Terminal Coated On Resistance Element Patents (Class 338/327)
  • Patent number: 11562851
    Abstract: An electronic component includes a magnetic body containing magnetic metal powder; and external electrodes disposed on an outer portion of the magnetic body. The external electrodes include first plating layers in direct contact with the magnetic body.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: January 24, 2023
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Min Sung Choi
  • Patent number: 9396849
    Abstract: The present technology is directed toward a resistor and method of manufacturing the resistor. One or more layers of insulative material are formed on a length of resistive material. Portions of the one or more layers insulative material are removed from the resistive material in a pattern based on a predetermined approximate dimension and predetermined approximate resistance value. A first set of one or more conductive layers are formed on the portions of the resistive material exposed by the insulative coating to form a plurality of conductive pads on the resistive material between the patterned insulative material. The sets of conductive pads are probed to measure a preliminary resistance value between the sets of conductive pads.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: July 19, 2016
    Assignee: VISHAY DALE ELECTRONICS LLC
    Inventors: Todd Wyatt, Clark Smith, Rod Brune, Rocky Klabunde
  • Patent number: 9251936
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: February 2, 2016
    Assignee: Vishay Dale Electronics, LLC
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik, Rodney Brune
  • Patent number: 9054523
    Abstract: A current detecting mechanism according to this invention includes a direct current shunt having a plurality of resistor members with high resistivity to output an electric potential difference across the resistor members, proportional to a current flowing through an electric load side terminal, as a voltage signal, and a hall sensor assembly having a pair of magnetic cores installed to face each other with an air gap therebetween, and a hall sensor to output an output voltage according to a magnetic flux induced in proportion to a current flowing through a load side terminal, without being connected with the direct current shunt, of load side terminals.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: June 9, 2015
    Assignee: LSIS Co., Ltd.
    Inventor: Jong Mahn Sohn
  • Publication number: 20140368310
    Abstract: An amorphous metal thin-film non-linear resistor (AMNR) is provided. The AMNR is an electronic device possessing symmetric non-linear current-voltage (I-V) characteristics, an exemplary configuration of which may comprise three sequentially deposited layers which include a lower amorphous metal thin-film (AMTF) interconnect, a thin-film insulator located on top of the AMTF interconnect, and two upper conductive contacts located on top of the insulator and disposed in the same physical plane.
    Type: Application
    Filed: October 30, 2013
    Publication date: December 18, 2014
    Inventor: E. William Cowell, III
  • Publication number: 20140210587
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicant: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik, Rodney Brune
  • Patent number: 8487736
    Abstract: Provided may be a semiconductor resistance element including resistance patterns disposed on an insulating substrate. The substrate may have first and second planar surfaces disposed in a first direction, third and fourth planar surfaces at least between the first and second planar surfaces in a second direction and fifth and sixth planar surfaces at least between the first and second planar surfaces in a third direction. The semiconductor resistance element may include a first resistance pattern configured to cover a selected one of the first and second planar surfaces and a second resistance pattern on at least one of the third through sixth planar surfaces.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: July 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-Mo Hwang, Hyun-Seok Choi, Young-Chul Park
  • Patent number: 8471673
    Abstract: A varistor is provided with a varistor element body, a plurality of internal electrodes arranged in the varistor element body so as to sandwich a partial region of the varistor element body between them, and a plurality of external electrodes arranged on the surface of the varistor element body and connected to the corresponding internal electrodes. The external electrode has a sintered electrode layer formed by attaching an electroconductive paste containing an alkali metal to the surface of the varistor element body and sintering it. The varistor element body has a high-resistance region formed by diffusing the alkali metal in the electroconductive paste into the varistor element body from an interface between the surface of the varistor element body and the sintered electrode layer.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: June 25, 2013
    Assignee: TDK Corporation
