Terminal Embraces Base Patents (Class 338/313)
  • Patent number: 10892074
    Abstract: An object is to provide a method for manufacturing a resistor capable of suppressing variations in the thickness of a thermally conductive layer interposed between a resistive body and electrode plates. The method for manufacturing a resistor according to the present invention includes a step of forming an unhardened thermally conductive layer on a surface of a resistive body, a step of bringing the thermally conductive layer into a semi-hardened state, and a step of bending electrode plates respectively disposed at both sides of the resistive body, further hardening the thermally conductive layer, and performing adhesion between the resistive body and the electrode plates via the thermally conductive layer.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: January 12, 2021
    Assignee: KOA CORPORATION
    Inventors: Yuichi Abe, Seiji Karasawa, Michio Kubota, Yoji Gomi, Koichi Minowa
  • Patent number: 10453617
    Abstract: A composite electronic component includes an electronic element mounted on a resistance element in a height direction. The electronic element includes an electronic element body, and first and second external electrodes separated from each other in a length direction. The resistance element includes a base portion, a resistor disposed on an upper surface of the base portion, and first and second upper surface conductors on the upper surface of the base portion. The first and second upper surface conductors are separated from each other in the length direction, and the resistor is located between the first and second upper surface conductors. A dimension in the height direction of the resistor is smaller than both a dimension in the height direction of the first external electrode of a portion located on a lower surface of the electronic element body, and a dimension in the height direction of the second external electrode of a portion located on a lower surface of the electronic element body.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: October 22, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kazuo Hattori, Isamu Fujimoto, Shinichiro Kuroiwa
  • Patent number: 10410771
    Abstract: Provided is a chip resistor including: a rectangular parallelepiped insulating substrate 1 which is made of ceramics; a pair of front electrodes 2 which are provided on lengthwise opposite end portions in a front surface of the insulating substrate 1; a resistive element 3 which is provided between and connected to the two front electrodes 2; an insulating protective layer 4 which covers the whole of the front surface of the insulating substrate 1 including the resistive element 3 and the two front electrodes 2; and a pair of cap-shaped end-surface electrodes 5 which are provided on the lengthwise opposite end portions of the insulating substrate 1 to be connected to the front electrodes 2; wherein: the protective layer 4 is formed out of a semi-transparent resin material which is similar in color to the insulating substrate 1.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: September 10, 2019
    Assignee: KOA Corporation
    Inventor: Kentaro Matsumoto
  • Patent number: 9230718
    Abstract: A chip thermistor includes a thermistor element body and a pair of outer electrodes. The thermistor element body has a pair of end faces opposing each other and a main face connecting the end faces to each other. The pair of outer electrodes are arranged on the pair of end faces, respectively. The pair of outer electrodes have a width in a direction intersecting the opposing direction of the pair of end faces made narrower with distance from the thermistor element body.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: January 5, 2016
    Assignee: TDK CORPORATION
    Inventors: Daisuke Tsuchida, Yo Saito, Kouki Yamada
  • Patent number: 9076577
    Abstract: This disclosure relates to a semiconductor device including resistor arrangement including a first resistor electrically connected to a ground voltage and a second resistor in direct physical contact with the first resistor. The second resistor is configured to receive a temperature independent current and the second resistor has thermal properties similar to those of the first resistor. This disclosure also relates to a semiconductor device including a load configured to receive an operating voltage and a voltage source configured to supply the operating voltage. The semiconductor device further includes a resistor arrangement between the load and the voltage source. This disclosure also relates to a method of using a resistor arrangement to calculate an operating current.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 7, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Alan Roth, Alexander Kalnitsky, Chien-Chung Tseng
  • Patent number: 8325006
    Abstract: A chip resistor includes a substrate, a pair of electrode elements, a resistive layer, and a protective layer. The substrate is insulating and includes a first surface, a second surface opposite the first surface and a thickness defined between the first and second surface. The electrode elements are formed on the first and spaced apart. The resistive layer is formed on the first surface and electrically connected to the electrode elements. The protective layer to covers the resistive layer. The first surface faces toward a mounting target, on which the chip resistor is mounted. Each of the electrode elements comprises an electrode layer and a conductive layer formed on the electrode layer. The boundary between the electrode layer and the conductive layer in each of the electrode elements is positioned closer to the substrate than the end surface of the protective layer in the thickness direction of the substrate.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: December 4, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Masaki Yoneda
  • Patent number: 8208266
