magnetic substrate, a plurality of bump electrodes formed on the principal surface of the thin-film coil layer, and an insulating resin layer formed on the principal surface of the thin-film coil layer excluding formation positions of the bump electrodes. Each bump electrode has an exposure surface on a bottom surface and on two side surfaces of a layered product composed of the magnetic substrate, the thin-film coil layer and the insulating resin layer. A corner of the each bump electrode has a notch portion. The insulating resin layer includes a center resin portion provided in a center of the principal surface of the thin-film coil layer and a plurality of corner resin portions provided in the notch portion of each bump electrode.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: May 28, 2013
    Assignee: TDK Corporation
    Inventors: Takeshi Okumura, Tomokazu Ito
  • Patent number: 8443511
    Abstract: A scalable MEMS inductor is formed on the top surface of a semiconductor die. The MEMS inductor includes a plurality of magnetic lower laminations, a circular trace that lies over and spaced apart from the magnetic lower laminations, and a plurality of upper laminations that lie over and spaced apart from the circular trace.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 21, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Peter Johnson
  • Patent number: 8446244
    Abstract: An integrated magnetic element includes a conductive base, a bobbin, a winding coil, a first magnetic core assembly and a second magnetic core assembly. The conductive base includes a first conductive unit including a plurality of first conductive winding parts, a second conductive unit including at least one second conductive winding part, and a connecting part. The bobbin includes a bobbin body, a winding section, a channel and a plurality of insertion slots. The first conductive winding parts are inserted into corresponding insertion slots of the bobbin. The first magnetic core assembly is sheathed around the bobbin and partially embedded into the channel of the bobbin and the first holes of the first conductive winding parts. The second magnetic core assembly is sheathed around the second conductive unit of the conductive base and partially embedded into the second hole of the second conductive winding part.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: May 21, 2013
    Assignee: Delta Electronics (Shanghai) Co., Ltd.
    Inventors: Liangtang Kuang, Yani Zhang
  • Patent number: 8441332
    Abstract: The invention is directed to inter-helix inductor devices. The inter-helix inductor device includes a dielectric substrate. An input end is disposed on the first surface of the dielectric substrate. A clockwise winding coil has one end connecting to the input end and at least one winding turn through the dielectric substrate. A counter clockwise winding coil includes at least one winding turn through the dielectric substrate, wherein the clockwise and counter clockwise winding coils are connected by an interconnection. An output end is disposed on the dielectric substrate, connects one end of the counter clockwise winding coil, and is adjacent to the input end.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 14, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Wei-Ting Chen, Chang-Sheng Chen, Chin-Sun Shyu, Chang-Lin Wei
  • Patent number: 8441333
    Abstract: A stacked inductor with different metal thickness and metal width. The stacked inductor comprises top and bottom metal traces which are aligned with each other. The thickness and width of the top and bottom metal traces are different. The top and bottom metal traces are connected at the end of metal trace with via holes. The inductance is increased with the use of the mutual inductance between top and bottom metal layers The parasitic resistor is reduced due to the difference of the top and bottom metal widths.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: May 14, 2013
    Assignee: Shanghai Hua Hong NEC Electronics Company, Limited
    Inventors: Tzuyin Chiu, Xiangming Xu, Miao Cai
  • Patent number: 8441775
    Abstract: Techniques are generally described herein for the design, manufacture and use of composite dielectric materials. Embodiments include, but are not limited to, methods, apparatuses, and systems. Other embodiments may also be disclosed and claimed. Some techniques described herein include electrophoretic deposition of dielectric particles to conformally form a thin layer of dielectric material for use in energy storage devices. Example energy storage devices include capacitor devices, which in some instances may be used to replace and/or assist in the operation of batteries, ultra-capacitors, and other similar devices.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: May 14, 2013
    Assignee: Empire Technology Development, LLC
    Inventor: Seth Adrian Miller
  • Patent number: 8424193
    Abstract: A wiring assembly having a conductor positioned about an axis in a helical-like configuration to provide a repetitive pattern which rotates around the axis. In one embodiment, when a current passes through the conductor, a magnetic field having an orientation orthogonal to the axis changes direction as a function of position along the axis.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: April 23, 2013
    Assignee: Advanced Magnet Lab, Inc.