    Inventors: Hitoshi Tanaka, Katsunari Moriai, Takahiro Itami
  • Patent number: 8432248
    Abstract: To provide manufacturing method for resistor that uses metal plate as resistance body, which can obtain desired accurate resistance value without trimming resistance body even if product becomes small. The method comprises; in method for manufacturing an unit resistor that has a pair of electrodes separated by insulation film, from resistor material that is provided with a metal plate consisting of resistance material, an insulation film pattern formed on the metal plate, and an electrode region formed besides area where insulation film pattern has been formed, by piercing predetermined piercing area, wherein length E of insulation film pattern is longer than width w of piercing area, wherein width L of insulation film pattern extends or narrows along direction of length E of insulation film pattern, and wherein position X of piercing area is adjusted in extent and in direction of length E of insulation film pattern.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: April 30, 2013
    Assignee: KOA Corporation
    Inventors: Hiromu Sakai, Hitoshi Amemiya, Takanori Kikuchi
  • Publication number: 20130025366
    Abstract: A method for producing a conductive segment, includes: a step of printing a metal conductive paste on a substrate, and drying the paste; a step of printing other metal conductive paste on the metal conductive paste after drying, and drying the paste; and a step of burning the metal conductive paste after drying and the other metal conductive paste after drying, wherein the conductive metal paste is an Ag—Pd conductive paste comprising silver (Ag) and palladium (Pd), and the other metal conductive paste is an Au conductive paste comprising gold (Au) as a main component; or the metal conductive paste is an Au conductive paste comprising gold (Au) as a main component, and the other metal conductive paste is an Ag—Pd conductive paste comprising silver (Ag) and palladium (Pd).
    Type: Application
    Filed: July 23, 2012
    Publication date: January 31, 2013
    Applicant: YAZAKI CORPORATION
    Inventors: Toshio OIKE, Kenichi TANAKA, Ryo HIROSE, Takafumi SHIMIZU
  • Patent number: 8350664
    Abstract: Provided may be a semiconductor resistance element including resistance patterns disposed on an insulating substrate. The substrate may have first and second planer surfaces disposed in a first direction, third and fourth planar surfaces at least between the first and second planar surfaces in a second direction and fifth and sixth planar surfaces at least between the first and second planar surfaces in a third direction. The semiconductor resistance element may include a first resistance pattern configured to cover a selected one of the first and second planar surfaces and a second resistance pattern on at least one of the third through sixth planar surfaces.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: January 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-Mo Hwang, Hyun-Seok Choi, Young-Chul Park
  • Publication number: 20120299694
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik, Rodney Brune
  • Patent number: 8310334
    Abstract: A surface mount resistor includes a resistance body, a first protective layer, a heat-transfer layer, a second protective layer and two electrode layers. The resistance body has a first end portion, a second end portion and a central portion between the first end portion and the second end portion. The first protective layer is disposed on the central portion of the resistance body, and the first end portion and the second end portion are exposed. The heat-transfer layer is plated on at least part of the resistance body. The second protective layer is disposed on at least part of the heat-transfer layer. The electrode layers are respectively arranged on the first end portion and the second end portion, and electrically connected with the heat-transfer layer.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 13, 2012
    Assignee: Cyntec, Co., Ltd.
    Inventors: Ching-Feng Chen, Kun-Hong Shih, Yen-Ting Lin, Yin-Tien Yeh
  • Publication number: 20120223807
    Abstract: To provide manufacturing method for resistor that uses metal plate as resistance body, which can obtain desired accurate resistance value without trimming resistance body even if product becomes small. The method comprises; in method for manufacturing an unit resistor that has a pair of electrodes separated by insulation film, from resistor material that is provided with a metal plate consisting of resistance material, an insulation film pattern formed on the metal plate, and an electrode region formed besides area where insulation film pattern has been formed, by piercing predetermined piercing area, wherein length E of insulation film pattern is longer than width w of piercing area, wherein width L of insulation film pattern extends or narrows along direction of length E of insulation film pattern, and wherein position X of piercing area is adjusted in extent and in direction of length E of insulation film pattern.