    Abstract: Shaped integrated passive devices and corresponding methodologies relate to construction and mounting of shaped passive devices on substrates so as to provide both mechanical and electrical connection. Certain components and component assemblies are associated with the implementation of surface mountable devices. Specially shaped integrated passive device are capable of providing simplified mounting on and simultaneous connection to selected electrical pathways on a printed circuit board or other mounting substrate. Shaped, plated side filter devices have plated sides which provide both mounting and grounding/power coupling functions. Thin film filters may be constructed on silicon wafers, which are then diced from the top surface with an angular dicing saw to produce a shaped groove in the top surface. The groove may be v-shaped or other shape, and is then plated with a conductive material. Individual pieces are separated by grinding the back surface of the wafer down to where the grooves are intercepted.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: June 26, 2012
    Assignee: AVX Corporation
    Inventor: Gheorghe Korony
  • Patent number: 8179225
    Abstract: A ceramic electronic component has a chip element body having a conductor arranged inside, external electrodes, and a discrimination layer. The chip element body has first and second end faces facing each other, first and second side faces being perpendicular to the first and second end faces and facing each other, and third and fourth side faces being perpendicular to the first and second end faces and to the first and second side faces and facing each other. The external electrodes are formed on the first and second end faces, respectively, of the chip element body. The discrimination layer is provided on at least one side face out of the first side face and the second side face in the chip element body. The chip element body is comprised of a first ceramic. The discrimination layer is comprised of a second ceramic different from the first ceramic and has a color different from that of the third and fourth side faces.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: May 15, 2012
    Assignee: TDK Corporation
    Inventors: Toshihiro Iguchi, Akitoshi Yoshii, Akira Goshima, Kazuyuki Hasebe
  • Patent number: 8035476
    Abstract: The present invention relates to a chip resistor and method for making the same. The chip resistor includes a substrate, a pair of bottom electrodes, a resistive film, a pair of main upper electrodes, a first protective coat, a pair of barrier layers, a second protective coat, a pair of side electrodes and at least one plated layer. The first protective coat is disposed over the resistive film, and covers part of the main upper electrodes. The barrier layers are disposed on the main upper electrodes, and cover part of the first protective coat. The second protective coat is disposed on the first protective coat, and covers part of the barrier layers. The plated layers cover the barrier layers, the bottom electrodes and the side electrodes. As a result, the chip resistor features high corrosion resistance.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: October 11, 2011
    Assignee: Yageo Corporation
    Inventors: Chih-Chung Yang, Wen-Fon Wu, Mei-Ling Lin, Wen-Cheng Wu, Tsai-Hu Chen, Wen-Hsing Kong
  • Patent number: 7825769
    Abstract: A terminal structure of a chip-like electric component capable of blocking entry of electromigration-causing factors through an insulating resin layer in the vicinity of the peak of a raised portion of an electrical element forming layer is obtained. A metal-glaze-based front electrode 103 containing silver is provided on a surface of an insulating ceramic substrate 101. A resistor layer 107 electrically connected to the front electrode 103 is provided on the substrate surface. A glass layer 109a is provided to completely cover a surface of the resistor layer 107 as well as a surface of an end portion of the resistor layer 107 and also to partially cover the front electrode 103. An insulating resin layer 109b is provided to cover a surface of the glass layer 109a as well as a surface of at least an end portion of the glass layer 109a and to partially cover the front electrode 103.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: November 2, 2010
    Assignee: Hokuriku Electric Co., Ltd.
    Inventors: Yutaka Nomura, Katsumi Takeuchi
  • Patent number: 7343671
    Abstract: A process for manufacturing a composite polymeric circuit protection device in which a polymeric assembly is provided and is then subdivided into individual devices. The assembly is made by providing first and second laminates, each of which includes a laminar polymer element having at least one conductive surface, providing a pattern on at least one of the conductive surfaces on one laminate, securing the laminates in a stack in a desired configuration, at least one conductive surface of at least one of the laminates forming an external conductive surface of the stack, and making a plurality of electrical connections between a conductive surface of the first laminate and a conductive surface of the second laminate. The laminar polymer elements may be PTC conductive polymer compositions, so that the individual devices made by the process exhibit PTC behavior.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: March 18, 2008
    Assignee: Tyco Electronics Corporation
    Inventors: Scott Hetherton, Wayne Montoya, Thomas Bruguier, Randy Daering
  • Patent number: 7084733
    Abstract: In chip electronic components, the application state of conductive paste that makes side electrodes can be optically distinguished in the production of small-sized chip electronic components. The chip electronic component comprises a substrate, and side electrodes disposed at the end portions of the substrate. The lightness of an entire surface of the side electrode is not more than 6 as defined in JIS-Z8721.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: August 1, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuru Harada, Kazunori Omoya, Masato Hashimoto, Akio Fukuoka
  • Patent number: 7069641