    Inventor: Rainer Meinke
  • Patent number: 8421575
    Abstract: A multi-layered structure is disclosed for implementing an inductor. A first spiral inductor is situated on a first substrate layer, and one or more additional spiral inductors are situated on one or more additional substrate layers. The substrate layers are positioned such that they are substantially in parallel with each other and the spiral inductors on the various layers are aligned with each other. The spiral inductors are electrically coupled to each other by coupling structures to enable them to act as a single overall inductor. Such an overall inductor exhibits improved characteristics, such as a higher Q factor. Other components may be incorporated with and coupled to the overall inductor; thus, this multi-layered structure may be used to construct almost any circuit in which an inductor is implemented.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: April 16, 2013
    Assignee: TiVo Inc.
    Inventor: Gary L. Sanders
  • Patent number: 8410889
    Abstract: The invention relates to a transformer construction comprising a plurality of transformer cores configured to share magnetic flux paths and, as a result, at least one of the cores comprises a post and an associated sidewall having an effective cross-sectional area which is less than that of the post. Such a construction may be employed in a power conditioning unit, for example, for a photovoltaic module, which is configured to operate the cores out of phase from each other. Also described is a transformer winding comprising a longitudinal spine having a first turn emanating from a first portion of the spine in a first transverse direction and a second turn emanating from a second portion of the spine in a second transverse direction, wherein the second transverse direction is opposite to the first transverse direction.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: April 2, 2013
    Assignee: Enecsys Limited
    Inventors: Paul Garrity, Arturo Silva
  • Patent number: 8405482
    Abstract: An integrated circuit includes a substrate having a surface. An inductor is disposed over the surface of the substrate. The inductor is operable to generate a magnetic field through itself that is substantially parallel with the surface.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: March 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsiu-Ying Cho
  • Patent number: 8400251
    Abstract: An electronic component includes a multilayer composite including first insulating layers, second insulating layers, and a helical coil. The helical coil is disposed within the multilayer composite and includes a plurality of coil conductors connected to each other with a plurality of via hole conductors. The coil is located corresponding to the region defined by the second insulating layers when viewed in a stacking direction of the first and second insulating layers. The second insulating layers are located in the region coinciding with the locus of the coil without covering the via hole conductors when viewed in the stacking direction.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: March 19, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshiko Banno, Yoichi Nakatsuji
  • Patent number: 8395472
    Abstract: The present invention provides a means to integrate planar coils on silicon, while providing a high inductance. This high inductance is achieved through a special back- and front sided shielding of a material. In many applications, high-value inductors are a necessity. In particular, this holds for applications in power management. In these applications, the inductors are at least 5 of the order of 1 ?H, and must have an equivalent series resistance of less than 0.1?. For this reason, those inductors are always bulky components, of a typical size of 2×2×1 mm 3, which make a fully integrated solution impossible. On the other hand, integrated inductors, which can monolithically be integrated, do exist. However, these inductors suffer either from low inductance values, or 10 very-high DC resistance values.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: March 12, 2013
    Assignee: NXP B.V.
    Inventors: Freddy Roozeboom, Derk Reefman, Johan Hendrik Klootwijk, Lukas Frederik Tiemeijer, Jaap Ruigrok
  • Patent number: 8395471
    Abstract: An electronic component having a coil includes a laminated body formed by laminating a plurality of magnetic body layers. The coil is formed by connecting coil electrodes in the laminated body. Nonmagnetic body layers are disposed on the laminated body to have a gap with the coil when seen in a plan view from a coil axis direction of the coil. The embodiment of an electronic component has a stair-like direct-current superposition characteristic.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: March 12, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yoichi Nakatsuji
  • Patent number: 8395233
    Abstract: An IC device (100) includes an IC body (106) having a base layer (108) and first and second upper layers (114, 116) on the base layer. The IC body includes a cavity region (104) extending through said base and first upper layers and at least a portion of said second upper layer. In the IC device, a portion of said second upper layer in the cavity region comprises a planar inductive element (102) having first and second contacting ends (140, 142). In the IC device, at least one support member (128, 130, 132) extends at least partially into said cavity region from said IC body in at least a first direction parallel to said base layer and intersects at least a portion of said planar inductive element.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: March 12, 2013
    Assignee: Harris Corporation
    Inventors: David M. Smith, Jeffrey A. Schlang
  • Patent number: 8390417
    Abstract: The invention presents a laminated electronic component configured to include: first coil pattern formed on a plurality of insulating layers, and second coil pattern disposed to face first coil pattern through at least one insulating layer. Both ends of first coil pattern are coupled with external electrodes; both ends of second coil pattern are not coupled with the external electrodes.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: March 5, 2013
    Assignee: Panasonic Corporation
    Inventor: Kenji Ueno
  • Patent number: 8384507
    Abstract: A through via inductor or transformer in a high-resistance substrate in an electronic package. In one embodiment, the package comprises a target inductor which includes a through-via formed in the substrate through which a signal passes and a tuner inductor which includes a through-via formed in the substrate such that the through-via has an independent signal passing therethrough. The direction of the signal passing through the tuner inductor can be independently controlled to adjust the total inductance of the target inductor. In another embodiment, a transformer can comprise a primary loop and a secondary loop, each of which includes a plurality of through-vias that are coupled to a plurality of conductive traces. The primary loop forms a first continuous conductive path and the secondary loop forms a second continuous conductive path. A signal passing through the primary loop can induce a signal in the secondary loop such that the induced signal is dependent on the transformer ratio.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: February 26, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Xia Li, Jonghae Kim, Chi Shun Lo
  • Patent number: 8384506
    Abstract: A magnetic device that includes a magnetic core having a surface facing a conductive substrate. The magnetic device also includes a conductive clip facing a surface of the magnetic core with ends of the conductive clip electrically coupled to the conductive substrate to cooperatively form a winding therewith about the magnetic core.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: February 26, 2013
    Assignee: Enpirion, Inc.