    Type: Application
    Filed: February 22, 2012
    Publication date: September 6, 2012
    Applicant: KOA CORPORATION
    Inventors: Hiromu Sakai, Hitoshi Amemiya, Takanori Kikuchi
  • Patent number: 8179226
    Abstract: The present invention provides an array type chip resistor including: a substrate formed in a rectangular parallelepiped shape; lower electrodes disposed on both sides of a bottom surface of the substrate at equal spaces; side electrodes extended from some of lower electrodes, formed on outermost edges of both sides of the substrate, in all lower electrodes, to a side surface of the substrate; a resistive element interposed between lower electrodes of the bottom surface of the substrate; a protection layer covered on the resistive element, the protection layer having both sides which cover a part of the lower electrodes and the resistive element; leveling electrodes being in contact with the lower electrodes exposed to outside of the protection layer; and a plating layer formed on the leveling electrodes.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: May 15, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Heung Bok Ryu, Jang Ho Park, Young Key Kim, Ki Won Suh, Yun Gab Choi
  • Patent number: 8154379
    Abstract: An electrical PTC thermistor component includes a base that includes a peripheral surface, first and second faces on different sides of the component, and first and second conductive layers, each of which is on at least one of the first and second faces. The first conductive layer is not on the peripheral surface. The second conductive layer includes a cap that covers, and overlaps edges of, the at least one of the first and second faces.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: April 10, 2012
    Assignee: EPCOS AG
    Inventors: Udo Theissl, Andreas Webhofer
  • Patent number: 8111130
    Abstract: A chip resistor includes a resistor element, a reinforcing member, and a pair of electrodes. The resistor element includes a first surface and a second surface opposite to the first surface. The reinforcing member is bonded to the first surface of the resistor element. The pair of electrodes are formed on the second surface of the resistor element. The resistor element is formed with a slit located between the pair of electrodes.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: February 7, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Torayuki Tsukada
  • Patent number: 8085551
    Abstract: The present invention is to provide an electronic component where positional accuracy for arranging members constituting a circuit element such as a resistor element and the like is mitigated and corrosion of a terminal electrode caused by sulfur in the atmosphere is reduced.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: December 27, 2011
    Assignee: KOA Corporation
    Inventors: Seiji Karasawa, Koji Fujimoto
  • Patent number: 8044765
    Abstract: A chip resistor includes a metal resistor element made in the form of a chip that includes an upper surface, a lower surface, two end surfaces, and two side surfaces. Two electrodes are formed on the resistor element to be spaced from each other in a longitudinal direction of the resistor element. Each of the electrodes is formed directly on the resistor element and extends continuously from the lower surface onto the upper surface via a corresponding one of the two end surfaces.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: October 25, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Torayuki Tsukada
  • Patent number: 7947933
    Abstract: A ceramic heater comprising a ceramic body, a heat generating resistor buried in the ceramic body, an electrode pad that is electrically connected to the heat generating resistor and is formed on the surface of the ceramic body and a lead member bonded onto the electrode pad.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: May 24, 2011
    Assignee: Kyocera Corporation
    Inventors: Ryuichi Nagasako, Osamu Hamada, Koji Sakamoto
  • Patent number: 7936243
    Abstract: An adjustable resistor embedded in a multi-layered substrate and method for forming the same. The adjustable resistor comprises: a planar resistor, having a plurality of terminals; and a plurality of connecting lines connected to the planar resistor, each of the connecting lines being drawn from each of the terminals of the planar resistor so as to form a resistor network, wherein the connecting lines are selectively broken by a process for drilling the substrate to form a number of combinations of opened connecting lines such that the resistance value of the adjustable resistor is varied and thus the resistance value of the adjustable resistor can be precisely adjusted.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: May 3, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Ying-Jiunn Lai, Chang-Sheng Chen, Chin-Sun Shyu, Uei-Ming Jow, Chang-Lin Wei
  • Patent number: 7830239
    Abstract: A device to protect against a surge voltage includes a body having a hexahedron shape and filled with a varistor material, a pair of input signal electrodes attached to a first side surface of the body along upward and downward directions, a pair of output signal electrodes attached to a second side surface of the body that faces the first side surface of the body in the upward and downward directions, a ground electrode attached to an upper surface of the body, at least one pair of signal connection electrode plates to connect the input signal electrodes and the output signal electrodes, and a ground plate to be connected to the ground electrode. Thus, the device can protect an electronic circuit from a surge voltage and match an impedance of a transmission line.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: November 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-man Kim, Atsuhisa Ogawa
  • Patent number: 7825769
    Abstract: A terminal structure of a chip-like electric component capable of blocking entry of electromigration-causing factors through an insulating resin layer in the vicinity of the peak of a raised portion of an electrical element forming layer is obtained. A metal-glaze-based front electrode 103 containing silver is provided on a surface of an insulating ceramic substrate 101. A resistor layer 107 electrically connected to the front electrode 103 is provided on the substrate surface. A glass layer 109a is provided to completely cover a surface of the resistor layer 107 as well as a surface of an end portion of the resistor layer 107 and also to partially cover the front electrode 103. An insulating resin layer 109b is provided to cover a surface of the glass layer 109a as well as a surface of at least an end portion of the glass layer 109a and to partially cover the front electrode 103.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: November 2, 2010
    Assignee: Hokuriku Electric Co., Ltd.