    Abstract: The present invention discloses a method for preparing a conductive polymeric composite material having carbon black utilized to a structure for composite materials of a positive temperature coefficient thermistor. The method first provides a metal laminated material comprising a top metal layer and a bottom metal layer, an insulating layer between the top and the bottom metal layer, and a conducting through hole disposed between the top metal layer and the bottom metal layer. A composite electroplating process is then performed to form an composite electroplating layer on the surface of the top metal layer, wherein the composite electroplating layer is a continuous porous structure with a secondary aggregation of carbon black and electroplated metal.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: July 4, 2006
    Assignee: Protectronics Technology Corporation
    Inventors: Ren-Haur Hwang, Der-Yang Liu, Chen-Ron Lin
  • Patent number: 7012501
    Abstract: An electrical component includes a base body that contains dielectric layers. The dielectric layers are superimposed and contain ceramic. The component also includes outer contacts on an exterior of the base body, and a resistor in an interior of the base body located between two of the dielectric layers. The resistor is connected to the outer contacts, and is made from a layer that forms a path between the outer contacts. The path between the outer contacts has multiple bends.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: March 14, 2006
    Assignee: Epcos AG
    Inventors: Robert Krumphals, Gunther Greier, Axel Pecina, Harald Köppel
  • Patent number: 6982624
    Abstract: A chip resistor includes an insulating chip substrate, a resistor film formed on the substrate, a pair of upper electrodes formed from silver paste to be connected to the resistor film, a cover coat covering the resistor film, an auxiliary electrode formed on each of the upper electrodes to partially overlap the cover coat, a side electrode formed on each of the side surfaces of the substrate to be connected to the upper electrode and the auxiliary electrode, a nickel-plated layer covering the auxiliary electrode and the side electrode, and a soldering layer covering the nickel-plated layer. The side electrode is made from nonmagnetic conductive resin paste, whereas the auxiliary upper electrode is made from carbon-based conductive resin paste.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: January 3, 2006
    Assignee: Rohm Co., Ltd.
    Inventors: Daisuke Saito, Takahiro Kuriyama, Masato Doi
  • Patent number: 6873244
    Abstract: The present invention discloses a surface mountable laminated thermistor device which utilizes current-used double sided metal foil clad substrate as a base material and a PTC conductive composite that complies with circuit connection design combinations among electrodes to obtain a surface mountable laminated thermistor device with a parallel manner, and vastly simplify the fabrication process of the surface mountable laminated thermistor device.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: March 29, 2005
    Assignee: Protectronics Technology Corporation
    Inventors: Chien-Shan Huang, Ren-Haur Hwang, Chih-Yi Chang
  • Patent number: 6861941
    Abstract: A chip resistor including an elongated chip substrate, a resistive layer formed on the substrate, a silver-containing upper electrode connected to the resistive layer, an undercoat enclosing the resistive layer and extending onto part of the upper electrode, an auxiliary electrode connected to the upper electrode and extending onto part of the undercoat, and overcoat enclosing the undercoat and extending onto part of the auxiliary electrode. In the longitudinal direction of the substrate The undercoat extends longitudinally of the substrate beyond the overcoat, so that the extremity of the undercoat is offset from the extremity of the overcoat by an appropriate distance.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: March 1, 2005
    Assignee: Rohm Co., Ltd.
    Inventor: Takahiro Kuriyama
  • Patent number: 6859133
    Abstract: The resistor of the present invention comprises a substrate, a pair of upper electrode layers disposed on one surface of the substrate, and a resistor layer connected to the pair of upper electrode layers, wherein the upper electrode layer includes a first thin film layer that strongly adheres to the substrate and the resistor layer, and a second thin film layer having volume resistivity lower than the volume resistivity of the first upper electrode thin film layer. Further, the resistor of the present invention comprises a pair of side electrodes, electrically connected to the upper electrode layers, at the end portion of the substrate, and the side electrode includes a first side thin film layer and a second side thin film layer, and the material that forms the second side thin film layer has a solid solubility with the first side thin film layer.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: February 22, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tsutomu Nakanishi, Takashi Morino, Tadao Yagi, Tetsuhiro Korechika
  • Patent number: 6856234
    Abstract: A chip resistor includes an insulating substrate 2 in the form of a chip having an upper surface and an opposite pair of side surfaces, a resistor film 4 formed on the upper surface of the insulating substrate 2, a pair of upper electrodes 5 formed on the upper surface of the insulating substrate 2 to flank the resistor film 4 in electrical connection thereto, a cover coat 6 covering the resistor film 4, an auxiliary upper electrode 7 formed on each of the upper electrodes 5 and including a first portion 7a adjoining the relevant side surface of the insulating substrate 2 and a second portion 7b overlapping the cover coat 6, and a side electrode 8 formed on each of the side surfaces of the insulating substrate 2 and electrically connected to at least the upper electrode 5 and the auxiliary upper electrode 7.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: February 15, 2005
    Assignee: Rohm Co., Ltd.