    Inventors: Ashraf W. Lotfi, Mathew A. Wilkowski, Trifon M. Liakopoulos, John D. Weld
  • Patent number: 8384508
    Abstract: A new method and structure is provided for the creation of a semiconductor inductor. Under the first embodiment of the invention, a semiconductor substrate is provided with a scribe line in a passive surface region and active circuits surrounding the passive region. At least one bond pad is created on the passive surface of the substrate close to and on each side of the scribe line. A layer of insulation is deposited, a layer of dielectric is deposited over the layer of insulation, at least one bond pad is provided on the surface of the layer of dielectric on each side of the scribe line. At least one inductor is created on each side of the scribe line on the surface of the layer of dielectric. A layer of passivation is deposited over the layer of dielectric. The substrate is attached to a glass panel by interfacing the surface of the layer of passivation with the glass panel. The substrate is sawed from the backside of the substrate in alignment with the scribe line.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: February 26, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Patent number: 8378768
    Abstract: The invention is a processing component used in electrophoresic conversion of coal fired flue gas carbon dioxide and nitrogen emissions into useful products in lieu of the more costly geosequestration of pollutant by-products produced in the electrical generating and transportation sectors of the economy. Carbon dioxide and facility stack nitrogen imbalance of coal-fired furnace emissions are chemically reacted with electric vehicle fuel cell spent electrolyte in the commercial production of plastic carbon polymers and nitrogen fertilizers.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: February 19, 2013
    Inventor: Edward Milton McWhorter
  • Publication number: 20130038331
    Abstract: The invention relates to a method for manufacturing a coil for generating an intense magnetic field when an electric current passes through it, comprising the formation of turns in a cylindrical tube made of conducting or superconducting material, the formation of at least one indentation in an edge of at least one turn of said coil and the positioning of insulating material between the turn comprising the indentation and an adjacent turn, said recess being made in the edge to form with the insulating material a channel between the interior and the exterior of the tube when the coil is stressed.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 14, 2013
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Francois Debray, Jean Dumas, Rolf Pfister, Christophe Trophime, Jean-Marc Tudela, Nadine Vidal
  • Patent number: 8373534
    Abstract: The present invention is to provide a coil having flexibility even if it includes a core body. A flexible coil 10 comprises a plurality of sheet-like coils laminated together in a region sharing a magnetic flux, wherein each sheet-like coil has a coil section formed along a surface of an insulating sheet having flexibility; and magnetic bodies 80 and 81 that have flexibility and sandwich the plurality of the laminated sheet-like coils.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: February 12, 2013
    Assignee: Sumida Corporation
    Inventor: Mitsugu Kawarai
  • Patent number: RE44911
    Abstract: An electronic component is configured to include a laminate disposed between first and second magnetic substrates. The laminate is formed by laminating resin insulating layers, a coil pattern, and a lead pattern. The coil pattern is connected to external electrodes disposed on end surfaces of the laminate by using internal electrodes. The electronic component further includes expansion relaxation portions disposed in the inside of the resin insulating layers and located in the vicinity of connection regions of the internal electrodes and the external electrodes. The expansion relaxation portions are formed by using a magnetic powder resin in which a ferrite powder and a resin material are mixed.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: May 27, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Katsuji Matsuda, Masahiko Kawaguchi