    Inventors: Yutaka Nomura, Katsumi Takeuchi
  • Publication number: 20090296312
    Abstract: A chip-type electronic component has: a ceramic element body; a plurality of first and second internal electrodes arranged in the ceramic element body so as to be opposed at least in part to each other; a first external connection conductor to which the plurality of first internal electrodes are connected; a second external connection conductor to which the plurality of second internal electrodes are connected; first and second terminal electrodes; a first internal connection conductor arranged in the ceramic element body and connecting the first external connection conductor and the first terminal electrode; and a second internal connection conductor arranged in the ceramic element body and connecting the second external connection conductor and the second terminal electrode.
    Type: Application
    Filed: May 21, 2009
    Publication date: December 3, 2009
    Applicant: TDK CORPORATION
    Inventors: Kaname Ueda, Dai Matsuoka, Naoki Chida, Izuru Soma, Hisayoshi Saito, Katsunari Moriai
  • Publication number: 20090153287
    Abstract: A chip resistor includes a metal resistor element made in the form of a chip that includes an upper surface, a lower surface, two end surfaces, and two side surfaces. Two electrodes are formed on the resistor element to be spaced from each other in a longitudinal direction of the resistor element. Each of the electrodes is formed directly on the resistor element and extends continuously from the lower surface onto the upper surface via a corresponding one of the two end surfaces.
    Type: Application
    Filed: December 4, 2008
    Publication date: June 18, 2009
    Applicant: ROHM CO., LTD.
    Inventor: Torayuki TSUKADA
  • Patent number: 7528350
    Abstract: The present invention provides a novel method for electrical connection between a polymer PTC device and a metal lead element to thereby prevent the problems of the connection by caulking or soldering. For this purpose, the present invention provides a process for producing a connection structure by laser welding, said connection structure having (A) a PTC device (10) including (i) a laminar polymer PTC element (12) and (ii) a metal foil electrode (14) disposed on a main surface of the laminar polymer PTC element (12), and (B) a metal lead element (20) electrically connected to the metal foil electrode. The metal foil electrode (14) has at least two metal layers, one of which, the X-th layer, has laser beam absorption a % that is the lowest among the metal layers of the metal foil electrode (14). The X-th layer is present between a first metal layer (18) of the metal foil electrode and the laminar polymer PTC element (12).
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: May 5, 2009
    Assignee: Tyco Electronics Raychem KK
    Inventors: Atsushi Nakagawa, Arata Tanaka, Mikio Iimura
  • Patent number: 7378936
    Abstract: A circuit element has a substrate layer with first and second faces. A conductive first layer overlays the first surface, and a conductive second layer overlays the second surface. The first layer defines a pattern with a trimmable portion. The second layer defines a pattern having a first conductive element registered with at least a portion of the trimmable portion, and a second conductive element electrically isolated from first element and encompassing the first element. The second element may be a ground plane that has an aperture surrounding the first component, which serves as a shield to prevent damage to any elements beyond the second layer.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: May 27, 2008
    Assignee: Tektronix, Inc.