    Inventors: Takahiro Kuriyama, Masato Doi
  • Patent number: 6838972
    Abstract: An electrical circuit protection device with three supporting substrates, two PTC elements, and first and second end terminations. The first and third substrates have an electrode formed on a first surface thereof. The second substrate has electrodes formed on both surfaces thereof. The first PTC element is laminated between the first and second substrates, electrically connecting the first electrodes formed on the first and second substrates. The second PTC element is laminated between the second and third substrates, electrically connecting the second electrode formed on the second substrate and the first electrode formed on the third substrate. The end terminations wraps around opposite ends of the device. The first end termination is in electrical contact with the first electrodes formed on the second and third substrates and the second end termination is in electrical contact with the first electrode formed on the first substrate and the second electrode formed on the second substrate.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: January 4, 2005
    Assignee: Littelfuse, Inc.
    Inventors: Anthony D. Minervini, Honorio S. Luciano
  • Publication number: 20040252009
    Abstract: A chip resistor includes a resistor element in the form of a chip, and at least two electrodes formed on the resistor element. The resistor element includes an upper surface, a lower surface, and two end surfaces extending between the upper and the lower surfaces and spaced from each other. The two electrodes are provided on the lower surface of the resistor element. Each of the end surfaces of the resistor element is formed with a conductor film integrally connected to a corresponding one of the electrodes. The conductor film is made of copper, for example, and is higher in solder-wettability than the resistor element.
    Type: Application
    Filed: April 27, 2004
    Publication date: December 16, 2004
    Applicant: ROHM CO., LTD.
    Inventor: Torayuki Tsukada
  • Publication number: 20040239476
    Abstract: An electrical component includes a base body that contains dielectric layers. The dielectric layers are superimposed and contain ceramic. The component also includes outer contacts on an exterior of the base body, and a resistor in an interior of the base body located between two of the dielectric layers. The resistor is connected to the outer contacts, and is made from a layer that forms a path between the outer contacts. The path between the outer contacts has multiple bends.
    Type: Application
    Filed: March 3, 2004
    Publication date: December 2, 2004
    Inventors: Roberts Krumphals, Gunther Greier, Axel Pecina, Harald Koppel
  • Patent number: 6801118
    Abstract: The present invention relates to the resistors used for detecting current in a current-carrying circuit as a voltage, and aims to provides a resistor which assures highly accurate measurement of resistance even if the measuring point is not precisely placed. To obtain the above purpose, the resistor of the present invention comprises a sheet metal resistor element (11) and separate metal terminals (12),(13) electrically connected to both ends of the sheet resistor element(11). These terminals (12),(13) are made of metal having the same or greater electrical conductivity than that of the resistor element (11). With the above configuration, resistance of the terminals can be made smaller than that of the resistor element. This enables to reduce the proportion of resistance of the terminals in the entire resistor, allowing to ignore its effect on fluctuation of resistance due to deviation in measuring points of a resistance measuring terminal.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: October 5, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Koichi Ikemoto, Yasuhiro Shindo, Norimitsu Chinomi
  • Patent number: 6759940
    Abstract: In accordance with the invention, a temperature compensating device comprises one or more integrated sheet thermistors. Because the sheet thermistors are relatively thick and integral with the substrate, they are less susceptible to changes in air temperature and to temperature gradients. Moreover, the sheet thermistors can be made smaller in area, permitting more compact, less expensive devices that exhibit improved high frequency performance. The devices can advantageously be fabricated using the low temperature co-fired ceramic (LTCC) process.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: July 6, 2004
    Assignee: Lamina Ceramics, Inc.
    Inventor: Joseph Mazzochette
  • Patent number: 6727798
    Abstract: The present invention provides for a flip chip resistor having a substrate having opposite ends, a pair of electrodes formed from a first electrode layer disposed on the opposite ends of the substrate, a resistance layer electrically connecting the pair of electrodes, a protective layer overlaying the resistance layer, and a second electrode layer overlaying the first electrode layer and at least a portion of the protective layer. The present invention provides for higher reliability performance and enlarging the potential soldering area despite small chip size.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: April 27, 2004
    Assignee: Vishay Intertechnology, Inc.
    Inventors: Leonid Akhtman, Sakaev Matvey
  • Patent number: 6724295
    Abstract: A method of making a chip resistor is provided. According to this method, an aggregate board is first prepared which includes a first region and a second region which are spaced from each other via an excess portion. Then, a conductor pattern is formed which extends to bridge the first region and the second region. Subsequently, a resistor element is formed in each of the first region and the second region for connection to the conductor pattern. Then, the aggregate board is cut at the excess portion. The conductor pattern includes a thinner-walled portion extending across the excess portion and a thicker-walled portion connected to the thinner-walled portion and spaced from the excess portion.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: April 20, 2004
    Assignee: Rohm Co., Ltd.
    Inventor: Torayuki Tsukada
  • Patent number: 6677850
    Abstract: An electrical current sensor and utility electricity meter, the current sensor comprising a &pgr; resistor shunt configuration, wherein the resistors comprise layered conductors at substantially equal temperatures to provide a zero temperature coefficient sensor. A fiscal electricity meter is described together with a four-layered current sensor fabricated using PCB techniques.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: January 13, 2004
    Assignee: Sentec Ltd.
    Inventor: Andrew Nicholas Dames
  • Patent number: 6640420
    Abstract: A process for manufacturing a composite polymeric circuit protection device in which a polymeric assembly is provided and is then subdivided into individual devices. The assembly is made by providing first and second laminates, each of which includes a laminar polymer element having at least one conductive surface, providing a pattern on at least one of the conductive surfaces on one laminate, securing the laminates in a stack in a desired configuration, at least one conductive surface of at least one of the laminates forming an external conductive surface of the stack, and making a plurality of electrical connections between a conductive surface of the first laminate and a conductive surface of the second laminate. The laminar polymer elements may be PTC conductive polymer compositions, so that the individual devices made by the process exhibit PTC behavior.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: November 4, 2003
    Assignee: Tyco Electronics Corporation
    Inventors: Scott Hetherton, Wayne Montoya, Thomas Bruguier, Randy Daering
  • Patent number: 6636143
    Abstract: The present invention relates to a resistor and a manufacturing method of the same. The invention aims at providing the resistor and the manufacturing method thereof that can reduce a soldering area that occupies a mount area, when the resistor is mounted on a mount board. In order to achieve the foregoing object, a resistor comprises a substrate (21), a pair of first upper surface electrode layers (22), each provided on a side portion of an upper surface toward a portion of a side surface of the substrate (21), a pair of second upper surface electrode layers (23) provided in a manner to make electrical connections with the first upper surface electrode layers (22), a resistance layer (24) provided in a manner to make electrical connections with the second surface electrode layers (23), and a protective layer (25) provided to cover at least an upper surface of the resistance layer (24).
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: October 21, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masato Hashimoto, Hiroyuki Yamada, Seiji Tsuda
  • Patent number: 6606023
    Abstract: A composite circuit protection device includes a laminar insulating member and first and second laminar circuit protection devices.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: August 12, 2003
    Assignee: Tyco Electronics Corporation
    Inventors: Justin Chiang, Shou-Mean Fang, William C. Beadling
  • Patent number: 6563214
    Abstract: An electronic component having a substrate on which one or more grooves are formed on its opposing side faces; electrodes formed on the groove and top and bottom faces of the substrate at a portion adjacent to the groove; and a circuit element formed between the electrodes. An electrode is also formed on the opposing side faces of said substrate at a portion other than the grooves. This structure enables to improve the reliability of a soldered portion even for small electronic components with about 10 &mgr;m thick electrodes such as chip resistors, chip capacitors, and chip inductors.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: May 13, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroyuki Yamada, Takeshi Iseki, Yasuharu Kinoshita
  • Patent number: 6492896
    Abstract: There are provided a pair of upper surface electrodes 21, 31 at both end sections, which are opposed to each other, of the insulating substrate 1 made of alumina. There is provided a resistor body 4 on the substrate 1 so that the upper surface electrode 21 and both the end sections can be electrically connected with each other. On the pair of upper surface electrodes 21, 31, there are provided a pair of upper surface auxiliary electrodes 24, 34 made of material, the heat-resistance with respect to solder of which is superior to that of the upper surface electrodes 21, 31, so that the exposed sections of the upper surface electrodes 21, 31 can be completely covered with the pair of upper surface auxiliary electrodes 24, 34, wherein the pair of upper surface auxiliary electrodes 24, 34 are not directly connected with the resistor body 4. On the surface of the resistor body 4, there is provided a protective film 5 (a first protective film 51 to a third protective film 53).
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: December 10, 2002
    Assignee: Rohm Co., Ltd.