    Inventors: Devin Bingham, Daniel J. Ayres, Alvin Chow
  • Patent number: 7326889
    Abstract: A method of manufacturing a PTC element comprising a pair of lead terminals bonded together by thermocompression with a matrix held therebetween comprises a matrix preparing step of preparing a matrix constructed by dispersing a conductive filler into a crystalline polymer; a terminal preparing step of preparing a pair of lead terminals holding the matrix therebetween, a surface of each lead terminal facing the matrix being formed with a plurality of anchor protrusions separated from each other; a flattening step of flattening the anchor protrusions formed in respective nonoverlapping areas in the pair of lead terminals kept from overlapping the matrix; and a thermocompression bonding step of holding the matrix between respective overlapping areas in the pair of lead terminals overlapping the matrix, and securing the pair of lead terminals and the matrix together by thermocompression bonding.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: February 5, 2008
    Assignee: TDK Corporation
    Inventors: Hisanao Tosaka, Tokuhiko Handa, Hirokazu Satoh, Tsutomu Hatakeyama
  • Patent number: 7203049
    Abstract: The over-current protection device of the present invention uses the unbalanced properties of the thermal expansion coefficients between the outer and inner sides for an upper metallic conductive sheet and a lower metallic conductive sheet to generate a torque to deform outwardly. The torque is used to pull a current-sensing element and present with at least a cracking face, so as to introduce an electrically open effect similar to a fuse. Thus, the present invention can achieve the object for preventing the danger of circuit system by the short circuit during the burning of over-current protection device.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: April 10, 2007
    Assignee: Polytronics Technology Corporation
    Inventors: Edward Fu-Hua Chu, David Shau-Chew Wang, Yun-Ching Ma
  • Patent number: 6859133
    Abstract: The resistor of the present invention comprises a substrate, a pair of upper electrode layers disposed on one surface of the substrate, and a resistor layer connected to the pair of upper electrode layers, wherein the upper electrode layer includes a first thin film layer that strongly adheres to the substrate and the resistor layer, and a second thin film layer having volume resistivity lower than the volume resistivity of the first upper electrode thin film layer. Further, the resistor of the present invention comprises a pair of side electrodes, electrically connected to the upper electrode layers, at the end portion of the substrate, and the side electrode includes a first side thin film layer and a second side thin film layer, and the material that forms the second side thin film layer has a solid solubility with the first side thin film layer.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: February 22, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tsutomu Nakanishi, Takashi Morino, Tadao Yagi, Tetsuhiro Korechika
  • Patent number: 6817088
    Abstract: A power adapter is shown for use on injection molding runner nozzles. The power adapter provides for quick and easy installation (and removal) of thick film resistance heaters on the runner nozzles, without the need for rewiring. The power adapter comprises a series of rings that allow insertion of the terminal end of the heater, which is then rotated into a locked position. One of the rings contains contacts which are at least semi-permanently wired to a power source. To facilitate the power adapter, a novel method terminating the heating element is used. A noble-metal-based bonding agent (such a silver-base ink) is applied to the heating element and/or terminal plate. The terminal plate is then affixed to the heating element and the bonding agent is fired.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: November 16, 2004
    Assignee: Watlow Electric Msg.C
    Inventor: Hongy Lin
  • Patent number: 6636143
    Abstract: The present invention relates to a resistor and a manufacturing method of the same. The invention aims at providing the resistor and the manufacturing method thereof that can reduce a soldering area that occupies a mount area, when the resistor is mounted on a mount board. In order to achieve the foregoing object, a resistor comprises a substrate (21), a pair of first upper surface electrode layers (22), each provided on a side portion of an upper surface toward a portion of a side surface of the substrate (21), a pair of second upper surface electrode layers (23) provided in a manner to make electrical connections with the first upper surface electrode layers (22), a resistance layer (24) provided in a manner to make electrical connections with the second surface electrode layers (23), and a protective layer (25) provided to cover at least an upper surface of the resistance layer (24).