    Inventor: Masaki Yoneda
  • Publication number: 20020180576
    Abstract: A chip thermistor includes a chip element assembly having a substantially rectangular shape and three pairs of side surfaces facing each other, and a pair of external electrodes each having a main electrode portion and a side-surface electrode portion, wherein the external electrodes have gaps therebetween, each main electrode portion is disposed on each of a first pair of the side surfaces having a substantially rectangular shape, each side-surface electrode portion is disposed on an end portion of each of four side surfaces which define a second and third pair of the side surfaces, the end portion that is connected with each of the first pair of the substantially rectangular side surfaces each having the main electrode portion thereon, and each of the gaps is on each of the four side surfaces.
    Type: Application
    Filed: May 28, 2002
    Publication date: December 5, 2002
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Satoshi Kumura, Hidehiro Inoue
  • Patent number: 6441717
    Abstract: A chip polymer PTC thermistor for surface mount assembly having a superior long-term connection reliability between side electrode and main and sub electrodes. The thermister comprises; a rectangular parallelepiped conductive polymer(11) having PTC properties; a first main electrode(12a) and a first sub electrode(12b) disposed on a first face of the conductive polymer; a second main electrode(12c) and a second sub electrode(12d) disposed on a second face opposite the first face of the conductive polymer; and first and second side electrodes(13a,13b) folding around and over the entire surface of side faces of the conductive polymer, the side electrodes electrically coupling the electrodes disposed on the two faces of the conductive polymer, and a thickness of the side electrodes is not less than one twentieth of the distance between the first main electrode(12a) and the second sub electrode(12d) and the distance between the first sub electrode(12b) and second main electrode(12a,12c).
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: August 27, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takashi Ikeda, Kohichi Morimoto, Junji Kojima, Kiyoshi Ikeuchi, Toshiyuki Iwao
  • Patent number: 6411191
    Abstract: A current-limiting device includes a current-limiting material, such as a molded thermoset material, and first and second electrodes structured for carrying current through the current-limiting material. The first electrode electrically engages a first portion of the current-limiting material, and the second electrode electrically engages a second portion of the current-limiting material. A mechanism provides a non-uniform pressure distribution between one or both of the first and second electrodes and the current-limiting material.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: June 25, 2002
    Assignee: Eaton Corporation
    Inventors: John J. Shea, Jeffrey A. Miller, William K. Hanna, Stephen A. Mrenna
  • Patent number: 6380839
    Abstract: A surface mount conductive polymer device includes a layer of conductive polymer material laminated between first and second metal foil electrodes. A thermal stress relief area is formed as an etched-out area in each of the electrodes. The etched-out areas are equal in surface area, and they are symmetrically disposed on the two electrodes, so that the two electrodes are themselves symmetrical, and are subject to equal degrees of thermal stress relief. First and second opposed end terminals are formed on the opposed ends of the laminated structure to providing electrical connection to the first and second electrodes, respectively.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: April 30, 2002
    Assignee: Bourns, Inc.
    Inventors: Lawrence Li, Daniel Grindell, Hugo Chang
  • Patent number: 6362723
    Abstract: A chip thermistor is produced by first preparing green sheets containing a thermistor ceramic material and an organic binder, then applying a resistor paste on one or more of these green sheets and an inner electrode paste on some others, and forming a layered structure by stacking and compressing together specified numbers of these green sheets. The layered structure is then subjected to a firing process and outer electrodes are formed on oppositely facing pair of outer end surfaces of the layered structure. The chip thermistor thus produced has a main body of a thermistor ceramic material having a specified resistance-temperature characteristic, a pair of outer electrodes on its end surfaces, at least one resistor having resistance greater than 1&OHgr;, and at least one pair of inner electrodes opposite each other and separated from each other with the thermistor ceramic material in between.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: March 26, 2002
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Masahiko Kawase
  • Patent number: 6359546
    Abstract: A chip device and a manufacturing method therefor are disclosed, in which the resistivity of the chip resistor device is constantly maintained even without using silver for lowering the self resistance in portions other than the upper electrode, thereby curtailing the manufacturing cost of the chip resistor. The chip resistor device 1 includes a chip block 10 having an upper face 12 and a pair of mutually oppositely facing side faces 14. An electrode part 20 has an upper electrode 22 formed on the upper face 12 of the chip block 10, and a side electrode 24 formed on the side faces 14 of the chip block 10. A special electrical property layer 30 is connected to the upper electrode 22 of the chip block 10. A protecting layer 40 is formed upon the special electrical property layer 30 to protect it. A terminal electrode layer 50 is formed on the electrode part 20 of the chip block 10, and a terminal connection part S is necessarily provided to form a signal bypassing path.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: March 19, 2002
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Soon Hee Oh
  • Patent number: 6356184
    Abstract: A resistor chip has a pair of mutually separated upper-surface electrodes on the upper surface of an electrically insulating substrate in a form of a chip, an resistor film having end portions which are each over a corresponding one of these upper-surface electrodes, a cover coating made of a glass material which is over a portion of this resistor film, and a pair of plated metallic layers each over a corresponding one of end surfaces of the substrate. Edge sections of the insulator film over the upper-surface electrodes are not covered by the cover coating and are each directly covered by one of these plated metallic layers.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: March 12, 2002
    Assignee: Rohm Co., Ltd.
    Inventors: Masato Doi, Susumu Okuno
  • Publication number: 20020014949
    Abstract: A chip component such as chip resistor, which is capable of being mounted obversely or reversely to a substrate or the like. Since the color of the armor is adjusted so as to be green identical with that of a ceramics chip, the lightness distribution of the component front face is similar with that of the component back face. Therefore, there is no case that chip component mounted obversely and chip component mounted reversely are identified as different components in a testing step of detecting a positional deviation or unloaded component by a color or monochromatic image processing (digital image processing), even if the component is mounted reversely to a substrate or the like.
    Type: Application
    Filed: September 20, 2001
    Publication date: February 7, 2002
    Applicant: TAIYO YUDEN CO., LTD
    Inventors: Hirotoshi Tanaka, Masataka Kohara, Hideya Maki
  • Publication number: 20020003466
    Abstract: There are provided a pair of upper surface electrodes 21, 31 at both end sections, which are opposed to each other, of the insulating substrate 1 made of alumina. There is provided a resistor body 4 on the substrate 1 so that the upper surface electrode 21 and both the end sections can be electrically connected with each other. On the pair of upper surface electrodes 21, 31, there are provided a pair of upper surface auxiliary electrodes 24, 34 made of material, the heat-resistance with respect to solder of which is superior to that of the upper surface electrodes 21, 31, so that the exposed sections of the upper surface electrodes 21, 31 can be completely covered with the pair of upper surface auxiliary electrodes 24, 34, wherein the pair of upper surface auxiliary electrodes 24, 34 are not directly connected with the resistor body 4. On the surface of the resistor body 4, there is provided a protective film 5 (a first protective film 51 to a third protective film 53).
    Type: Application
    Filed: July 9, 2001
    Publication date: January 10, 2002
    Applicant: ROHM CO., LTD.
    Inventor: Masaki Yoneda
  • Patent number: 6297722
    Abstract: A process for manufacturing surface mountable electrical devices includes the steps of preparing a PTC resistive plate, covering the plate with first and second conductive layers to form a laminate, forming a plurality of spaced apart bores of cross-shaped cross-section in the laminate along intersecting cutting lines at locations where the cutting lines intersect, electroplating the first and second conductive layers and the cross-shaped bores, and cutting the laminate along the cutting lines to form a plurality of polygonal elements with each of the bores being divided into four parts, each having a substantially L-shaped cross-section.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: October 2, 2001
    Assignee: Fuzetec Technology Co., Ltd.
    Inventor: Ching-Chiang Yeh
  • Publication number: 20010004074
    Abstract: An exothermic body, capable of efficiently conducting heat from a planar thermistor element with positive temperature characteristic, has a pair of comb-shaped electrodes formed by a sputtering or plating method with thickness less than 10 &mgr;m on one of main surfaces of the thermistor element.
    Type: Application
    Filed: January 25, 2001
    Publication date: June 21, 2001
    Inventor: Katsuyuki Uchida
  • Patent number: 6223423
    Abstract: A conductive polymer PTC device includes upper, lower, and center electrodes, with a first PTC conductive polymer layer between the upper and center electrodes, and a second PTC conductive polymer layer between the center and lower electrodes. Each of the upper and lower electrodes is separated into an isolated portion and a main portion. The isolated portions of the upper and lower electrodes are electrically connected to each other and to the center electrode by an input terminal. Upper and lower output terminals are provided, respectively, on the main portions of the upper and lower electrodes and are electrically connected to each other. The resulting device is, effectively, two PTC devices connected in parallel, thereby providing an increased effective cross-sectional area for the current flow path, and thus a larger hold current, for a given footprint.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: May 1, 2001
    Assignee: Bourns Multifuse (Hong Kong) Ltd.