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: October 21, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masato Hashimoto, Hiroyuki Yamada, Seiji Tsuda
  • Patent number: 6285275
    Abstract: A surface mountable electrical devices includes a PTC resistive element having opposite first and second surfaces and lateral faces interconnecting the first and second surfaces, spaced apart first and third electrode layers formed on the first surface, a second electrode layer formed on the second surface, and a conductive layer. Each two adjacent lateral faces defines a corner that has a terraced face. The conductive layer has a first lateral segment formed on the third electrode layer, a second lateral segment formed on the second electrode layer, and a transverse segment formed on the terraced face of one of the corners and having a terraced cross-section.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: September 4, 2001
    Assignee: Fuzetec Technology Co., Ltd.
    Inventors: Jack Jih-Sang Chen, Chun-Ta Tseng, Ching-Chiang Yeh
  • Publication number: 20010004074
    Abstract: An exothermic body, capable of efficiently conducting heat from a planar thermistor element with positive temperature characteristic, has a pair of comb-shaped electrodes formed by a sputtering or plating method with thickness less than 10 &mgr;m on one of main surfaces of the thermistor element.
    Type: Application
    Filed: January 25, 2001
    Publication date: June 21, 2001
    Inventor: Katsuyuki Uchida
  • Patent number: 6150918
    Abstract: Degaussing units in the form of mono and duo-PTCs are disclosed which can be exposed to high inrush currents without the same leading to fracture at the edges of the ceramic thermistors. The electrode layers of the thermistor(s) completely cover the main surfaces and are composed of a material which comprises a silver alloy containing minimally 4 wt. % and maximally 12 wt. % zinc, and which is applied directly on to the thermistor by means of screen printing. In a preferred embodiment, an alloy containing approximately 6 wt. % zinc is used.
    Type: Grant
    Filed: April 26, 1996
    Date of Patent: November 21, 2000
    Assignee: BC Components Holdings B.V.
    Inventor: Reinhilde P. M. Berger
  • Patent number: 5990780
    Abstract: A tight-tolerance, low-resistance, high-power chip resistor for mounting on a circuit board in parallel and adjacent relationship to such board. There are discrete terminal plates mounted on one surface of a substrate, in spaced-apart relationship to each other but still quite close to each other. Electrical connections are made by the customer to the terminal plates, at different regions thereof, without adversely affecting the tight-tolerance relationship. The terminal plates additionally provide heat spreading from the resistance film, enhancing the power handling capability of this low-resistance, high-power chip resistor.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: November 23, 1999
    Assignee: Caddock Electronics, Inc.
    Inventor: Richard E. Caddock, Jr.
  • Patent number: 5966067
    Abstract: A thick film resistor assembly comprising: (a) an insulation substrate, (b) a resistor layer being formed on surface of the insulation substrate, (c) a pair of conductor pads comprising a first Ag conductor layer comprising Ag powder and palladium or platinum or mixtures thereof, disposed on the insulation substrate with predetermined spaces from the resistor layer to sandwich the resistor layer in a direction of its conductive resistance path; and (d) a second Ag conductor layer comprising a Ag conductor composition devoid palladium or platinum or mixtures thereof, disposed over the resistor layer and conductor pads at their respective edges to connect electrically the resistor layer to the conductor pads forming a conductive resistance path.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: October 12, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mamoru Murakami, Hisashi Matsuno, Keiichiro Hayakwa
  • Patent number: 5952911
    Abstract: A thermistor chip is made by first forming first metal layers with a three-layer structure at both end parts of a thermistor element and then forming second metal layers with a three-layer structure on the first metal layers so as to have edge parts that are formed directly in contact with a surface area of the thermistor element and will reduce its normal temperature resistance value. The first and second metal layers are each of a three-layer structure with a lower layer made of a metal with resistance against soldering heat, a middle layer made of a metal with both wettability to solder and resistance against soldering heat, and an upper layer made of a metal having wettability to solder.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: September 14, 1999
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masahiko Kawase, Hidenobu Kimoto, Norimitsu Kito, Ikuya Taniguchi
  • Patent number: 5884391
    Abstract: An electrical device comprising a resistive element having a first electrode in electrical contact with the top surface of the resistive element and a second electrode in electrical contact with the bottom surface of the resistive element. An insulating layer is formed on the first and second electrodes. A portion of the insulating layer is removed from the first and second electrodes to form first and second contact points. A conductive layer is formed on the insulating layer and makes electrical contact with the first and second electrodes at the contact points. The conductive layer has portions removed to form first and second end terminations separated by electrically non-conductive gaps. The wrap-around configuration of the device allows for an electrical connection to be made to both electrodes from the same side of the electrical device.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: March 23, 1999
    Assignee: Littelfuse, Inc.
    Inventors: Katherine M. McGuire, Honorio Luciano
  • Patent number: 5874885
    Abstract: An electrical device (1) in which an element (7) composed of a conductive polymer is positioned in contact with the surface layer of one or more metal electrodes (3,5). The metal electrode contains a base layer (9) which comprises a first metal, an intermediate metal layer (15) which comprises a metal that is different from the first metal, and a surface layer (17) which (i) comprises a second metal, (ii) has a center line average roughness R.sub.a of at least 1.3, and (iii) has a reflection density R.sub.d of at least 0.60. The conductive polymer composition preferably exhibits PTC behavior. The electrical devices, which may be, for example, circuit protection devices or heaters, have improved thermal and electrical performance over devices prepared with electrodes which do not meet the center line average roughness and reflection density requirements.
    Type: Grant
    Filed: March 13, 1997
    Date of Patent: February 23, 1999
    Assignee: Raychem Corporation
    Inventors: Daniel A. Chandler, Martin Matthiesen, Derek Leong, Matthew P. Galla
  • Patent number: 5804092
    Abstract: A modular igniter system which preferably provides either direct electrical connection between the metallized ends of the hot surface igniter and the socket contact, or indirect electrical connection by a short lead wire held in place on the hot surface element by an active metal braze.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: September 8, 1998
    Assignee: Saint-Gobain/Norton Industrial Ceramics Corporation
    Inventors: Scott R. Axelson, Thomas E. Salzer
  • Patent number: 5793276
    Abstract: An organic PTC thermistor having a positive temperature coefficient of resistivity, which comprises a PTC composition comprising an organic polymer having dispersed therein a conductive substance, and at least one pair of electrodes, wherein the conductive substance is tungsten carbide powder; or the electrodes each comprise a metal mesh and a metal layer.
    Type: Grant
    Filed: July 17, 1996
    Date of Patent: August 11, 1998
    Assignee: TDK Corporation
    Inventors: Hisanao Tosaka, Minoru Takaya, Shigeru Moriya, Hisashi Kobuke, Munemitsu Hamada
  • Patent number: 5734313
    Abstract: A chip-type composite electronic component according to the present invention comprises an insulating substrate (1), a common electrode (2) formed on the substrate (1), a plurality of individual electrodes (3a-3h) formed on the substrate (1) to be spaced from the common electrode (2), and a plurality of electronic elements (4a-4e) each interposed between each of the individual electrodes (3a-3h) and the common electrode (2). Each of the common electrode (2) and individual electrodes (3a-3h) has a plated solder layer as an outermost layer. Each of the electronic elements (4a-4e) has a direct current resistance of no less than 47K .OMEGA., and the solder layer of the common electrode (2) has a layer thickness which is no more than 2.9 times as great as that of the solder layer of the individual electrodes (3a-3h).
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: March 31, 1998
    Assignee: Rohm Co., Ltd.
    Inventors: Masato Doi, Hirotoshi Inoue, Seiji Mitsuno
  • Patent number: 5699607
    Abstract: An electrical device comprising a resistive element having a first electrode in electrical contact with the top surface of the resistive element and a second electrode in electrical contact with the bottom surface of the resistive element. An insulating layer is formed on the first and second electrodes. A portion of the insulating layer is removed from the first and second electrodes to form first and second contact points. A conductive layer is formed on the insulating layer and makes electrical contact with the first and second electrodes at the contact points. The conductive layer has portions removed to form first and second end terminations separated by electrically non-conductive gaps. The wrap-around configuration of the device allows for an electrical connection to be made to both electrodes from the same side of the electrical device.
    Type: Grant
    Filed: May 3, 1996
    Date of Patent: December 23, 1997
    Assignee: Littelfuse, Inc.