    Inventor: Steven Darryl Hogge
  • Patent number: 6201682
    Abstract: A thin-film component, for example a capacitor, a resistor and a coil, as well as combinations thereof. A substrate of an electrically insulating material (preferably glass), is provided with two U-shaped side contacts and with an electrical structure which is electrically connected to both side contacts. A flexible layer (preferably polyimide) is situated between the substrate and at least one of both legs of each of the U-shaped side contacts, which flexible layer is provided directly on the substrate surface, and in that the modules of elasticity of the material of the layer is below 50 GPa. By virtue of this measure, it is achieved that the components demonstrate a better resistance to standard bending tests. As a result, the product-failure percentage is reduced if these components are employed in flexible PCBs or in PCBs which are subjected to a vibration.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: March 13, 2001
    Assignee: U.S. Philips Corporation
    Inventors: Jan H. Mooij, Henricus H.M. Wagemans, Joghum P. Venema
  • Patent number: 6172592
    Abstract: A chip-type thermistor has a pair of electrically conductive planar comb-shaped surface electrodes facing each other on one of principal surfaces of a thermistor block, and an insulating layer covers these surface electrodes. A pair of outer electrodes are formed on end surfaces of the thermistor block, each electrically connected to an associated one of the surface electrodes.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: January 9, 2001
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hidehiro Inoue, Mitsuaki Fujimoto, Yuichi Takaoka
  • Patent number: 6144287
    Abstract: A chip resistor is provided which includes: an insulating substrate (1); a pair of main electrodes (2, 3) formed on a surface of the insulating substrate (1) and spaced from each other; a resistor film (4) formed on the surface of the insulating substrate (1) to bridge between the main electrodes (2, 3), the resistor film (4) being provided with a trimming groove (6) for resistor adjustment; a protective coating (5, 7, 8) formed to cover the resistor film (4); and a metal plating (13, 14) formed in electrical conduction with each of the main electrodes (2, 3). The trimming groove (6) has a width which is no less than 80 .mu.m but smaller than an interval between the main electrodes (2, 3), and is formed at an inclination angle of 20-45 degrees with respect to the substrate. Three glass coat layers are also employed.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: November 7, 2000
    Assignee: Rohm Co., Ltd.
    Inventor: Masayoshi Komeda
  • Patent number: 6087923
    Abstract: A low capacitance chip varistor and a fabrication method thereof are described, which are capable of protecting the electronic elements of an electronic instrument from an external and internal surge and being well applicable to an electronic element which requires a low capacitance, and the low capacitance chip varistor includes at least one sheet support layer formed of a member having a low dielectric constant, a varistor layer including at least more than one varistor coating layer formed on the support layer, at least more than two internal electrode folded with a predetermined portion of the varistor layer to be connected with the varistor layer, one end of each of which is extended from a lateral surface of the support layer, and a pair of integrally formed external electrodes formed on a lateral surface of a varistor stack member integrally formed of the support layer, the varistor layer and the internal electrodes to be connected with one end portion of each internal electrode.
    Type: Grant
    Filed: March 18, 1998
    Date of Patent: July 11, 2000
    Assignee: Ceratech Corporation
    Inventors: Byeung Joon Ahn, Yong Joo Kim
  • Patent number: 6081181
    Abstract: Electrodes on both ends of a thermistor chip element each have a first metal layer formed on the thermistor chip element and a second metal layer which has a smaller area than the first metal layer and is formed on the first metal layer such that the mutually opposite edge parts of the first metal layers are exposed. Third metal layers are formed over the second metal layers. A fourth metal layer may be formed between the first and second metal layers.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: June 27, 2000
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masahiko Kawase, Hidenobu Kimoto, Norimitsu Kito, Ikuya Taniguchi
  • Patent number: 6078250
    Abstract: A resistor element has a ceramic body with a first outer electrode and a second outer electrode formed on its mutually opposite externally facing end surfaces and a plurality of mutually oppositely facing pairs of inner electrodes inside the ceramic body. Each of these pairs has a first inner electrode extending horizontally from the first outer electrode and a second inner electrode extending horizontally from the second outer electrode towards the first outer electrode and having a front end opposite and separated from the first inner electrode by a gap of a specified width, these plurality of pairs forming layers in a vertical direction. The gap of at least one of these plurality of pairs of inner electrodes is horizontally displaced from but overlapping with the gaps between the other pairs of inner electrodes. For producing such a resistor element, the distance of displacement is set according to a given target resistance value intended to be had by the resistor element.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: June 20, 2000
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yukiko Ueda, Masahiko Kawase, Norimitsu Kitoh
  • Patent number: 5248298
    Abstract: An insert is provided to be attached to a shield on a surgical trocar obturator handle. The insert is actuated by the surgical trocar cannula handle so that it causes the shield to expose the sharpened obturator tip after insertion of the obturator and shield within the cannula. After usage, the insert is deactivated so that the shield again covers the obturator. The obturator can then be removed from the cannula handle and obturator shield, and the obturator handle can be discarded safely.
    Type: Grant
    Filed: April 16, 1992
    Date of Patent: September 28, 1993
    Assignee: Ethicon, Inc.
    Inventors: James Bedi, Steven Annunziato