    Inventors: Katherine M. McGuire, Mike A. Ward
  • Patent number: 5689227
    Abstract: A circuit board material is disclosed which includes a support layer, at least one electrical resistance layer having a preselected resistivity adhered to the support layer, a barrier layer adhered to the electrical resistance layer, and a conductive layer adhered to the barrier layer. The barrier layer is capable of protecting the resistance layer from attack by alkaline ammoniacal copper etchants. A method of producing the circuit board material is also disclosed.
    Type: Grant
    Filed: January 17, 1996
    Date of Patent: November 18, 1997
    Assignee: Ohmega Electronics, Inc.
    Inventors: Phong Xuan Nguyen, Steven Russell Nissen
  • Patent number: 5606302
    Abstract: An electronic component device includes an electronic component element 13 that is interposed between a pair of spring terminals 14 and 15. The electronic component element 13 is resiliently held by the spring terminals 14 and 15, and contact portions 17 and 18 of the spring terminals 14 and 15, which are respectively brought into contact with electrodes 13b and 13c of the electronic component element 13, are positioned on both major surfaces of the electronic component element 13 so as not to be opposed to each other. At least one groove of a set of grooves 16a to 16c is formed on at least one of the major surfaces of the electronic component element 13 for guiding the direction in which the electronic component element 13 is divided when the electronic component element 13 is destroyed by, for example, an abnormal voltage.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: February 25, 1997
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Shigehiro Ichida
  • Patent number: 5557251
    Abstract: A thermistor includes a plate-like thermistor body and a first and a second electrode formed on each of the main surfaces of said plate-like thermistor body. The first electrode is formed so that its outer periphery reaches the outer peripheral edge of the thermistor and the second electrode is formed to extend from the area encircled by said first electrode onto the first electrode but not reach the outer periphery of the first electrode. The first and second electrodes are made of material which can make an ohmic-contact with the main surface of said thermistor body. The first electrode is made of the material which is hard to generate inter-electrode migration and said second electrode is made of the material which is easy to generate the inter-migration compared with the first electrode. Thus, the thermistor can prevent short-circuiting due to inter-electrode migration without deteriorating the characteristic such as a current capacity.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: September 17, 1996
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yuichi Takaoka
  • Patent number: 5420562
    Abstract: A resistor having a novel physical geometry is provided. The physical geometry of the resistor minimizes the current paths through the resistor such that the reactance components of the resistor is minimized for radio frequency operation. The resistor is made from a resistive material such as chrome silicon oxide, nichrome. The physical geometry of the resistor layout reduces the physical area occupied by the resistor, and also results in lower sensitivity to a DC trimming procedure used in the manufacturing process.
    Type: Grant
    Filed: September 28, 1993
    Date of Patent: May 30, 1995
    Assignee: Motorola, Inc.
    Inventor: Robert S. Kaltenecker
  • Patent number: 5289155
    Abstract: A positive characteristic thermistor, in which the outer periphery of a first electrode including a metal other than silver as its main component is positioned on the inside of the outer periphery of the main body of this thermistor, and is made to coincide with the outer periphery of a second electrode which includes silver as its main component and formed on the first electrode or to be placed on the inside of the periphery of the second electrode.
    Type: Grant
    Filed: May 6, 1992
    Date of Patent: February 22, 1994
    Assignee: Kabushiki Kaisha Komatsu Seisakusho
    Inventors: Takuji Okumura, Hiroshi Inagaki, Yukie Suzuno
  • Patent number: 5285184
    Abstract: Disclosed herein is a chip-type network resistor characterized in that resistance layers are formed between a common electrode extending across an insulative substrate and each of a plurality of separate electrodes disposed in the opposite sides of the insulative substrate used to support the common electrode, and overcoat layers are provided to cover the resistance layers and positioned to expose the common electrode, whereby the plating process is applied to the common electrode and the separate electrodes.
    Type: Grant
    Filed: June 20, 1991
    Date of Patent: February 8, 1994
    Inventors: Hisao Hatta, Kunio Kurihara, Saburo Inagaki